1
|
Jeyabalan J, Veluchamy A, Narayanasamy S. Production optimization, characterization, and application of a novel thermo- and pH-stable laccase from Bacillus drentensis 2E for bioremediation of industrial dyes. Int J Biol Macromol 2025; 308:142557. [PMID: 40158574 DOI: 10.1016/j.ijbiomac.2025.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Environmental pollution driven by rapid industrialization and urbanization, has become serious concern due to adverse health effects. Among various bioremediation strategies, laccase, an oxidoreductase enzyme with wide substrate range and high redox-potential (0.4-0.8 V) has garnered significant attention due to its ability to oxidize various organic pollutants into non-toxic products. However, its practical application is often limited due to susceptibility to extreme pH and inhibitory compounds present in wastewater. To overcome this challenge, bacterial laccase, also known as versatile laccases, offer superior stability under harsh environmental conditions making them ideal for bioremediation. Furthermore, isolating native bacterium from contaminated sites enhances their potential, as these organisms are naturally adapted to pollutant-rich environments with intrinsic degradation ability. In this study, Bacillus drentensis 2E was isolated from dye-effluent release site. Laccase production was systematically optimized by One-Factor-at-a-Time, Plackett-Burman Design, and Central Composite Design, yielding a 2.45-fold increase in activity compared to unoptimized condition. Optimized media composition is as follows (g/L): KNO3-5.034,Glucose-3, KH2PO4-0.3,MgSO4-0.3, NaCl-0.55, CaCl2-0.55, CuSO4-0.178 mM, inoculum volume-3.54 %. The enzyme was further characterized for kinetic properties against ABTS, guaiacol and syringaldazine. It demonstrated exceptional stability across a wide temperature (20 ± 1 °C-70 ± 1 °C) and pH range (3.0 ± 0.01-8.0 ± 0.01) with heavy metal tolerance to Ca2+, Mn2+, Mg2+,Zn2+,Cu2+,Co2+,Ni2+. Also, BDLaccase effectively degraded Acid Red-27 (99.76 ± 2.27 %) and Direct Blue-6 (67.43 ± 2.31 %) within 5 h, as confirmed using UV-Vis spectroscopy, FT-IR, and LC-MS. These findings suggests that, BDLaccase is a robust biocatalyst for bioremediation especially in treatment of dyes due to its broad stability and efficiency.
Collapse
Affiliation(s)
- Jothika Jeyabalan
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ajithkumar Veluchamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Pawlik A, Drozd R, Janusz G. Altering the Properties of Laccases from Ensifer meliloti ( Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules 2025; 15:531. [PMID: 40305261 PMCID: PMC12025185 DOI: 10.3390/biom15040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Due to their catalytic performance, laccases constitute one of the most promising groups of enzymes for potential applications in modern biotechnology. In this study, we aimed to chemically modify Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor laccase and comparatively characterize the structures of both enzymes. The most characteristic feature was the spatial localization of lysine residues, predominantly positioned distal to the active site region for both compared enzymes. The solvent-accessible surface area (SASA) analysis showed that bacterial laccase was characterized by a larger hydrophobic SASA than the fungal enzyme. The pKa prediction identified only one Lys in the E. meliloti laccase structure susceptible to modification. Modifications were achieved by using mono- and bifunctional crosslinking agents, and glycosylations were also performed. The degree of protein modification ranged from 0% for glucose- and galactose-modified E. meliloti laccase and citraconic anhydride-modified (CA) C. unicolor laccase to 62.94% for the palmitic acid N-hydroxysuccinimide ester-modified E. meliloti enzyme. The stability of covalently modified laccases over a wide pH and temperature ranges and in the presence of inhibitors was investigated. Protein modifications with polymeric sucrose (PS) and ethylene glycol bis-(succinimidyl succinate) (EGNHS) significantly increased the activity of the bacterial and fungal laccases by 15 and 19%, respectively. Although pH optima remained relatively unchanged by modifications, certain variants, especially CA-modified bacterial protein and EGNHS-modified C. unicolor enzyme, exhibited improved stability at near-neutral pH (6-7). Modification of the bacterial enzyme with glutaraldehyde-carbodiimide (GA-CDI-ver) and of the fungal enzyme with CA was the most effective in improving its thermal stability. Chemical modifications using GA, CDI, GA-CDI, and PS allowed E. meliloti L 3.8 laccase to retain full activity in the presence of 5 mM NaI, whereas CA-, PS-, and EGNHS-modified C. unicolor variants retained their activity even at elevated NaCl concentrations. The results clearly demonstrate that the outcome of chemical modifications is closely linked to enzyme-specific structural features and that selecting an appropriate modification strategy is critical to achieving the desired effect.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastow Avenue, 71-311 Szczecin, Poland;
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| |
Collapse
|
3
|
Zuccarini P, Sardans J, Asensio L, Peñuelas J. Altered activities of extracellular soil enzymes by the interacting global environmental changes. GLOBAL CHANGE BIOLOGY 2023; 29:2067-2091. [PMID: 36655298 DOI: 10.1111/gcb.16604] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.
Collapse
|
4
|
Elsaba YM, El-Hennawi HM, Ibrahim MM, Wehaidy HR. Production of a novel laccase from Ceratorhiza hydrophila and assessing its potential in natural dye fixation and cytotoxicity against tumor cells. J Genet Eng Biotechnol 2023; 21:14. [PMID: 36757585 PMCID: PMC9911566 DOI: 10.1186/s43141-023-00473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Flavonoid natural dyes have gained attention because they are nontoxic and eco-friendly. However, they do not work effectively with artificial fibers and require the use of mordants, which are considered as hazardous chemicals. Laccase enzyme catalyzes the oxidation of phenols, forming phenoxyl radicals that undergo a further polymerization process. So, laccase can oxidize flavonoid dyes, and it can be used instead of harmful mordants in flavonoid dye fixation on cotton fabrics. Laccases also are involved in a variety of metabolic processes, and they have anti-proliferative effects toward HepG2 and MCF-7 tumor cells. RESULTS Among fifteen fungal isolates, the fungus Ceratorhiza hydrophila isolated from the submerged plant Myriophyllum spicatum was selected as the most potent laccase producer. Optimization of the production medium resulted in a 9.9-fold increase in laccase productivity. The partially purified Ceratorhiza hydrophila laccase could successfully improve the affinity of cotton fabrics toward quercetin (flavonoid) dye with excellent color fastness properties. The partially purified laccase also showed anti-proliferative activity against HepG2 and MCF-7 tumor cells. However, high laccase concentration is required to estimate IC50. CONCLUSIONS Ceratorhiza hydrophila MK387081 is an excellent laccase producer. The partially purified laccase from Ceratorhiza hydrophila can be used in textile dyeing and printing processes as a safer alternative to the conventional hazardous mordants. Also, it can be used in preparation of cancer treatment drugs. However, further studies are needed to investigate IC50 for both cell types at higher laccase concentrations.
Collapse
Affiliation(s)
- Yasmin M. Elsaba
- grid.412093.d0000 0000 9853 2750Botany and Microbiology Department, Faculty of Sciences, Helwan University, Cairo, Egypt
| | - Heba M. El-Hennawi
- grid.419725.c0000 0001 2151 8157Dyeing, Printing and Textile Auxiliaries Department, National Research Centre, Dokki, Giza, Egypt
| | - Mona M. Ibrahim
- grid.419725.c0000 0001 2151 8157Plant Biotechnology Department, National Research Centre, Dokki, Giza, Egypt
| | - Hala R. Wehaidy
- grid.419725.c0000 0001 2151 8157Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
5
|
Asemoloye MD, Marchisio MA. Synthetic Saccharomyces cerevisiae tolerate and degrade highly pollutant complex hydrocarbon mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113768. [PMID: 35724516 DOI: 10.1016/j.ecoenv.2022.113768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Fungal laccase (Lac) has become a very useful biocatalyst in different industries, bio-refineries and, most importantly, bioremediation. Many reports have also linked hydrocarbon tolerance and degradation by various microorganisms with Lac secretion. In this study, Trametes trogii Lac (Ttlcc1) was engineered into Saccharomyces cerevisiae strain CEN.PK2-1 C under the constitutive GPD promoter (pGPD) for multi-fold synthesis with efficient hydrocarbon tolerance and degradation. Protein expression in heterologous hosts is strictly strain-specific, it can also be influenced by the synthetic design and culture conditions. We compared synthetic designs with different shuttle vectors for the yeast strains and investigated the best culture conditions by varying the pH, temperature, carbon, nitrogen sources, and CuSO4 amount. Two S. cerevisiae strains were built in this study: byMM935 and byMM938. They carry the transcription unit pGPD-Ttlcc1-CYC1t either inside the pRSII406 integrative plasmid (byMM935) or the pRSII426 multicopy plasmid (byMM938). The performance of these two synthetic strains were studied by comparing them to the wild-type strain (byMM584). Both byMM935 and byMM938 showed significant response to different carbon sources (glucose, galactose, lactose, maltose, and sucrose), nitrogen sources (NH4Cl, NH4NO3, KNO3, malt extract, peptone, and yeast extract), and solid state fermentation of different plant biomasses (bagasse, banana peels, corn cob, mandarin peels, and peanut shells). They performed best in optimized growth conditions with specific carbon and nitrogen sources, and a preferred pH in the range 3.5-4.5, temperature between 30 and 40 0C, and 1 mM CuSO4. In optimized yeast-growth medium, strain byMM935 showed the highest laccase activities of 1.621 ± 0.063 U/mL at 64 h, whereas byMM938 gave its highest activity (1.417 ± 0.055 U/mL) at 48 h. In this work, we established, by using Bushnell Hass synthetic medium, that the new Ttlcc1-yeast strains tolerated extreme pH and complex hydrocarbon mixture (CHM) toxicity. They degraded 60-90% of the key components in CHM within 48 h, including poly-cyclic aromatic hydrocarbons, alkyl indenes, alkyl tetralines, alkyl benzenes, alkyl biphenyls, and BTEX (Benzene, Toluene, Ethylbenzene, and Xylenes). This is the first report on the hydrocarbon degradation potential of a Ttlcc1-yeast. Compared to the native organism, such synthetic strains are better suited for meeting growing demands and have potentials for application in large-scale in situ bioremediation of hydrocarbon-polluted sites.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University Nankai District, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
6
|
Sharma P, Dutta D, Udayan A, Nadda AK, Lam SS, Kumar S. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119248. [PMID: 35395353 DOI: 10.1016/j.envpol.2022.119248] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The presence of heavy metals in municipal solid waste (MSW) is considered as prevalent global pollutants that cause serious risks to the environment and living organisms. Due to industrial and anthropogenic activities, the accumulation of heavy metals in the environmental matrices is increasing alarmingly. MSW causes several adverse environmental impacts, including greenhouse gas (GHG) emissions, river plastic accumulation, and other environmental pollution. Indigenous microorganisms (Pseudomonas, Flavobacterium, Bacillus, Nitrosomonas, etc.) with the help of new pathways and metabolic channels can offer the potential approaches for the treatment of pollutants. Microorganisms, that exhibit the ability of bioaccumulation and sequestration of metal ions in their intracellular spaces, can be utilized further for the cellular processes like enzyme signaling, catalysis, stabilizing charges on biomolecules, etc. Microbiological techniques for the treatment and remediation of heavy metals provide a new prospects for MSW management. This review provides the key insights on profiling of heavy metals in MSW, tolerance of microorganisms, and application of indigenous microorganisms in bioremediation. The literatures revealed that indigenous microbes can be exploited as potential agents for bioremediation.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Deblina Dutta
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| |
Collapse
|
7
|
Umar A, Ahmed S. Optimization, purification and characterization of laccase from Ganoderma leucocontextum along with its phylogenetic relationship. Sci Rep 2022; 12:2416. [PMID: 35165332 PMCID: PMC8844424 DOI: 10.1038/s41598-022-06111-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.
Collapse
|
8
|
Recent Advances in Enzymes for the Bioremediation of Pollutants. Biochem Res Int 2021; 2021:5599204. [PMID: 34401207 PMCID: PMC8364428 DOI: 10.1155/2021/5599204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, pollution of the environment is a huge problem for humans and other organisms' health. Conventional methods of pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants. These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.
Collapse
|
9
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
10
|
Ardila-Leal LD, Alvarado-Ramírez MF, Gutiérrez-Rojas IS, Poutou-Piñales RA, Quevedo-Hidalgo B, Pérez-Flórez A, Pedroza-Rodríguez AM. Low-cost media statistical design for laccase rPOXA 1B production in P. pastoris. Heliyon 2020; 6:e03852. [PMID: 32368658 PMCID: PMC7184261 DOI: 10.1016/j.heliyon.2020.e03852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are multicopper oxidases of great importance in the industry due to their non-specificity and high oxidative potential. Laccases are useful to bleach synthetic dyes, oxidize phenolic compounds and degrade pesticides, among others. Hence, the objective of this work was to optimize low cost culture media for recombinant (rPOXA 1B) laccase production from Pleurotus ostreatus in Pichia pastoris. To this end, low cost nitrogen sources were studied, such as malt extract, isolated soy protein and milk serum. Following, two central composite designs (CCD) were performed. In CCD-1 different concentrations of glucose USP (0–13.35 gL-1), protein isolated soy protein (5–25 gL-1), malt extract (3.5–17.5 gL-1) and (NH4)2SO4 (1.3–6.5 gL-1) were evaluated. In CCD-2 only different concentrations of glucose USP (7.9–22 gL-1) and isolated soy protein (15.9–44.9 gL-1) were evaluated. CCD-2 results led to a One Factor Experimental design (OFED) to evaluate higher isolated soy protein (20–80 gL-1) concentrations. In all designs, (CCD-1, CCD-2 and OFED) CuSO4 (0.16 gL-1) and chloramphenicol (0.1 gL-1) concentrations remained unchanged. For the OFED after sequential statistical optimization, an enzyme activity of 12,877.3 ± 481.2 UL−1 at 168 h was observed. rPOXA 1B activity increased 30.54 % in comparison with CCD-2 results. Final composition of optimized media was: 20 gL-1 glucose USP, 50 gL-1 isolated soy protein 90 % (w/w), 11.74 gL-1 malt extract, and 4.91 gL-1 (NH4)2SO4. With this culture media, it was possible to reduce culture media costs by 89.84 % in comparison with improved culture media previously described by our group.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - María F Alvarado-Ramírez
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Ivonne S Gutiérrez-Rojas
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Alejandro Pérez-Flórez
- Grupo de Fitoquímica de la PUJ (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| |
Collapse
|
11
|
Novoa C, Dhoke GV, Mate DM, Martínez R, Haarmann T, Schreiter M, Eidner J, Schwerdtfeger R, Lorenz P, Davari MD, Jakob F, Schwaneberg U. KnowVolution of a Fungal Laccase toward Alkaline pH. Chembiochem 2019; 20:1458-1466. [DOI: 10.1002/cbic.201800807] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Novoa
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Diana M. Mate
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Present address: Center of Molecular Biology “Severo Ochoa”Universidad Autónoma de Madrid Nicolás Cabrera 1 28049 Madrid Spain
| | - Ronny Martínez
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
- Present address: Departamento de Ingeniería en AlimentosInstituto de Investigación Multidisciplinario en Ciencia y TecnologíaUniversidad de La Serena Raúl Bitrán 1305 1720010 La Serena Chile
| | | | | | - Jasmin Eidner
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | | | - Patrick Lorenz
- IAB Enzymes GmbH Feldbergstrasse 78 64293 Darmstadt Germany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI Leibniz Institute for Interactive Materials Forckenbeckstrasse 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
12
|
Ouephanit C, Boonvitthya N, Theerachat M, Bozonnet S, Chulalaksananukul W. Efficient expression and secretion of endo-1,4-β-xylanase from Penicillium citrinum in non-conventional yeast Yarrowia lipolytica directed by the native and the preproLIP2 signal peptides. Protein Expr Purif 2019; 160:1-6. [PMID: 30923012 DOI: 10.1016/j.pep.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Filamentous fungi are the most common industrial xylanase producers. In this study, the xynA gene encoding xylanase A of Penicilium citrinum was successfully synthesized and expressed in Yarrowia lipolytica under the control of the strong constitutive TEF promoter. Native and preproLIP2 secretion signals were used for comparison of the expression and secretion level. The recombinant xylanase was produced as a soluble protein, and the total activity production reached 11 and 52 times higher than the level of activity produced by the fungus P. citrinum native strain, respectively. Maximum activity was observed with the preproLIP2 secretion signal at 180 U/mL. Post translational glycosylation affected the molecular mass of the recombinant xylanase, resulting in an apparent molecular weight larger than 60 kDa, whereas after deglycosylation, the recombinant XynA displayed a molecular mass of 20 kDa. The deglycosylated xylanase was purified by ion exchange chromatography and reached 185-fold of purification. The enzyme was optimally active at 55 °C and pH 5 and stable over a broad pH range (3-9). It retained more than 80% of the original activity after 24 h. It conserved around 80% of the original activity after pre-incubation at 40 °C for 6 h. With birchwood xylan as substrate, the enzyme showed a Km of 5.2 mg/mL, and kcat of 245 per s. The high level of secretion and the stability over a wide range of pH and at moderate temperatures of the re-XynA could be useful for variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Monnat Theerachat
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, 31077, France
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Darvishi F, Moradi M, Jolivalt C, Madzak C. Laccase production from sucrose by recombinant Yarrowia lipolytica and its application to decolorization of environmental pollutant dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:278-283. [PMID: 30205329 DOI: 10.1016/j.ecoenv.2018.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Laccases are used in decolorization and biodegradation of synthetic dyes, bioremediation of industrial wastewaters and delignification of lignocellulosic compounds. The aims of the present study were the optimization of a recombinant laccase production in Yarrowia lipolytica yeast using sucrose as a main carbon source, and the application of the resulting enzyme to decolorization of synthetic dyes, which are problematic environmental pollutants. Taguchi's experimental design method was employed to optimize medium compounds. Recombinant laccase production by Y. lipolytica YL4 strain increased to 900 U L-1 after optimization of sucrose, ammonium chloride, yeast extract and thiamine levels in the modified PPB medium. Furthermore, the production rate reached 6760 U L-1 in a 5 L bioreactor which represents 4.5- and 33.5-fold increases compared to cultures that were in shake-flask with optimized and primary media, respectively. The supernatant containing secreted recombinant laccase was applied for decolorization of seven dyes. The effects of pH, the amount of enzyme and incubation period were verified. The effect of incubation time on dye decolorization by recombinant laccase was important, which has an influence of greater extent than 90% after 48 h for all dyes. The Trametes versicolor laccase can be efficiently produced in Y. lipolytica and the recombinant enzyme has a considerable potential in the decolorization of pollutant synthetic dyes.
Collapse
Affiliation(s)
- Farshad Darvishi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | - Marzieh Moradi
- Microbial Biotechnology and Bioprocess Engineering (MBBE) Group, Department of Microbiology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Claude Jolivalt
- Sorbonne Universités, UPMC Université Paris VI, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Catherine Madzak
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, F-78850 Thiverval-Grignon, France
| |
Collapse
|
14
|
Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Appl Biochem Biotechnol 2018; 187:583-611. [DOI: 10.1007/s12010-018-2829-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
15
|
Engineering Yarrowia lipolytica to Simultaneously Produce Lipase and Single Cell Protein from Agro-industrial Wastes for Feed. Sci Rep 2018; 8:758. [PMID: 29335453 PMCID: PMC5768715 DOI: 10.1038/s41598-018-19238-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023] Open
Abstract
Lipases are scarcely exploited as feed enzymes in hydrolysis of lipids for increasing energy supply and improving nutrient use efficiency. In this work, we performed homologous overexpression, in vitro characterization and in vivo assessment of a lipase from the yeast Yarrowia lipolytica for feed purpose. Simultaneously, a large amount of yeast cell biomass was produced, for use as single cell protein, a potential protein-rich feed resource. Three kinds of low cost agro-industrial wastes were tested as substrates for simultaneous production of lipase and single cell protein (SCP) as feed additives: sugarcane molasses, waste cooking oil and crude glycerol from biodiesel production. Sugarcane molasses appeared as the most effective cheap medium, allowing production of 16420 U/ml of lipase and 151.2 g/L of single cell protein at 10 liter fermentation scale. In vitro characterization by mimicking a gastro-intestinal environment and determination of essential amino acids of the SCP, and in vivo oral feeding test on fish all revealed that lipase, SCP and their combination were excellent feed additives. Such simultaneous production of this lipase and SCP could address two main concerns of feed industry, poor utilization of lipid and shortage of protein resource at the same time.
Collapse
|
16
|
Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Efficient secretion of three fungal laccases fromSaccharomyces cerevisiaeand their potential for decolorization of textile industry effluent-A comparative study. Biotechnol Prog 2017; 34:69-80. [DOI: 10.1002/btpr.2559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/18/2017] [Indexed: 11/07/2022]
|
18
|
Abstract
Laccases are multi-copper oxidoreductases which catalyze the oxidation of a wide range of substrates during the simultaneous reduction of oxygen to water. These enzymes, originally found in fungi, plants, and other natural sources, have many industrial and biotechnological applications. They are used in the food, textile, pulp, and paper industries, as well as for bioremediation purposes. Although natural hosts can provide relatively high levels of active laccases after production optimization, heterologous expression can bring, moreover, engineered enzymes with desired properties, such as different substrate specificity or improved stability. Hence, diverse hosts suitable for laccase production are reviewed here, while the greatest emphasis is placed on yeasts which are commonly used for industrial production of various proteins. Different approaches to optimize the laccase expression and activity are also discussed in detail here.
Collapse
Affiliation(s)
- Zuzana Antošová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences (CAS), Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
19
|
Darvishi F, Moradi M, Madzak C, Jolivalt C. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures. Appl Biochem Biotechnol 2016; 181:1228-1239. [DOI: 10.1007/s12010-016-2280-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
|
20
|
High-level production and characterization of laccase from a newly isolated fungus Trametes sp. LS-10C. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Multiplex gene editing of the Yarrowia lipolytica genome using the CRISPR-Cas9 system. J Ind Microbiol Biotechnol 2016; 43:1085-93. [PMID: 27349768 DOI: 10.1007/s10295-016-1789-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Yarrowia lipolytica is categorized as a generally recognized as safe (GRAS) organism and is a heavily documented, unconventional yeast that has been widely incorporated into multiple industrial fields to produce valuable biochemicals. This study describes the construction of a CRISPR-Cas9 system for genome editing in Y. lipolytica using a single plasmid (pCAS1yl or pCAS2yl) to transport Cas9 and relevant guide RNA expression cassettes, with or without donor DNA, to target genes. Two Cas9 target genes, TRP1 and PEX10, were repaired by non-homologous end-joining (NHEJ) or homologous recombination, with maximal efficiencies in Y. lipolytica of 85.6 % for the wild-type strain and 94.1 % for the ku70/ku80 double-deficient strain, within 4 days. Simultaneous double and triple multigene editing was achieved with pCAS1yl by NHEJ, with efficiencies of 36.7 or 19.3 %, respectively, and the pCASyl system was successfully expanded to different Y. lipolytica breeding strains. This timesaving method will enable and improve synthetic biology, metabolic engineering and functional genomic studies of Y. lipolytica.
Collapse
|
22
|
Celińska E, Borkowska M, Białas W. Evaluation of heterologous α-amylase production in two expression platforms dedicated for Yarrowia lipolytica: commercial Po1g-pYLSC (php4d) and custom-made A18-pYLTEF (pTEF). Yeast 2016; 33:165-81. [PMID: 26694961 DOI: 10.1002/yea.3149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/25/2015] [Accepted: 12/14/2015] [Indexed: 11/10/2022] Open
Abstract
In view of the constantly increasing demand for cost-effective, low-energy and environmentally friendly industrial processes and household care products, enzyme production occupies an essential place in the field of biotechnology. Along with increasing demand for industrial and household care enzymes, the demand for heterologous expression platforms has also increased. Apart from the conventional hosts, e.g. Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris, routinely used in heterologous protein expression, the non-conventional ones have become more and more exploited in this field. Among the available yeast host systems, Yarrowia lipolytica appears to be an attractive alternative. The aim of this study was to compare efficiency of two Yarrowia-based expression platforms, commercial Po1g-pYLSC and custom-made A18-pYLTEF, in expression of an insect-derived, raw-starch-digesting α-amylase, to select the 'champion' system for further studies on this valuable enzyme. Both expression platforms were compared with respect to copy number of the integrated expression cassette/transformed genome, and the recombinant strains performance (Po1g-pYLSC-derived 4.29 strain, and A18-pYLTEF-derived B9 strain) during batch bioreactor cultures. Our results demonstrate that the average number of integration events into the recipient's genome was comparable for both expression systems under investigation, but with varying distribution of the multicopy integrants; and the number of the recombinant gene copies was highly correlated with the acquired amylolytic activity of the strains. Due to severe susceptibility of the recombinant AMY1 polypeptide to native proteases of the custom-made expression system, the final yield of the enzyme was substantially lower when compared to the commercial Po1g-pYLSC (reaching a maximum level of 142.84 AU/l). Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| | - Monika Borkowska
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| | - Wojciech Białas
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poland
| |
Collapse
|
23
|
Shabbir Hussain M, M Rodriguez G, Gao D, Spagnuolo M, Gambill L, Blenner M. Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Liu HH, Ji XJ, Huang H. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 2015; 33:1522-46. [DOI: 10.1016/j.biotechadv.2015.07.010] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
|
25
|
Ufarté L, Laville É, Duquesne S, Potocki-Veronese G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 2015; 33:1845-54. [DOI: 10.1016/j.biotechadv.2015.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
|
26
|
Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 2015; 99:4559-77. [PMID: 25947247 DOI: 10.1007/s00253-015-6624-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica has become a recognized system for expression/secretion of heterologous proteins. This non-conventional yeast is currently being developed as a workhorse for biotechnology by several research groups throughout the world, especially for single-cell oil production, whole cell bioconversion and upgrading of industrial wastes. This mini-review presents established tools for protein expression in Y. lipolytica and highlights novel developments in the areas of promoter design, surface display, and host strain or metabolic pathway engineering. An overview of the industrial and commercial biotechnological applications of Y. lipolytica is also presented.
Collapse
|
27
|
Pollegioni L, Tonin F, Rosini E. Lignin-degrading enzymes. FEBS J 2015; 282:1190-213. [DOI: 10.1111/febs.13224] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/29/2014] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| | - Fabio Tonin
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita; Università degli studi dell'Insubria; Varese Italy
- The Protein Factory; Centro Interuniversitario di Biotecnologie Proteiche; Politecnico di Milano; ICRM CNR Milano; Università degli Studi dell'Insubria; Italy
| |
Collapse
|
28
|
Computational analysis and low-scale constitutive expression of laccases synthetic genes GlLCC1 from Ganoderma lucidum and POXA 1B from Pleurotus ostreatus in Pichia pastoris. PLoS One 2015; 10:e0116524. [PMID: 25611746 PMCID: PMC4303304 DOI: 10.1371/journal.pone.0116524] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
Lacasses are multicopper oxidases that can catalyze aromatic and non-aromatic compounds concomitantly with reduction of molecular oxygen to water. Fungal laccases have generated a growing interest due to their biotechnological potential applications, such as lignocellulosic material delignification, biopulping and biobleaching, wastewater treatment, and transformation of toxic organic pollutants. In this work we selected fungal genes encoding for laccase enzymes GlLCC1 in Ganoderma lucidum and POXA 1B in Pleurotus ostreatus. These genes were optimized for codon use, GC content, and regions generating secondary structures. Laccase proposed computational models, and their interaction with ABTS [2, 2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)] substrate was evaluated by molecular docking. Synthetic genes were cloned under the control of Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. P. pastoris X-33 was transformed with pGAPZαA-LaccGluc-Stop and pGAPZαA-LaccPost-Stop constructs. Optimization reduced GC content by 47 and 49% for LaccGluc-Stop and LaccPost-Stop genes, respectively. A codon adaptation index of 0.84 was obtained for both genes. 3D structure analysis using SuperPose revealed LaccGluc-Stop is similar to the laccase crystallographic structure 1GYC of Trametes versicolor. Interaction analysis of the 3D models validated through ABTS, demonstrated higher substrate affinity for LaccPost-Stop, in agreement with our experimental results with enzymatic activities of 451.08 ± 6.46 UL-1 compared to activities of 0.13 ± 0.028 UL-1 for LaccGluc-Stop. This study demonstrated that G. lucidum GlLCC1 and P. ostreatus POXA 1B gene optimization resulted in constitutive gene expression under GAP promoter and α-factor leader in P. pastoris. These are important findings in light of recombinant enzyme expression system utility for environmentally friendly designed expression systems, because of the wide range of substrates that laccases can transform. This contributes to a great gamut of products in diverse settings: industry, clinical and chemical use, and environmental applications.
Collapse
|
29
|
Laccase engineering: From rational design to directed evolution. Biotechnol Adv 2015; 33:25-40. [DOI: 10.1016/j.biotechadv.2014.12.007] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
30
|
Overproduction of laccase from a newly isolated Ganoderma lucidum using the municipal food waste as main carbon and nitrogen supplement. Bioprocess Biosyst Eng 2014; 38:957-66. [PMID: 25533042 DOI: 10.1007/s00449-014-1341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
A strain of Ganoderma lucidum was separated and identified according to its morphological characteristics and phylogenetic data. The fungus is a laccase producer and it can secrete laccase using the municipal food waste (FW) as carbon and nitrogen supplement. After the statistic optimization, a laccase activity of 42,000 ± 600 U/l was obtained at 500 ml flask level and the activity is 12,000 U/l higher than that obtained by fermenting glucose and peptone, indicating that the use of FW to produce laccase not only reduces production cost, but also improves laccase activity. In 15 l bioreactor, FW is also suitable for laccase production and the maximum laccase activity reached 54,000 U/l. Moreover, some details of laccase overproduction using FW were investigated. The G. lucidum consumes FW by secreting a series of hydrolases and proteases and the improvement of laccase activity is because FW induces over-expression of three isoenzymes by polyacrylamide gel electrophoresis analysis.
Collapse
|
31
|
A novel membrane-surface liquid co-culture to improve the production of laccase from Ganoderma lucidum. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Parenti A, Muguerza E, Iroz AR, Omarini A, Conde E, Alfaro M, Castanera R, Santoyo F, Ramírez L, Pisabarro AG. Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. BIORESOURCE TECHNOLOGY 2013; 133:142-9. [PMID: 23425584 DOI: 10.1016/j.biortech.2013.01.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 05/06/2023]
Abstract
The purpose of this work was to explore the use of polluted water effluents from wheat straw using industries as inducers of lignocellulolytic enzymatic activities in cultures of white rot basidiomycetes. For this purpose, we studied the effect of a wheat straw water extract on the evolution of the laccase activity recovered from submerged cultures of Pleurotus ostreatus made in different media and under various culture conditions. Our results demonstrated an accumulative induction effect in all the cultures and conditions tested. This induction is parallel to changes in the laccase electrophoretic profiles recovered from the culture supernatants. The isoenzyme that appeared to be mainly responsible for the laccase activity under these conditions was laccase 10, as confirmed by sequencing the induced protein. These results support the idea of using wheat straw effluents as inducers in liquid cultures of P. ostreatus mycelia for the production of ligninolytic enzymatic cocktails.
Collapse
Affiliation(s)
- Alejandra Parenti
- Department of Agrarian Production, Public University of Navarre, 31006 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yan Y, Zhang X, Chen D. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. BIORESOURCE TECHNOLOGY 2013; 131:179-187. [PMID: 23347925 DOI: 10.1016/j.biortech.2012.12.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
An immobilization strategy was employed to improve activity and operational stability of Yarrowia lipolytica lipase LIP2 (YlLIP2) by using macroporous resins as carrier. D152H, a cation-exchange resin, was the best support. Under the optimized conditions, the immobilization efficiency was 89.81% and the specific activity was 809,751 U/g, being 2.1-fold higher than that of the free lipase. Bioimprinting and interfacial activation were used to further boost the catalytic activity of YlLIP2, respectively enhanced 21.5-fold, 231.2% and 107.2% compared to the free, non-bioimprinted and non-interfacial-activated lipases. The immobilized lipase exhibited much better thermal and pH stability and broader substrate specificity; when used to enrich docosahexaenoic acid (DHA) from Chlorella protothecoides oil, it could increase 1.66-fold of DHA content and show good operational stability. These indicate that the immobilized YlLIP2 offers a promising approach for the enrichment of DHA.
Collapse
Affiliation(s)
- Yunjun Yan
- Key Laboratory of Molecular Biophysics, The Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | |
Collapse
|