1
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
2
|
Truong HTB, Bui HM. Potential of aerobic granular sludge membrane bioreactor (AGMBR) in wastewater treatment. Bioengineered 2023; 14:2260139. [PMID: 37732563 PMCID: PMC10515668 DOI: 10.1080/21655979.2023.2260139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
This investigation is a review of the potential of aerobic granular sludge membrane bioreactor (AGMBR) in wastewater treatment due to the advantage of combination of membrane and aerobic granules for reducing membrane fouling and enhancing removal performance. The AGMBR is the same as the membrane bioreactor (MBR), but the activated sludge is replaced by aerobic granular sludge. This technology combines the advantages of aerobic granular sludge, such as good settleability, strong ability to withstand shock-loadings and high organic loading rate, and capacity of simultaneous chemical oxygen demand (COD) and nitrogen removal, and advantages of membrane bioreactor (MBR) such as excellent effluent quality, high biomass content, low excess sludge production, and small land requirement. Therefore, it can be considered a promising option for efficient wastewater treatment. Most studies have shown that aerobic granules could control membrane fouling, which often occurs in MBR. The main fouling mechanism was determined to be surface fouling by floccular sludge in MBR but pore fouling by colloids and solutes in AGMBR. Aerobic granular sludge also removed COD and nitrogen simultaneously, with more than 60% total nitrogen removal efficiency. The formation and stability of aerobic granules in AGMBR with various operational modes are discussed in this study.
Collapse
Affiliation(s)
- Hong Thi Bich Truong
- Faculty of Natural Science Education, Pham Van Dong University, Quang Ngai, Vietnam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, Ho Chi Minh, Vietnam
| |
Collapse
|
3
|
Dynamic scouring of multifunctional granular material enhances filtration performance in membrane bioreactor: Mechanism and modeling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Qiu B, Liao G, Wu C, Dai C, Bin L, Gao X, Zhao Y, Li P, Huang S, Fu F, Tang B. Rapid granulation of aerobic granular sludge and maintaining its stability by combining the effects of multi-ionic matrix and bio-carrier in a continuous-flow membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152644. [PMID: 34968611 DOI: 10.1016/j.scitotenv.2021.152644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The present investigation aimed at providing a novel approach to promote the rapid granulation and stability of aerobic granular sludge (AGS) in a continuous-flow membrane bioreactor (MBR). By operating two identical MBRs with or with no bio-carrier for 125 days, it was found that the combination of multi-ionic matrix and bio-carrier could promote the rapid formation and maintain the long-term stability of AGS. The primary AGS was first observed inside the reactor on day 14, and the mature AGS appeared soon and kept stable for more than 4 months (its average size still was about 800 μm on day 125). Suitable filling ratio of bio-carrier was beneficial to form a stable and regular circulating water flow inside, and adding divalent metal ions quickly reduced the negative charges of tiny sludge particles, which were two essential factors leading to the rapid granulation of AGS and maintaining its stability. The multi-ionic matrix not only enhanced the biological aggregation process, but also facilitated the expansion of the cultivated AGS into a new multi-habitat system of Mn-AGS, in which, complex microbial communities with rich bio-diversity robustly promoted the efficient removal of organic pollutants and nutrients.
Collapse
Affiliation(s)
- Bangqiao Qiu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Guohao Liao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Chuandong Wu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Chencheng Dai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Liying Bin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Xinlei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Yan Zhao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Shaosong Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Campo R, Lubello C, Lotti T, Di Bella G. Aerobic Granular Sludge-Membrane BioReactor (AGS-MBR) as a Novel Configuration for Wastewater Treatment and Fouling Mitigation: A Mini-Review. MEMBRANES 2021; 11:membranes11040261. [PMID: 33916529 PMCID: PMC8065546 DOI: 10.3390/membranes11040261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
This mini-review reports the effect of aerobic granular sludge (AGS) on performance and membrane-fouling in combined aerobic granular sludge-membrane bioreactor (AGS-MBR) systems. Membrane-fouling represents a major drawback hampering the wider application of membrane bioreactor (MBR) technology. Fouling can be mitigated by applying aerobic granular sludge technology, a novel kind of biofilm technology characterized by high settleability, strong microbial structure, high resilience to toxic/recalcitrant compounds of industrial wastewater, and the possibility to simultaneously remove organic matter and nutrients. Different schemes can be foreseen for the AGS-MBR process. However, an updated literature review reveals that in the AGS-MBR process, granule breakage represents a critical problem in all configurations, which often causes an increase of pore-blocking. Therefore, to date, the objective of research in this sector has been to develop a stable AGS-MBR through multiple operational strategies, including the cultivation of AGS directly in an AGS-MBR reactor, the occurrence of an anaerobic-feast/aerobic-famine regime in continuous-flow reactors, maintenance of average granule dimensions far from critical values, and proper management of AGS scouring, which has been recently recognized as a crucial factor in membrane-fouling mitigation.
Collapse
Affiliation(s)
- Riccardo Campo
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Claudio Lubello
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Gaetano Di Bella
- Faculty of Engineering and Architecture, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; Tel.: +39-0935 536536
| |
Collapse
|
6
|
Zhu Y, Cao L, Ni L, Wang Y. Insights into fouling behavior in a novel anammox self-forming dynamic membrane bioreactor by the fluorescence EEM-PARAFAC analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40041-40053. [PMID: 32654034 DOI: 10.1007/s11356-020-09944-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Fouling behavior of the novel anaerobic ammonium oxidation (anammox) self-forming dynamic membrane bioreactor (SFDMBR) was elucidated, which is using nylon mesh as the filter with controlled fouling and successful anammox process. Properties of anammox sludge and foulants in the anammox SFDMBR and MBR (using PVDF microfiltration membrane) were compared to analyze the alleviated fouling in the SFDMBR, of which transmembrane pressure could be kept below 10 kPa for 50 days in one filtration cycle of 82 days with flux of 12 L m-2 h-1. Colorimetrical determination and excitation emission matrices-parallel factor (EEM-PARAFAC) analysis of the foulants showed that humic acid content in foulants on nylon mesh was obviously lower than that on PVDF membrane. Considering that the small-sized and flexible humic acids prefer to plug into membrane pores, the alleviated irreversible fouling in the SFDMBR could be attributed to the less microbial humic acid content of foulants (8.8 ± 1.0%) compared with the MBR (20.7 ± 2.9%). The adequate efflux of humic-like substances in the operation with nylon mesh was speculated to be the main mechanism of fouling control in the SFDMBR. These findings highlighted the potential of anammox SFDMBR in practical applications, because of the high humic acid contents in real ammonium-laden wastewater. Our study highlights the important role of humic acids in fouling behavior of the novel anammox SFDMBR to provide guidance for fouling control strategies. Graphical abstract.
Collapse
Affiliation(s)
- Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lijuan Cao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
7
|
Song W, Xu D, Bi X, Ng HY, Shi X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. BIORESOURCE TECHNOLOGY 2020; 314:123715. [PMID: 32645570 DOI: 10.1016/j.biortech.2020.123715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
This study proposed a novel approach of cultivating aerobic granular sludge (AGS) using intertidal wetland sediment (IWS) as inoculant in MBR for saline wastewater treatment. Granulation was observed in IWS-MBR during start-up, with increased sludge particle size (3.1-3.3 mm) and improved settling property (23.8 ml/g). The abundant inorganic particulates (acted as nuclei) and distinctive microbial community in IWS contributed to the granules formation. With the help of AGS, IWS-MBR system exhibited excellent TOC reduction of 90.3 ± 6.1% and significant TN reduction of 31.2 ± 5.0%, while the control MBR (Co-MBR) only showed 58.9 ± 7.2% and 10.4 ± 2.7%, respectively. Meanwhile, membrane fouling was mitigated in IWS-MBR, with a longer filtration cycle of 21.5 d, as compared with that of 8.9 d for Co-MBR. Microbial community analysis revealed that abundant functional bacteria associated with granulation and pollutants removal were enriched from IWS and set the basis for AGS formation and the superior treatment performance.
Collapse
Affiliation(s)
- Weilong Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Dong Xu
- Changzhou Cloud Intelligent Environment Technology Co. Ltd., 124 East Taihu Road, Changzhou 213022, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China.
| |
Collapse
|
8
|
Zhang W, Jiang F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. WATER RESEARCH 2019; 157:445-453. [PMID: 30981119 DOI: 10.1016/j.watres.2018.07.069] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 06/09/2023]
Abstract
The main goal of the current study was to investigate the membrane fouling mechanism of aerobic granular sludge (AGS) with various AGS sizes. In this regard, AGSs were sieved into 6 levels: 0∼0.5, 0.5∼0.7, 0.7∼1, 1∼1.2, 1.2∼1.7 mm and larger than 1.7 mm, then filtrated by a small dead-end filtration cell. Interestingly, there appeared a critical AGS size (1∼1.2 mm) for membrane fouling. Above 1.2 mm, flux increased and fouling reduced with size, due to the loose cake layer and high permeability caused by larger AGS. Below 1 mm, for smaller AGS, higher flux and lower fouling appeared, because less extracellular polymeric substance (EPS) formed and adhered onto AGS foulants. In the critical size, membrane fouling was serious to the most extent, on account of the dual role of the compact structure of cake fouling layer and the adhesion of EPS. Moreover, this critical AGS size also possessed the highest cake layer, pore blocking and irreversible fouling, which generally existed in various operational conditions. Besides, the results of SEM, AFM, hydrophilicity and ATR-FTIR also proved that the existence of the maximum membrane fouling at the critical AGS size. This study provides a deep understanding of the membrane fouling mechanisms of AGS in membrane filtration and is beneficial for developing a new membrane fouling mitigation strategy by terms of regulating AGS size.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemistry & Environment, South China Normal University, Guangzhou, China.
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Iorhemen OT, Hamza RA, Zaghloul MS, Tay JH. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis. WATER RESEARCH 2019; 156:305-314. [PMID: 30927626 DOI: 10.1016/j.watres.2019.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge membrane bioreactor (AGMBR) has emerged with strong potential to overcome membrane fouling. There have been no extensive studies on extracellular polymeric substances (EPS) in AGMBR. The present work aimed at conducting an in-depth study of EPS and monitoring fouling development in AGMBR using a 22 factorial design having hydraulic retention time (HRT) and total organic carbon (TOC) as independent variables. HRT was tested at three levels of 6, 8 and 10 h while the TOC levels were 104 ± 13, 189 ± 17, and 266 ± 27 mg/L. AGMBR exhibited high proteins (PN) in the tightly-bound EPS (TB-EPS) resulting in high proteins/polysaccharides (PN/PS) ratios of 2-16. The PN in the LB-EPS was low, ranging from 0.01 to 1.92 mg/g MLVSS, but the range of PN/PS ratio was also of 2-16. Despite the high PN/PS ratio, TMP rise was low. Water jet easily sloughed off the developed membrane cake layer. The elimination of chemicals for membrane cleaning has significant cost savings. TOC had a significant main effect on both the PN and PS components of TB-EPS at α < 0.05. TB-EPS PN increased with increase in TOC. TB-EPS PN decreased as HRT increased from 6 h to 10 h at 104 ± 13 mg/L TOC but the change of HRT from 10 h to 6 h at 266 ± 27 mg/L TOC did not affect TB-EPS PN. The TMP increased with increasing HRT at 104 ± 13 and 266 ± 27 mg/L TOC. An increase in sEPS PN correlated well with increase in membrane fouling (r = 0.581). Three runs performed best: 266 ± 27 mg/L TOC and 10 h HRT; 104 ± 13 mg/L TOC and 6 h HRT; and 266 ± 27 mg/L TOC and 6 h HRT as TMP was below the 50 kPa threshold. AGMBR achieved 98 ± 1%, 99 ± 1%, 52 ± 33% organics degradation, NH3-N removal, total nitrogen removal, respectively.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Mohamed Sherif Zaghloul
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Iorhemen OT, Hamza RA, Sheng Z, Tay JH. Submerged aerobic granular sludge membrane bioreactor (AGMBR): Organics and nutrients (nitrogen and phosphorus) removal. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Influence of static mixer on the formation and performance of dynamic membrane in a dynamic membrane bioreactor. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Sabaghian M, Mehrnia MR, Esmaieli M, Noormohammadi D. Formation and performance of self-forming dynamic membrane (SFDM) in membrane bioreactor (MBR) for treating low-strength wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:904-912. [PMID: 30252668 DOI: 10.2166/wst.2018.368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study introduces a self-forming dynamic membrane (SFDM) with large-pore mesh filter materials instead of conventional MF/UF membranes for wastewater treatment. Development of SFDM on the mesh filter surface plays a major role in reducing the wastewater turbidity and its performance in a self-formation dynamic membrane bioreactor (SFDMBR). To evaluate formation of the dynamic membrane, biological and hydrodynamic parameters, including mixed liquor suspended solids (MLSS) and aeration rate, were examined. The experimental results showed that with elevation of MLSS in the bioreactor (up to MLSS = 9,000 mg/L), the effluent turbidity diminishes with rapid formation of SFDM, with the shortest formation time (5 min) obtained in SFDM operations, though it results in increased membrane fouling. SFDM was well formed at low aeration rates of 2.5 L/min and 5 L/min, due to very low shear stress on the mesh filter surface, given the results of turbidity in comparison with aeration rates of 10 L/min and 15 L/min. The filtration performance of SFDM in treatment of synthetic wastewater was tested under a constant operational flux (58 L/m2 h). Total chemical oxygen demand (COD) and NH4-N removals were 88-93% and 96-98.8%, respectively. These results indicated that the treatment process can be performed effectively by SFDMBR.
Collapse
Affiliation(s)
- M Sabaghian
- School of Chemical Engineering, College of Engineering, University of Tehran Tehran, Iran E-mail:
| | - M R Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran Tehran, Iran E-mail:
| | - M Esmaieli
- School of Chemical Engineering, College of Engineering, University of Tehran Tehran, Iran E-mail:
| | - D Noormohammadi
- Tehran Wastewater Company, Technical Office and Engineering Services, Tehran, Iran
| |
Collapse
|
13
|
Kiyak Y, Mazé B, Pourdeyhimi B. Microfiber Nonwovens as Potential Membranes. SEPARATION & PURIFICATION REVIEWS 2018. [DOI: 10.1080/15422119.2018.1479968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasar Kiyak
- The Nonwovens Institute, North Carolina State University, Raleigh, NC, USA
- College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Benoît Mazé
- The Nonwovens Institute, North Carolina State University, Raleigh, NC, USA
- College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Raleigh, NC, USA
- College of Textiles, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Cai D, Huang J, Liu G, Li M, Yu Y, Meng F. Effect of support material pore size on the filtration behavior of dynamic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 255:359-363. [PMID: 29433772 DOI: 10.1016/j.biortech.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
The effect of support material pore size on the filtration behaviors during start-up and stabilized stages in the dynamic membrane bioreactors (DMBR) was studied. Before the dynamic membrane (DM) was formed, the turbidity at 50-μm could be more than 250 NTU, while it was less than 40 and 10 NTU at 25- and 10-μm, respectively. After the DM was formed, the stabilized stage lasted for 61 days with low transmembrane pressure <0.6 kPa and the 5-, 10-, and 25-μm filters had similar effluent turbidity (<1 NTU) and chemical oxygen demand. However, their averaged flux was 66.4, 25.1, and 3.5 L·m-2·h-1, respectively, suggesting that the 25-μm filter had significantly lower filtration resistance. Consequently, to avoid unallowable high effluent turbidity during start-up or after membrane cleaning and to achieve high flux with low pressure filtration, a mesh size of ∼25 μm is more suitable for DMBR.
Collapse
Affiliation(s)
- Donglong Cai
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ju Huang
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guoqiang Liu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China.
| | - Mingyu Li
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yang Yu
- School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| |
Collapse
|
15
|
Liébana R, Modin O, Persson F, Wilén BM. Integration of aerobic granular sludge and membrane bioreactors for wastewater treatment. Crit Rev Biotechnol 2018; 38:801-816. [PMID: 29400086 DOI: 10.1080/07388551.2017.1414140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.
Collapse
Affiliation(s)
- Raquel Liébana
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Oskar Modin
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Frank Persson
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| | - Britt-Marie Wilén
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
16
|
Zhang D, Zhou Y, Bugge TV, Mayanti B, Yang A, Poh LS, Gao X, Majid MBA, Ng WJ. Soluble microbial products (SMPs) in a sequencing batch reactor with novel cake filtration system. CHEMOSPHERE 2017; 184:1286-1297. [PMID: 28672727 DOI: 10.1016/j.chemosphere.2017.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The formation, composition and characteristics of soluble microbial products (SMPs) were investigated in a novel system which coupled a sequencing batch reactor with a cake filtration system. Both suspended solids (SS) and turbidity were significantly removed, resulting in effluent SS of 0.12 mg L-1 and turbidity of 0.72 NTU after cake filtration. The average concentrations of proteins and carbohydrates decreased respectively from 4.0 ± 0.4 and 7.1 ± 0.6 mg/L in the sequencing batch reactor (SBR) mixed liquor, to 0.85 ± 0.21 and 1.39 ± 0.29 mg/L in the cake filtration effluent. Analysis of the molecular weight (MW) distribution of SMPs revealed a substantial reduction in the intensity of high-MW peaks (503 and 22.71 kDa) after cake filtration, which implied the sludge cake layer and the underlying gel layer may play a role in the effectiveness of cake filtration beyond the physical phenomenon. Three-dimensional excitation emission matrix fluorescence spectroscopy indicated that polycarboxylate- and polyaromatic humic acids were the dominant compounds and a noticeable decrease in the fraction of these compounds was observed in the cake filtration effluent. Analysis with GC-MS set for detecting low-MW SMPs identified aromatics, alcohols, alkanes and esters as the dominant compounds. SMPs exhibited both biodegradable and recalcitrant characteristics. More SMPs (total number of 91) were accumulated during the SBR start-up stage. A noticeable increase in the aromatic fractions was seen in the SBR effluent accoutring for 39% of total compounds, compared to the SBR mixed liquor (28%). Fewer compounds (total number of 66) were identified in cake filtration effluent compared to the SBR effluent (total number of 75).
Collapse
Affiliation(s)
- Dongqing Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore.
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Bening Mayanti
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Adrian Yang
- Grundfos (Singapore) Pte. Ltd., 25 Jalan Tukang, Singapore, 619264, Singapore
| | - Leong Soon Poh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Xin Gao
- Grundfos (Singapore) Pte. Ltd., 25 Jalan Tukang, Singapore, 619264, Singapore
| | - Maszenan Bin Abdul Majid
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Wun Jern Ng
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
17
|
Li L, Xu G, Yu H. Dynamic Membrane Filtration: Formation, Filtration, Cleaning, and Applications. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201700095] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lucheng Li
- Harbin Institute of Technology; State Key Laboratory of Urban Water Resource and Environment; Huanghe Road 150001 Harbin China
| | - Guoren Xu
- Harbin Institute of Technology; State Key Laboratory of Urban Water Resource and Environment; Huanghe Road 150001 Harbin China
| | - Huarong Yu
- Harbin Institute of Technology; State Key Laboratory of Urban Water Resource and Environment; Huanghe Road 150001 Harbin China
| |
Collapse
|
18
|
Iorhemen OT, Hamza RA, Tay JH. Membrane fouling control in membrane bioreactors (MBRs) using granular materials. BIORESOURCE TECHNOLOGY 2017; 240:9-24. [PMID: 28314664 DOI: 10.1016/j.biortech.2017.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Membrane fouling is considered the major limitation of membrane bioreactors (MBRs). This paper provides an overview on fouling mitigation in MBRs using granular materials. Adsorbents addition extends filtration period, improves critical flux as well as sludge properties (increased flocs size, reduced soluble EPS, improved dewaterability). However, determination of optimal dosages of adsorbents is needed to balance cost savings from fouling mitigation versus cost of adsorbents and sludge handling. The abrasion from granular media reduces cake layer formation, extends membrane filtration period, increases flux (∼20-30%), and reduces aeration intensity by 50%. Finding appropriate aeration intensity and optimum dose for different media is critical for full-scale application. Granular sludge substantially reduces fouling in MBRs; but, optimal operational conditions for long-term granule stability are required. Quorum quenching (QQ) mitigates biofouling (energy savings ∼27-40%). Cost savings from QQ need assessment against the production and application of QQ approaches.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
19
|
Iorhemen OT, Hamza RA, Tay JH. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. MEMBRANES 2016; 6:E33. [PMID: 27314394 PMCID: PMC4931528 DOI: 10.3390/membranes6020033] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.
Collapse
Affiliation(s)
- Oliver Terna Iorhemen
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Rania Ahmed Hamza
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Joo Hwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
20
|
Zhao F, Weng F, Xue G, Jiang Q, Qiu Y. Filtration performance of three dimensional fabric filter in a membrane bioreactor for wastewater treatment. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2015.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Carstensen F, Kasperidus T, Wessling M. Overcoming the drawbacks of microsieves with micromeshes for in situ product recovery. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Wang Y, Zhong C, Huang D, Wang Y, Zhu J. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux. BIORESOURCE TECHNOLOGY 2013; 136:488-495. [PMID: 23567721 DOI: 10.1016/j.biortech.2013.03.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
This experimental work investigated the property of membrane fouling for different sludges at high flux 20 L/(m(2)h). The MBR with good aerobic granular sludge performed the longest operation time 61 days, and TMP rose up in a steady overall rate, while only 10, 14 and 19 days for bulking, flocculent and small granular sludge, respectively, which clearly demonstrated the good and complete aerobic granules greatly retarded the membrane fouling. The pore blocking resistance 76.21% was the key fouling factor for aerobic granules, but the cake resistance 61.23% or 79.02% was the main factor for flocculent or bulking sludge. The difference in EPS composition of membrane foulants between granules MBR and flocculent sludge MBR led to the different behaviour of fouling. Aerobic granules were quite stable during operation. These results suggested MBR with aerobic granules might be operated at high flux, which was very valuable for practical application.
Collapse
Affiliation(s)
- Yaqin Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|