1
|
Ciftcioglu-Gozuacik B, Pala-Ozkok I, Ubay-Cokgor E. Effect of culture history and carbon sources on polyhydroxyalkanoates production in activated sludge systems. ENVIRONMENTAL TECHNOLOGY 2025; 46:1873-1882. [PMID: 39324733 DOI: 10.1080/09593330.2024.2406987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are important and completely biodegradable alternatives to regular plastics, and they can be produced by activated sludge systems during wastewater treatment. Wastewaters with high organic content are being used for PHA production, which is an important resource recovery option. In this context, the effect of sludge retention time and different carbon sources, such as acetate, peptone-mixture and industrial wastewater (containing acetic acid (AA), lactic acid (LA) and propionic acid (PA)), on PHA storage was investigated. Oxygen utilisation rate (OUR) profiles were generated in respirometric tests and were evaluated by activated sludge modelling. Results showed that high storage (AA: 70%; LA: 49%; PA: 60% and industrial wastewater: 52%) was achievable in the feast phase even when the biomass was fed with a high organic acid content substrate to which it is not acclimated.
Collapse
Affiliation(s)
- Bengisu Ciftcioglu-Gozuacik
- Faculty of Engineering, Department of Environmental Engineering, Gebze Technical University, Kocaeli, Türkiye
| | - Ilke Pala-Ozkok
- Faculty of Science and Technology, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Emine Ubay-Cokgor
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
2
|
Chen S, Habib Z, Wang Z, Zhao P, Song W, Wang X. Integrating anaerobic acidification with two-stage forward osmosis concentration for simultaneously recovering organic matter, nitrogen and phosphorus from municipal wastewater. WATER RESEARCH 2023; 245:120595. [PMID: 37708772 DOI: 10.1016/j.watres.2023.120595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
In order to meet the demand of municipal wastewater for low-carbon treatment and resource recovery, a novel process of anaerobic acidification membrane bioreactor (AAMBR) assisted with a two-stage forward osmosis (FO) (FO-AAMBR-FO) was developed for simultaneously recovering organic matter and nutrients from municipal wastewater. The results indicated that the first FO process concentrated the municipal wastewater to one tenth of the initial volume. The corresponding chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total phosphorus (TP) concentration reached up to 2800, 200 and 33 mg/L, respectively. Subsequently, the AAMBR was operated at pH value of 10 for treating the concentration of municipal wastewater, in which the organic matter was successfully converted to acetic acid and propionic acid with a total volatile fatty acids (VFAs) concentration of 1787 mg COD/L and a VFAs production efficiency of 62.36 % during 47 days of stable operation. After that, the NH4+-N and TP concentration in the effluent of the AAMBR were further concentrated to 175 and 36.7 mg/L, respectively, by the second FO process. The struvite was successfully recovered with NH4+-N and TP recovery rate of 94.53 % and 98.59 %, respectively. Correspondingly, the VFAs, NH4+-N and TP concentrations in the residual solution were 2905 mg COD/L, 11.8 and 7.92 mg/L, respectively, which could be used as the raw material for the synthesis of polyhydroxyalkanoate (PHA). Results reported here demonstrated that the FO-AAMBR-FO is a promising wastewater treatment technology for simultaneous recovery of organic matter (in form of VFAs) and nutrients (in form of struvite).
Collapse
Affiliation(s)
- Siyi Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zunaira Habib
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Chemistry, Rawalpindi Women University, 6th Road Satellite Town, Rawalpindi 46300, Pakistan
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Rizki WOS, Ratnaningsih E, Hertadi R. Production of poly-(R)-3-hydroxybutyrate from halophilic bacterium Salinivibrio sp. utilizing palm oil mill effluent as a carbon source. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
De Donno Novelli L, Moreno Sayavedra S, Rene ER. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. BIORESOURCE TECHNOLOGY 2021; 331:124985. [PMID: 33819906 DOI: 10.1016/j.biortech.2021.124985] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The problem of waste generation in the form of wastewater and solid wastes has caused an urgent, yet persisting, global issue that calls for the development of sustainable treatment and resource recovery technologies. The production of value-added polyhydroxyalkanoates (PHAs) from industrial waste streams has attracted the attention of researchers and process industries because they could replace traditional plastics. PHAs are biopolymers with high degradability, with a variety of applications in the manufacturing sector (e.g. medical equipment, packaging). The aim of this review is to describe the techniques and industrial waste streams that are applied for PHA production. The different enrichment and accumulation techniques that employ mixed microbial communities and carbon recovery from industrial waste streams and various downstream processes were reviewed. PHA yields between 7.6 and 76 wt% were reported for pilot-scale PHA production; while, at the laboratory-scale, yields from PHA accumulation range between 8.6 and 56 wt%. The recent advances in the application of waste streams for PHA production could result in more widely spread PHA production at the industrial scale via its integration into biorefineries for co-generation of PHAs with other added-value products like biohydrogen and biogas.
Collapse
Affiliation(s)
- Laura De Donno Novelli
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Sarah Moreno Sayavedra
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands.
| |
Collapse
|
5
|
Cheng YW, Chong CC, Lam MK, Ayoub M, Cheng CK, Lim JW, Yusup S, Tang Y, Bai J. Holistic process evaluation of non-conventional palm oil mill effluent (POME) treatment technologies: A conceptual and comparative review. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124964. [PMID: 33418292 DOI: 10.1016/j.jhazmat.2020.124964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Thriving oil palm agroindustry comes at a price of voluminous waste generation, with palm oil mill effluent (POME) as the most cumbersome waste due to its liquid state, high strength, and great discharge volume. In view of incompetent conventional ponding treatment, a voluminous number of publications on non-conventional POME treatments is filed in the Scopus database, mainly working on alternative or polishing POME treatments. In dearth of such comprehensive review, all the non-conventional POME treatments are rigorously reviewed in a conceptual and comparative manner. Herein, non-conventional POME treatments are sorted into the five major routes, viz. biological (bioconversions - aerobic/anaerobic biodegradation), physical (flotation & membrane filtration), chemical (Fenton oxidation), physicochemical (photooxidation, steam reforming, coagulation-flocculation, adsorption, & ultrasonication), and bioelectrochemical (microbial fuel cell) pathways. For aforementioned treatments, the constraints, pros, and cons are qualitatively and quantitatively (with compiled performance data) detailed to indicate their process maturity. Authors recommended (i) bioconversions, adsorption, and steam reforming as primary treatments, (ii) flotation and ultrasonication as pretreatments, (iii) Fenton oxidation, photooxidation, and membrane filtration as polishing treatments, and (iv) microbial fuel cell and coagulation-flocculation as pretreatment or polishing treatment. Life cycle assessments are required to evaluate the environmental, economic, and energy aspects of each process.
Collapse
Affiliation(s)
- Yoke Wang Cheng
- Department of Chemical Engineering, HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, University Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Chi Cheng Chong
- Department of Chemical Engineering, HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, University Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Department of Chemical Engineering, HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, University Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Muhammad Ayoub
- Department of Chemical Engineering, HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, University Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Suzana Yusup
- Department of Chemical Engineering, HiCoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, University Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yuanyuan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Jiaming Bai
- Shenzhen Key Laboratory for Additive Manufacturing of High-Performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Trojanowicz K, Trela J, Plaza E. Possible mechanism of efficient mainstream partial nitritation/anammox (PN/A) in hybrid bioreactors (IFAS). ENVIRONMENTAL TECHNOLOGY 2021; 42:1023-1037. [PMID: 31474198 DOI: 10.1080/09593330.2019.1650834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
An explanation of possible mechanism of efficient PN/A in hybrid bioreactors was presented. The bottleneck process is nitritation. Surplus nitrite production by ammonium oxidizing bacteria (AOB) is required for assuring the activity of anammox bacteria and eliminating nitrite oxidizing bacteria (NOB). It will be possible if nitrogen removal rate by AOB (rN_AOB) is higher than NOB (rN_NOB). It was shown that in biofilm AnAOB bacteria should out-compete NOB, whereas nitrogen transformation rates by AOB are usually lower than NOB. However, the growth of r-AOB in activated sludge allows out-selecting NOB. Impact of ammonium-, nitrite-nitrogen and suspended biomass concentration in hybrid PN/A systems on nitrogen removal rates in the temperature ranges from 10°C to 25°C was presented and discussed. Because bulk liquid ammonium nitrogen concentration can be higher in SBR bioreactors (after certain period of time after aeration starts) or in the initial zones of plug-flow systems than in fully mixed systems, conditions for running efficient PN/A are more favourable in intermittently aerated 'IFAS-SBR' or 'IFAS-plug flow' bioreactors.
Collapse
Affiliation(s)
- Karol Trojanowicz
- Department of Environmental Engineering, St. Pigon Krosno State College, Krosno, Poland
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Jozef Trela
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Elzbieta Plaza
- Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
7
|
Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, Ravikumar Y, Zabed HM, Qi X. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review. BIORESOURCE TECHNOLOGY 2020; 306:123132. [PMID: 32220472 DOI: 10.1016/j.biortech.2020.123132] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are inevitably a key biopolymer that has the potential to replace the conventional petrochemical based plastics that pose jeopardy to the environment globally. Even then the reach of PHA in the common market is so restricted. The economy of PHA is such that, even after several attempts the overall production cost seems to be high and this very factor surpasses PHAs usage when compared to the conventional polymers. The major focus of the review relies on the synthesis of PHA from Mixed Microbial Cultures (MMCs), through a 3-stage process most probably utilizing feedstocks from waste streams or models that mimic them. Emphasis was given to the works carried out in the past decade and their coherence with each and every individual criteria (Aeration, Substrate and bioprocess parameters) such that to understand their effect in enhancing the overall production of PHA.
Collapse
Affiliation(s)
- Poorna Chandrika Sabapathy
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Sabarinathan Devaraj
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Katharina Meixner
- University of Natural Resources and Life Sciences, Vienna, Austria; Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Straße 20, 3430 Tulln, Austria
| | - Parthiban Anburajan
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Preethi Kathirvel
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
8
|
Mannina G, Presti D, Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review. BIORESOURCE TECHNOLOGY 2020; 297:122478. [PMID: 31810735 DOI: 10.1016/j.biortech.2019.122478] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters accumulated as carbon and energy storage materials under unbalanced growth conditions by various microorganisms. They are one of the most promising potential substitutes for conventional non-biodegradable plastics due to their similar physicochemical properties, but most important, its biodegradability. Production cost of PHAs is still a great barrier to extend its application at industrial scale. In order to reduce that cost, research is focusing on the use of several wastes as feedstock (such as agro-industrial and municipal organic waste and wastewater) in a platform based on mixed microbial cultures. This review provides a critical illustration of the state of the art of the most likely-to-be-scale-up PHA production processes using mixed microbial cultures platform and waste streams as feedstock, with a particular focus on both, upstream and downstream processes. Current pilot scale studies, future prospects, challenges and developments in the field are also highlighted.
Collapse
Affiliation(s)
- Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Dario Presti
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Gabriela Montiel-Jarillo
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - Julián Carrera
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| | - María Eugenia Suárez-Ojeda
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellatera (Barcelona), Spain
| |
Collapse
|
9
|
Tsang YF, Kumar V, Samadar P, Yang Y, Lee J, Ok YS, Song H, Kim KH, Kwon EE, Jeon YJ. Production of bioplastic through food waste valorization. ENVIRONMENT INTERNATIONAL 2019; 127:625-644. [PMID: 30991219 DOI: 10.1016/j.envint.2019.03.076] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/10/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
The tremendous amount of food waste from diverse sources is an environmental burden if disposed of inappropriately. Thus, implementation of a biorefinery platform for food waste is an ideal option to pursue (e.g., production of value-added products while reducing the volume of waste). The adoption of such a process is expected to reduce the production cost of biodegradable plastics (e.g., compared to conventional routes of production using overpriced pure substrates (e.g., glucose)). This review focuses on current technologies for the production of polyhydroxyalkanoates (PHA) from food waste. Technical details were also described to offer clear insights into diverse pretreatments for preparation of raw materials for the actual production of bioplastic (from food wastes). In this respect, particular attention was paid to fermentation technologies based on pure and mixed cultures. A clear description on the chemical modification of starch, cellulose, chitin, and caprolactone is also provided with a number of case studies (covering PHA-based products) along with a discussion on the prospects of food waste valorization approaches and their economic/technical viability.
Collapse
Affiliation(s)
- Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab 140306, India
| | - Pallabi Samadar
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Yi Yang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Ki-Hyun Kim
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Pusan 48513, Republic of Korea
| |
Collapse
|
10
|
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front Microbiol 2019; 10:992. [PMID: 31143164 PMCID: PMC6520646 DOI: 10.3389/fmicb.2019.00992] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic production and accumulation have devastating environmental effects, and consequently, the world is in need of environmentally friendly plastic substitutes. In this context, polyhydroxyalkanoates (PHAs) appear to be true alternatives to common plastics because they are biodegradable and biocompatible and can be biologically produced. Despite having comparable characteristics to common plastics, extensive PHA use is still hampered by its high production cost. PHAs are bacterial produced, and one of the major costs associated with their production derives from the carbon source used for bacterial fermentation. Thus, several industrial waste streams have been studied as candidate carbon sources for bacterial PHA production, including whey, an environmental contaminant by-product from the dairy industry. The use of whey for PHA production could transform PHA production into a less costly and more environmentally friendly process. However, the efficient use of whey as a carbon source for PHA production is still hindered by numerous issues, including whey pre-treatments and PHA producing strain choice. In this review, current knowledge on using whey for PHA production were summarized and new ways to overcome the challenges associated with this production process were proposed.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
11
|
Trojanowicz K, Plaza E, Trela J. Model extension, calibration and validation of partial nitritation-anammox process in moving bed biofilm reactor (MBBR) for reject and mainstream wastewater. ENVIRONMENTAL TECHNOLOGY 2019; 40:1079-1100. [PMID: 29069969 DOI: 10.1080/09593330.2017.1397765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
In the paper, the extension of mathematical model of partial nitritation-anammox process in a moving bed biofilm reactor (MBBR) is presented. The model was calibrated with a set of kinetic, stoichiometric and biofilm parameters, whose values were taken from the literature and batch tests. The model was validated with data obtained from: laboratory batch experiments, pilot-scale MBBR for a reject water deammonification operated at Himmerfjärden wastewater treatment and pilot-scale MBBR for mainstream wastewater deammonification at Hammarby Sjöstadsverk research facility, Sweden. Simulations were conducted in AQUASIM software. The proposed, extended model proved to be useful for simulating of partial nitritation/anammox process in biofilm reactor both for reject water and mainstream wastewater at variable substrate concentrations (influent total ammonium-nitrogen concentration of 530 ± 68; 45 ± 2.6 and 38 ± 3 gN/m3 - for reject water - and two cases of mainstream wastewater treatment, respectively), temperature (24 ± 2.8; 15 ± 1.1 and 18 ± 0.5°C), pH (7.8 ± 0.2; 7.3 ± 0.1 and 7.4 ± 0.1) and aeration patterns (continuous aeration and intermittent aeration with variable dissolved oxygen concentrations and length of aerated and anoxic phases). The model can be utilized for optimizing and testing different operational strategies of deammonification process in biofilm systems.
Collapse
Affiliation(s)
- K Trojanowicz
- a Department of Environmental Engineering , St. Pigon Krosno State College , Krosno , Poland
- b Department of Sustainable Development, Environmental Science and Engineering , Royal Institute of Technology (KTH) , Stockholm , Sweden
| | - E Plaza
- b Department of Sustainable Development, Environmental Science and Engineering , Royal Institute of Technology (KTH) , Stockholm , Sweden
| | - J Trela
- b Department of Sustainable Development, Environmental Science and Engineering , Royal Institute of Technology (KTH) , Stockholm , Sweden
- c IVL, Swedish Environmental Institute , Stockholm , Sweden
| |
Collapse
|
12
|
Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JCW. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng 2018; 126:282-292. [DOI: 10.1016/j.jbiosc.2018.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
13
|
Albuquerque PB, Malafaia CB. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Int J Biol Macromol 2018; 107:615-625. [DOI: 10.1016/j.ijbiomac.2017.09.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023]
|
14
|
Carbon recovery from wastewater through bioconversion into biodegradable polymers. N Biotechnol 2017; 37:9-23. [DOI: 10.1016/j.nbt.2016.05.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/19/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
|
15
|
Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering (Basel) 2017; 4:bioengineering4020055. [PMID: 28952534 PMCID: PMC5590474 DOI: 10.3390/bioengineering4020055] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Sustainable biofuels, biomaterials, and fine chemicals production is a critical matter that research teams around the globe are focusing on nowadays. Polyhydroxyalkanoates represent one of the biomaterials of the future due to their physicochemical properties, biodegradability, and biocompatibility. Designing efficient and economic bioprocesses, combined with the respective social and environmental benefits, has brought together scientists from different backgrounds highlighting the multidisciplinary character of such a venture. In the current review, challenges and opportunities regarding polyhydroxyalkanoate production are presented and discussed, covering key steps of their overall production process by applying pure and mixed culture biotechnology, from raw bioprocess development to downstream processing.
Collapse
|
16
|
Colombo B, Favini F, Scaglia B, Sciarria TP, D’Imporzano G, Pognani M, Alekseeva A, Eisele G, Cosentino C, Adani F. Enhanced polyhydroxyalkanoate (PHA) production from the organic fraction of municipal solid waste by using mixed microbial culture. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:201. [PMID: 28852422 PMCID: PMC5567430 DOI: 10.1186/s13068-017-0888-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In Europe, almost 87.6 million tonnes of food waste are produced. Despite the high biological value of food waste, traditional management solutions do not consider it as a precious resource. Many studies have reported the use of food waste for the production of high added value molecules. Polyhydroxyalkanoates (PHAs) represent a class of interesting bio-polyesters accumulated by different bacterial cells, and has been proposed for production from the organic fraction of municipal solid waste (OFMSW). Nevertheless, until now, no attention has been paid to the entire biological process leading to the transformation of food waste to organic acids (OA) and then to PHA, getting high PHA yield per food waste unit. In particular, the acid-generating process needs to be optimized, maximizing OA production from OFMSW. To do so, a pilot-scale Anaerobic Percolation Biocell Reactor (100 L in volume) was used to produce an OA-rich percolate from OFMSW which was used subsequently to produce PHA. RESULTS The optimized acidogenic process resulted in an OA production of 151 g kg-1 from fresh OFMSW. The subsequent optimization of PHA production from OA gave a PHA production, on average, of 223 ± 28 g kg-1 total OA fed. Total mass balance indicated, for the best case studied, a PHA production per OFMSW weight unit of 33.22 ± 4.2 g kg-1 from fresh OFMSW, corresponding to 114.4 ± 14.5 g kg-1 of total solids from OFMSW. PHA composition revealed a hydroxybutyrate/hydroxyvalerate (%) ratio of 53/47 and Mw of 8∙105 kDa with a low polydispersity index, i.e. 1.4. CONCLUSIONS This work showed how by optimizing acidic fermentation it could be possible to get a large amount of OA from OFMSW to be then transformed into PHA. This step is important as it greatly affects the total final PHA yield. Data obtained in this work can be useful as the starting point for considering the economic feasibility of PHA production from OFMSW by using mixed culture.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Francesca Favini
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Giuliana D’Imporzano
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Michele Pognani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Anna Alekseeva
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni Srl, Via Colombo 81, 20133 Milan, Italy
| | - Cesare Cosentino
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Via Colombo 81, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs-DiSAA-Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
17
|
Colombo B, Pepè Sciarria T, Reis M, Scaglia B, Adani F. Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. BIORESOURCE TECHNOLOGY 2016; 218:692-9. [PMID: 27420156 DOI: 10.1016/j.biortech.2016.07.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 05/06/2023]
Abstract
Two fermented cheese wheys (FCW), FCW1 composed of lactic, acetic and butyric acids in the proportion of 58/16/26 (% CODOrganic Acid (OA)) and FCW2 composed of acetic, propionic, butyric, lactic and valeric acids in the proportion of 58/19/13/6/4 (% CODOA) were used to produce polyhydroxyalkanoates (PHAs) by using a pre-selected mixed microbial culture (MMC). PHA accumulation gave for fermented FCW1 a PHA yield (Ytot) of 0.24±0.02mgCODPHAmgCODSolubleSubstrate(SS)(-1) and a total PHA production, referred to the substrate used, of 60gPHAkgcheesewheyTotalSolids(TS)(-1). For fermented FCW2 results were: PHA yield (Ytot) of 0.42±0.03mgCODPHAmgCODSS(-1) and PHA from a substrate of 70gPHAkgcheesewheyTS(-1). Qualitatively, PHAs from FCW1 was made up exclusively of 3-hydroxybutyrate (HB), while those obtained from FCW2 were composed of 40% of 3-hydroxyvalerate (HV) and 60% of HB.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Maria Reis
- REQUIMTE/CQFB, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Barbara Scaglia
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
18
|
Basset N, Katsou E, Frison N, Malamis S, Dosta J, Fatone F. Integrating the selection of PHA storing biomass and nitrogen removal via nitrite in the main wastewater treatment line. BIORESOURCE TECHNOLOGY 2016; 200:820-829. [PMID: 26587791 DOI: 10.1016/j.biortech.2015.10.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 06/05/2023]
Abstract
A novel scheme was developed for the treatment of municipal wastewater integrating nitritation/denitritation with the selection of polyhydroxyalkanoates (PHA) storing biomass under an aerobic/anoxic, feast/famine regime. The process took place in a sequencing batch reactor (SBR) and the subsequent PHA accumulation in a batch reactor. The carbon source added during the selection and accumulation steps consisted of fermentation liquid from the organic fraction of municipal solids waste (OFMSW FL) (Period I) and OFMSW and primary sludge fermentation liquid (Period II). Selection of PHA storing biomass was successful and denitritation was driven by internally stored PHA during the famine phase. Under optimum conditions of SBR operation ammonia removal was 93%, reaching a maximum nitrite removal of 98%. The treated effluent met the nitrogen limits, while PHA-storing biomass was successfully selected. The maximum accumulation of PHA was 10.6% (wt.) since the nutrients present in the carbon source promoted bacterial growth.
Collapse
Affiliation(s)
- N Basset
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - E Katsou
- Department of Mechanical, Aerospace and Civil Engineering, Brunel University, Kingston Lane, UB8 3PH Uxbridge, Middlesex, UK
| | - N Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - S Malamis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., 15780 Athens, Greece
| | - J Dosta
- Department of Chemical Engineering, University of Barcelona, C/Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - F Fatone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
19
|
Chen Z, Huang L, Wen Q, Guo Z. Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol 2015; 209:68-75. [DOI: 10.1016/j.jbiotec.2015.06.382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
|
20
|
Valentino F, Riccardi C, Campanari S, Pomata D, Majone M. Fate of β-hexachlorocyclohexane in the mixed microbial cultures (MMCs) three-stage polyhydroxyalkanoates (PHA) production process from cheese whey. BIORESOURCE TECHNOLOGY 2015; 192:304-11. [PMID: 26048084 DOI: 10.1016/j.biortech.2015.05.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 05/06/2023]
Abstract
This work aimed to study the fate and effect of β-hexachlorocyclohexane (β-HCH) during several steps of PHA production and purification, by using an artificially contaminated cheese whey (CW) as the feedstock. Most of β-HCH (around 90%) was adsorbed on CW solids and it was removed after the acidogenic fermentation step, when residual CW solids are separated along with anaerobic biomass from the liquid-phase. Purification steps also contributed strongly to the removal of residual β-HCH; overall, the PHA production process removed about 99.9% of initial β-HCH content. Moreover, it has been shown that β-HCH has neither detrimental effect on acidogenic fermentation nor on PHA accumulation, that were performed by using unacclimated mixed microbial cultures.
Collapse
Affiliation(s)
- Francesco Valentino
- Dept. of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Carmela Riccardi
- INAIL, Settore Ricerca, Certificazione e Verifica, Monte Porzio Catone, Rome, Italy
| | - Sabrina Campanari
- Dept. of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Donatella Pomata
- INAIL, Settore Ricerca, Certificazione e Verifica, Monte Porzio Catone, Rome, Italy
| | - Mauro Majone
- Dept. of Chemistry, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Gobi K, Vadivelu VM. Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules. BIORESOURCE TECHNOLOGY 2015; 189:169-176. [PMID: 25889804 DOI: 10.1016/j.biortech.2015.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Polyhydroxyalkanoate (PHA) recovery from aerobic granules was investigated using four cell digestion agents, namely, sodium hypochlorite, sodium hydroxide, acetone and sodium chloride. Simultaneously, the removal of extracellular polymeric substances (EPS) and its effect on PHA yield were investigated. The highest PHA recovery yield was obtained using sodium hypochlorite, accounting for 89% cell dry weight (CDW). The highest PHA was recovered after the sodium hypochlorite completely removed the EPS from the aerobic granules. The average molecular weight (Mw) of the PHA recovered using sodium hypochlorite was 5.31 × 10(5)g/mol with only 1.8% molecular weight degradation. The energy and duration analysis for PHA recovery revealed that the sodium hypochlorite method required the least amount of energy and time at 0.0561 MJ/g PHA and 26 h, respectively. The PHA that was recovered was a P3(HB-co-HV) co-polymer.
Collapse
Affiliation(s)
- K Gobi
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - V M Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
22
|
Setiadi T, Aznury M, Trianto A, Pancoro A. Production of polyhydroxyalkanoate (PHA) by Ralstonia eutropha JMP 134 with volatile fatty acids from palm oil mill effluent as precursors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1889-1895. [PMID: 26606081 DOI: 10.2166/wst.2015.391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The highest volatile fatty acids (VFAs) concentration from palm oil mill effluent (POME) treated by anaerobic fermentation was achieved for a 1-day process when the main acids used were acetic, propionic and butyric acids. Polyhydroxyalkanoate (PHA) production with VFAs from POME as precursors in the fed-batch mode has advantages over batch mode, both in terms of its productivity and 3HV (3-hydroxyvalerate) composition in the produced polymer. With the fed batch, the productivity increased to 343% and contained more 3HV than those of the batch. The structures of the PHA were identified by different methods and they supported each other; the resulting products consisted of functional groups of 3HB (3-hydroxybutyrate) and 3HV.
Collapse
Affiliation(s)
- Tjandra Setiadi
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Labtek X, Jl. Ganesha 10, Bandung 40132, Indonesia E-mail:
| | - Martha Aznury
- Department of Chemical Engineering, Politeknik Negeri Sriwijaya, Palembang, Indonesia
| | - Azis Trianto
- Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Labtek X, Jl. Ganesha 10, Bandung 40132, Indonesia E-mail:
| | - Adi Pancoro
- School of Life Sciences and Technology, Institut Teknologi Bandung, Labtek XI, Jl. Ganesha 10, Bandung 40132, Indonesia
| |
Collapse
|
23
|
Pittmann T, Steinmetz H. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant. BIORESOURCE TECHNOLOGY 2014; 167:297-302. [PMID: 24995880 DOI: 10.1016/j.biortech.2014.06.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/07/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached.
Collapse
Affiliation(s)
- T Pittmann
- University of Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Bandtaele 2, D-70569 Stuttgart, Germany.
| | - H Steinmetz
- University of Stuttgart, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Bandtaele 2, D-70569 Stuttgart, Germany
| |
Collapse
|
24
|
Duque AF, Oliveira CS, Carmo IT, Gouveia AR, Pardelha F, Ramos AM, Reis MA. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. N Biotechnol 2014; 31:276-88. [DOI: 10.1016/j.nbt.2013.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/16/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
|
25
|
Marshall CW, LaBelle EV, May HD. Production of fuels and chemicals from waste by microbiomes. Curr Opin Biotechnol 2013; 24:391-7. [PMID: 23587964 DOI: 10.1016/j.copbio.2013.03.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 03/01/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
The demand for chemicals and fuels will continue to grow simultaneously with the costly requirement to treat solid waste, wastewater, and regarding climate change, carbon dioxide. A dual benefit is at hand if waste could be converted to valuable chemicals. The application of stable chemical producing microbiomes adapted to these waste streams may turn this challenge into an opportunity.
Collapse
Affiliation(s)
- Christopher W Marshall
- Department of Microbiology & Immunology, Marine Biomedicine & Environmental Science Center, Medical University of South Carolina, United States
| | | | | |
Collapse
|