1
|
Jin C, Sun S, Yang D, Sheng W, Ma Y, He W, Li G. Anaerobic digestion: An alternative resource treatment option for food waste in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146397. [PMID: 33743457 DOI: 10.1016/j.scitotenv.2021.146397] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
With the implementation of zero-waste city and waste classification in China, a large amount of food waste (FW) began to appear in concentration, and there was an urgent requirement for appropriate and efficient treatment technology. Traditional FW disposal methods (landfill and incineration) could cause several environmental problems, so resource recycling has become the main development trend of FW in China. In recent years, anaerobic digestion (AD) technology for FW resource treatment has attracted much attention due to its advantages such as the ability to obtain clean energy, low carbon emissions, and suitability for large-scale treatment compared with other recycling technologies (composting, feed, and breeding insects). Chinese policy is conducive to the development of AD for FW, which has the potential to produce methane and achieve economic and environmental benefits. This paper presents an overview of the researches, application situations, and perspectives for the AD of FW resource treatment in China. The bibliometric analysis shows that China has the most interest in the AD of FW compared to other countries, and the amount and characteristics analysis of FW indicates that FW is suitable for treatment by AD. At the same time, this review analyzes the influence factors, methods to promote AD, working mechanism, secondary pollution of AD. Besides, the article introduces and analyzes the current policies, application status, economic and environmental benefits, and problems of AD for FW resource treatment in China. AD is considered as an alternative resource treatment technology for FW, although there are still several problems such as odors, digestate, etc. In the future, China should focus on the reform of management policy, the implementation of the AD circular economy model, and the research of the biorefinery model based on AD technology.
Collapse
Affiliation(s)
- Chenxi Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Shiqiang Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Weijie Sheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yadong Ma
- Shanghai Ecoacell Environment Technology Co., Ltd., Shanghai 200062, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Qiao C, Wang C, Pang R, Tian F, Han L, Guo L, Luo J, Li J, Pang T, Xie H, Fang J. Environmental behavior and influencing factors of glyphosate in peach orchard ecosystem. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111209. [PMID: 32891912 DOI: 10.1016/j.ecoenv.2020.111209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
In this paper, several experiments were carried out to study the environmental behavior and influencing factors of glyphosate (PMG) in peach orchard ecosystem. The results of field experiments showed that PMG and its metabolite aminomethylphosphonic acid (AMPA) were detected in peach tree leaves and peach tree fruits, although PMG was only sprayed on the soil. The residues of PMG and AMPA in peach tree leaves were ~0.1 mg/kg and ~0.5 mg/kg and in peach tree fruits were ~0.01 mg/kg and 0.07-0.11 mg/kg, respectively. By conducting a series of laboratory simulation experiments, the environmental factors affecting the degradation of PMG were screened and evaluated. The results showed that PMG metabolized much faster in loess soil than red soil and black soil (with the DT50 of 11.6 days, 62.4 days, and 34.1 days, respectively). By analyzing the basic properties of the soil, we investigated the effects of pH, moisture content, organic matter (exogenous biochar) and ambient temperature using orthogonal experiments, and the results were further confirmed by microbial experiment. The results showed that alkaline conditions (pH = 7.8/9), high water content (25%) and microorganisms could promote the degradation of PMG. Sterile soil environment had a negative impact on the metabolic behavior of PMG to AMPA.
Collapse
Affiliation(s)
- Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing, 100193, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jing Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
3
|
Mu L, Zhang L, Ma J, Zhu K, Chen C, Li A. Enhancement of anaerobic digestion of phoenix tree leaf by mild alkali pretreatment: Optimization by Taguchi orthogonal design and semi-continuous operation. BIORESOURCE TECHNOLOGY 2020; 313:123634. [PMID: 32570076 DOI: 10.1016/j.biortech.2020.123634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
This study aimed at evaluating the valorization of a typical yard waste, phoenix tree leaf (PTL), through mild alkali pretreatment followed by anaerobic digestion (AD). To this end, L9 Taguchi orthogonal biochemical methane potential (BMP) tests and semi-continuous AD experiments were conducted to examine the optimum pretreatment condition and the long term effect of alkali pretreatment on AD. The community structure evolutions were analyzed by high throughput 16S rRNA gene pyrosequencing. The results indicated that alkali pretreatment was effective on decrystallization and releasing more surface of PTL for enzyme attacking. The methane yield was positively correlated with lignin removal (R2=0.8242). In semi-continuous mode, 151.5±7.9 mL/g VS of the methane yield was obtained for alkali pretreated PTL, which was 80% higher than that of untreated one. Microbial community analysis indicated that alkali pretreatment led to a higher abundance of dominated bacteria (Bacteroidetes and Clostridia) and archaea of Methanosaeta.
Collapse
Affiliation(s)
- Lan Mu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China.
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, China
| | - Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Chuanshuai Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, China
| |
Collapse
|
4
|
Hydrolysis of plant biomass at different growth stages using enzyme cocktails for increased fermentable hydrolysates. SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Nguyen V, Karunakaran E, Collins G, Biggs CA. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material. Colloids Surf B Biointerfaces 2016; 143:518-525. [DOI: 10.1016/j.colsurfb.2016.03.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/15/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
|
7
|
Weiß S, Somitsch W, Klymiuk I, Trajanoski S, Guebitz GM. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 207:244-251. [PMID: 26894564 DOI: 10.1016/j.biortech.2016.01.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Mixed fermentative/hydrolytic bacteria were enriched on lignocellulose substrates in minimal medium under semi-anaerobic mesophilic conditions in the presence or absence of natural zeolite as growth supporter to ultimately bioaugment non-adapted sludge and thereby enhance the overall anaerobic digestion (AD) of recalcitrant plant material. Desired enzyme activities, i.e. xylanases and cellulase were monitored during subsequent cultivation cycles. Furthermore, enriched microbial communities were characterized by 16S rRNA-based 454-Pyrosequencing, revealing Firmicutes, Bacteriodetes, Proteobacteria and Spirochaetes to be the predominant bacterial groups in cultures derived from anaerobic sludge and raw crop material, i.e. maple green cut and wheat straw as well. Enriched populations relevant for biopolymer hydrolysis were then compared in biological methane potential tests to demonstrate positive effects on the biogasification of renewable plant substrate material. A significant impact on methane productivity was observed with adapted mixed cultures when used in combination with clinoptilolite to augment and supplement non-adapted bioreactor sludge.
Collapse
Affiliation(s)
- Stefan Weiß
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria.
| | - Walter Somitsch
- Engineering Consultant, Wiedner Hauptstrasse 90/2/19, A-1050 Vienna, Austria; IPUS Mineral- und Umwelttechnologie GmbH, Werksgasse 281, A-8786 Rottenmann, Austria
| | - Ingeborg Klymiuk
- Medical University of Graz, Centre for Medical Research, Core Facility Molecular Biology, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Slave Trajanoski
- Medical University of Graz, Centre for Medical Research, Core Facility Computational Bioanalytics, Bioinformatics, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Georg M Guebitz
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, A-3430 Tulln, Austria
| |
Collapse
|
8
|
Matsakas L, Rova U, Christakopoulos P. Sequential parametric optimization of methane production from different sources of forest raw material. Front Microbiol 2015; 6:1163. [PMID: 26539186 PMCID: PMC4611140 DOI: 10.3389/fmicb.2015.01163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/06/2015] [Indexed: 11/13/2022] Open
Abstract
The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species-which are representative of the forests of Sweden-were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The initially low yields from the untreated materials were significantly improved by the introduction of a hydrothermal pretreatment. Moreover, enzymatic detoxification was beneficial, but mainly for severely pretreated materials. Finally, enzymatic saccharification increased the methane yields even further.
Collapse
Affiliation(s)
- Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology Luleå, Sweden
| |
Collapse
|
9
|
Chen S, Rotaru AE, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. BIORESOURCE TECHNOLOGY 2014; 173:82-86. [PMID: 25285763 DOI: 10.1016/j.biortech.2014.09.009] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/28/2023]
Abstract
This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of co-cultures performing interspecies H2 transfer (Desulfovibrio vulgaris-G.sulfurreducens). On the other hand, DIET co-cultures were not stimulated by poorly conductive cotton cloth. Mutant strains lacking electrically conductive pili, or pili-associated cytochromes participated in DIET only in the presence of carbon cloth. In co-cultures promoted by carbon cloth, cells were primarily associated with the cloth although the syntrophic partners were too far apart for cell-to-cell biological electrical connections to be feasible. Carbon cloth seemingly mediated interspecies electron transfer between the distant syntrophic partners. These results suggest that the ability of carbon cloth to accelerate DIET should be considered in anaerobic digester designs that incorporate carbon cloth.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amelia-Elena Rotaru
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; Nordic Center for Earth Evolution, University of Southern Denmark, Odense S DK-5230, Denmark.
| | - Fanghua Liu
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jo Philips
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Trevor L Woodard
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly P Nevin
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Evaluation of dried sweet sorghum stalks as raw material for methane production. BIOMED RESEARCH INTERNATIONAL 2014; 2014:731731. [PMID: 25210715 PMCID: PMC4153003 DOI: 10.1155/2014/731731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022]
Abstract
The potential of utilizing dried sweet sorghum stalks as raw material for anaerobic digestion has been evaluated. Two different treatments were tested, a mild thermal and an enzymatic, alone or in combination. Thermal pretreatment was found to decrease the methane yields, whereas one-step enzymatic treatment resulted in a significant increase of 15.1% comparing to the untreated sweet sorghum. Subsequently, in order to increase the total methane production, the combined effect of enzyme load and I/S on methane yields from sweet sorghum was evaluated by employing response surface methodology. The obtained model showed that the maximum methane yield that could be achieved is 296 mL CH4/g VS at I/S ratio of 0.35 with the addition of 11.12 FPU/g sweet sorghum.
Collapse
|
11
|
Lin L, Wan C, Liu X, Lei Z, Lee DJ, Zhang Y, Tay JH, Zhang Z. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Appl Microbiol Biotechnol 2013; 97:10575-83. [DOI: 10.1007/s00253-013-5313-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
12
|
Chen WH, Chen CJ, Hung CI. Taguchi approach for co-gasification optimization of torrefied biomass and coal. BIORESOURCE TECHNOLOGY 2013; 144:615-622. [PMID: 23907063 DOI: 10.1016/j.biortech.2013.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 06/02/2023]
Abstract
This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| | | | | |
Collapse
|