1
|
Cho KJ, Kim MU, Jeong GJ, Oh DK, Kang JH, Yoon DH, Khan F, Kim YM. Protein Extraction from Chlorella pyrenoidosa Using Bacillus spp. Isolated from Jeotgal: Strain isolation, Characterization, and Fermentation. J Microbiol Biotechnol 2025; 35:e2411070. [PMID: 40374525 PMCID: PMC12099625 DOI: 10.4014/jmb.2411.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 05/17/2025]
Abstract
Chlorella pyrenoidosa, a versatile microalga with a rich nutritional profile and functional components, has various applications. However, rigid cell walls pose challenges for the effective extraction of proteins. Microbial fermentation is a promising solution for large-scale production and industrial applications. This study aimed to isolate Bacillus spp. with high enzymatic activity from Jeotgal, a Korean traditional fermented food, and enhance protein extraction from C. pyrenoidosa using microbial fermentation with the isolated Bacillus spp. Twenty-two strains of Bacillus spp. were isolated, and eight Bacillus species were selected based on their ability to produce cellulases, proteases, and lipases. Microbial safety was further assessed by testing for biogenic amine production and hemolytic activity. All eight strains exhibited γ-hemolysis, with four strains not producing biogenic amines. Notably, fermentation using Bacillus amyloliquefaciens F2 showed the highest protein extraction yield at 35.45 ± 1.21% (v/v). In conclusion, this study demonstrates the potential of microbial fermentation for protein extraction from C. pyrenoidosa, offering a novel approach for its utilization in the food industry.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Ung Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do Kyung Oh
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Ju-Hong Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Da-Hyeon Yoon
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Bakshi S, Kanetkar P, Bunkar DS, Browne C, Paswan VK. Chlorella sp. as a promising protein source: insight to novel extraction techniques, nutritional and techno-functional attributes of derived proteins. Crit Rev Food Sci Nutr 2025:1-29. [PMID: 40244156 DOI: 10.1080/10408398.2025.2491646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Amidst the mounting environmental crises and ever-increasing global population, the quest for sustainable food production and resource utilization solutions has taken center stage. Microalgae, with Chlorella species at the forefront, present a promising avenue. They serve as a bountiful protein source and can be conveniently grown in waste streams, thereby tackling food security, environmental sustainability, and economic feasibility. This article embarks on a comprehensive journey through recent research on Chlorella by shedding light on its unique characteristics, its market value, cultivation techniques, and harvesting methods. It also delves into traditional and innovative extraction methods, underscoring the hurdles and breakthroughs in achieving high protein yields from the Chlorella biomass. Moreover, exploration of the protein's nutritional properties, bioactive peptides, and techno-functional attributes, enhance its potential for food applications. Further, this review also examines current market trends in consumer acceptance of this alternative protein and discusses strategies for reducing greenhouse gas emissions in their production. By providing invaluable insights into the current status and future prospects of Chlorella protein, it aspires to make a significant contribution to the ongoing dialogue on sustainable food production and resource management.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prajasattak Kanetkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Durga Shankar Bunkar
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Vinod Kumar Paswan
- Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Huang J, Zhang M, Mujumdar AS, Semenov G, Luo Z. Technological advances in protein extraction, structure improvement and assembly, digestibility and bioavailability of plant-based foods. Crit Rev Food Sci Nutr 2024; 64:11556-11574. [PMID: 37498207 DOI: 10.1080/10408398.2023.2240892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Gennady Semenov
- Laboratory of Freeze-Drying, Russian Biotechnological University, Moscow, Russia
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd, Ninghai, Zhejiang, China
| |
Collapse
|
4
|
Wu D, Cao Y, Su D, Karrar E, Zhang L, Chen C, Deng N, Zhang Z, Liu J, Li G, Li J. Preparation and identification of antioxidant peptides from Quasipaa spinosa skin through two-step enzymatic hydrolysis and molecular simulation. Food Chem 2024; 445:138801. [PMID: 38387316 DOI: 10.1016/j.foodchem.2024.138801] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Frog skin, a by-product of Quasipaa Spinosa farming, is rich in protein and potentially a valuable raw material for obtaining antioxidant peptides. This study used papain combined with acid protease to digest frog skin in a two-step enzymatic hydrolysis method. Based on a single factor and response surface experiments, experimental conditions were optimized, and the degree of hydrolysis was 30 %. A frog skin hydrolysate (QSPH-Ⅰ-3) was obtained following ultrafiltration and gel filtration chromatography. IC50 for DPPH, ABTS, and hydroxyl radical scavenging capacities were 1.68 ± 0.05, 1.20 ± 0.14 and 1.55 ± 0.11 mg/mL, respectively. Peptide sequences (17) were analyzed and, through molecular docking, peptides with low binding energies for KEAP1 were identified, which might affect the NRF2-KEAP1 pathway. These findings suggest protein hydrolysates and antioxidant peptide derivatives might be used in functional foods.
Collapse
Affiliation(s)
- Daren Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Yuanhao Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Dejin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Jianfeng Biotechnology Co., LTD, Quanzhou 362500, China
| | - Emad Karrar
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Lingyu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Chaoxiang Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Ning Deng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Guiling Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
| | - Jian Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
5
|
Costa MM, Spínola MP, Alves VD, Mestre Prates JA. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024; 10:e32704. [PMID: 38988577 PMCID: PMC11233943 DOI: 10.1016/j.heliyon.2024.e32704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Chlorella vulgaris is a microalga rich in proteins with potential applications in food and feed industries. However, the presence of a cellulose-containing cell wall, which is a major barrier to protein extraction, together with fibroproteinaceous complexes, limits the bioaccessibility of nutritional and bioactive proteins and peptides from C. vulgaris biomass. Therefore, this study aimed to evaluate the effect of different mechanical/physical pre-treatments (bead milling, extrusion, freeze-drying, heating, microwave and sonication) combined or not with enzymatic treatments (commercial trypsin and pancreatin) on protein extraction and peptide formation from a C. vulgaris suspension. The amount of total protein and peptides released to the supernatant was quantified by Bradford and o-phthaldialdehyde assays, respectively. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis was used to analyse the extracted protein fractions. The results showed that extrusion caused a 3-fold increase in total peptides (p < 0.001) compared to no-pretreatment, and trypsin increased peptides formed in bead-milled (p = 0.020) and freeze-dried (p = 0.021) microalga relative to those pre-treatments alone. Some pre-treatments, such as bead milling and microwave, were effective in releasing specific protein fractions, particularly those from 32 to 40 kDa (up to 1.2-fold), compared to control. Pancreatin combined with bead milling decreased 32 to 40 kDa- and 26 kDa-protein fractions (p < 0.010) compared with the sole use of mechanical treatment, whereas the same enzyme mixture associated with microwave produced a similar result for 26 kDa-protein fraction (p = 0.023). Pancreatin also effectively reduced the total protein fraction released after pre-treatment with sonication (p = 0.013). These findings suggest that combining different pre-treatments and enzymatic treatments could improve protein extraction from C. vulgaris biomass, providing a useful approach for the development of sustainable protein sources. The present results highlight the need for further studies to assess the efficacy of extrusion in improving the bioaccessibility of C. vulgaris proteins in monogastric animals' diets.
Collapse
Affiliation(s)
- Mónica Mendes Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Maria Pinheiro Spínola
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Victor Diogo Alves
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| |
Collapse
|
6
|
Ke Y, Chen J, Dai T, Liang R, Liu W, Liu C, Deng L. Developing industry-scale microfluidization for cell disruption, biomolecules release and bioaccessibility improvement of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 387:129649. [PMID: 37558104 DOI: 10.1016/j.biortech.2023.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
To facilitate biomolecules extraction and bioaccessibility of Chlorella pyrenoidosa, a novel industry-scale microfluidization (ISM) was used to disrupt cells effectively. Microscope images showed ISM damaged cell integrity, disorganized cell wall structure, pulverized cell membrane and promoted the release of intracellular components. The decrease of particle size and the increase of ζ-potential also confirmed the cell disruption. The cell breakage ratio of sample treated at 120 MPa was 98%. Compared with untreated samples, total soluble solid content and protein extraction rate of the sample treated at 120 MPa increased by 2 °Brix and 12%. Protein was degraded by ISM, the release of intracellular protein and the reduction of molecular weight increased protein digestibility by 20% in in vitro gastric phase. Lipid yield and chlorophyll b content were also increased by ISM. These results provided a new solution to cell disruption of microalgae and expanded the application field of ISM.
Collapse
Affiliation(s)
- Yingying Ke
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
7
|
Wu Q, Ma Y, Zhang L, Han J, Lei Y, Le Y, Huang C, Kan J, Fu C. Extraction, functionality, and applications of Chlorella pyrenoidosa protein/peptide. Curr Res Food Sci 2023; 7:100621. [PMID: 38021256 PMCID: PMC10653999 DOI: 10.1016/j.crfs.2023.100621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Chlorella pyrenoidosa (C. pyrenoidosa) has been widely used in commercial food and feed production for numerous years. Its high protein content and cost-effectiveness make it an attractive source of novel protein. With a focus on sustainable development and the search for green natural products, current research is dedicated to maximizing the utilization of C. pyrenoidosa protein (CPP) and peptide. Various techniques, such as the use of ionic liquids, freeze-thawing, ultrasonication, enzyme digest, microwaving are employed in the extraction of CPP. The extracted CPP has demonstrated antioxidant, anti-inflammatory, and bacteriostatic properties. It can also stimulate immune regulation, prevent cardiovascular disease, protect red blood cells, and even be used in wastewater treatment. Furthermore, CPP has shown some potential in combating obesity. Additionally, CPP is being explored in three-dimensional (3D) printing applications, particularly for the creation of biological scaffolds. It is also anticipated to play a role in 3D food printing. This review aimed to supply a comprehensive summary of CPP and C. pyrenoidosa peptide extraction methods, their functions, and practical applications in various industries. By doing so, it seeks to underpin subsequent research efforts, highlight current research limitations, and identify future research directions in this field.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, 200031, China
| | - Yuchen Ma
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Lanxin Zhang
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Jing Han
- Nutrilite Health Institute, Shanghai, 200031, China
| | - Yanan Lei
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Yi Le
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, 200031, China
| | - Caili Fu
- National University of Singapore Suzhou Research Institute, Suzhou, 215123, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
8
|
Deng Y, Yang X, Yan T, Xu W, Li J, Niu R, Zhao R, Wang H, Wang H, Chen T, Guo M, Wang W, Liu D. Ultrasound-induced cell disintegration and its ultrastructure characterization for the valorisation of Chlorella pyrenoidosa protein. BIORESOURCE TECHNOLOGY 2023; 381:129046. [PMID: 37044154 DOI: 10.1016/j.biortech.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
Chlorella pyrenoidosa (CP) has great potential for feeding future demands in food, environment, energy, and pharmaceuticals. To achieve this goal, the exploitation of emerging efficient technique such as ultrasound-assisted extraction (UAE) for CP nutrient enrichment is crucial. Here, UAE is deployed for high-efficient CP protein (CPP) valorisation. Compared to conventional solvent extraction (CSE), remarkable mass transfer enhancements with 9-time protein yields and 3-time extraction rate are achieved by ultrasonic cavitation in UAE, indicating UAE can drastically shift intracellular nutrients including proteins and pigments to solvent. Cell morphology and ultrastructure show the different responses of cell wall and membrane, indicating that the cell membrane may play a role in the extraction process, based on which the extremely-low efficiency of CSE and high efficiency of UAE are highlighted. This study provides a solution for future food crisis by extracting CPP and may open a new discussion field in ultrasonic extraction.
Collapse
Affiliation(s)
- Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Han Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
9
|
Forutan M, Hasani M, Hasani S, Salehi N, Sabbagh F. Liposome System for Encapsulation of Spirulina platensis Protein Hydrolysates: Controlled-Release in Simulated Gastrointestinal Conditions, Structural and Functional Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8581. [PMID: 36500077 PMCID: PMC9736864 DOI: 10.3390/ma15238581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the physicochemical, structural, antioxidant and antibacterial properties of chitosan-coated (0.5 and 1% CH) nanoliposomes containing hydrolyzed protein of Spirulina platensis and its stability in simulated gastric and intestine fluids. The chitosan coating of nanoliposomes containing Spirulina platensis hydrolyzed proteins increased their size and zeta potential. The fourier transform infrared spectroscopy (FT-IR) test showed an effective interaction between the hydrolyzed protein, the nanoliposome, and the chitosan coating. Increasing the concentration of hydrolyzed protein and the percentage of chitosan coating neutralized the decreasing effect of microencapsulation on the antioxidant activity of peptides. Chitosan coating (1%) resulted in improved stability of size, zeta potential, and poly dispersity index (PDI) of nanoliposomes, and lowered the release of the hydrolyzed Spirulina platensis protein from nanoliposomes. Increasing the percentage of chitosan coating neutralized the decrease in antibacterial properties of nanoliposomes containing hydrolyzed proteins. This study showed that 1% chitosan-coated nanoliposomes can protect Spirulina platensis hydrolyzed proteins and maintain their antioxidant and antibacterial activities.
Collapse
Affiliation(s)
- Maryam Forutan
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran
| | - Maryam Hasani
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran
| | - Shirin Hasani
- Department of Fisheries, Faculty of Fisheries and the Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Nasrin Salehi
- Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
10
|
Reis B, Ramos-Pinto L, Cunha SA, Pintado M, da Silva JL, Dias J, Conceição L, Matos E, Costas B. Chlorella vulgaris Extracts as Modulators of the Health Status and the Inflammatory Response of Gilthead Seabream Juveniles (Sparus aurata). Mar Drugs 2022; 20:md20070407. [PMID: 35877700 PMCID: PMC9323325 DOI: 10.3390/md20070407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to evaluate the effects of short-term supplementation, with 2% Chlorella vulgaris (C. vulgaris) biomass and two 0.1% C. vulgaris extracts, on the health status (experiment one) and on the inflammatory response (experiment two) of gilthead seabream (Sparus aurata). The trial comprised four isoproteic (50% crude protein) and isolipidic (17% crude fat) diets. A fishmeal-based (FM), practical diet was used as a control (CTR), whereas three experimental diets based on CTR were further supplemented with a 2% inclusion of C. vulgaris biomass (Diet D1); 0.1% inclusion of C. vulgaris peptide-enriched extract (Diet D2) and finally a 0.1% inclusion of C. vulgaris insoluble fraction (Diet D3). Diets were randomly assigned to quadruplicate groups of 97 fish/tank (IBW: 33.4 ± 4.1 g), fed to satiation three times a day in a recirculation seawater system. In experiment one, seabream juveniles were fed for 2 weeks and sampled for tissues at 1 week and at the end of the feeding period. Afterwards, randomly selected fish from each group were subjected to an inflammatory insult (experiment two) by intraperitoneal injection of inactivated gram-negative bacteria, following 24 and 48 h fish were sampled for tissues. Blood was withdrawn for haematological procedures, whereas plasma and gut tissue were sampled for immune and oxidative stress parameters. The anterior gut was also collected for gene expression measurements. After 1 and 2 weeks of feeding, fish fed D2 showed higher circulating neutrophils than seabream fed CTR. In contrast, dietary treatments induced mild effects on the innate immune and antioxidant functions of gilthead seabream juveniles fed for 2 weeks. In the inflammatory response following the inflammatory insult, mild effects could be attributed to C. vulgaris supplementation either in biomass form or extract. However, the C. vulgaris soluble peptide-enriched extract seems to confer a protective, anti-stress effect in the gut at the molecular level, which should be further explored in future studies.
Collapse
Affiliation(s)
- Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| | - Lourenço Ramos-Pinto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
| | - Sara A. Cunha
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.A.C.); (M.P.)
| | - Joana Laranjeira da Silva
- Allmicroalgae, Natural Products SA, Industrial Microalgae Production, Apartado 9, 2449-909 Pataias, Portugal;
| | - Jorge Dias
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Luís Conceição
- SPAROS Lda., Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal; (J.D.); (L.C.)
| | - Elisabete Matos
- Sorgal S.A., EN 109-Lugar da Pardala, 3880-728 São João de Ovar, Portugal
- B2E Associação para a Bioeconomia Azul—Laboratório Colaborativo, Av. Liberdade, UPTEC Mar, 4450-718 Leça da Palmeira, Portugal;
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal;
- Correspondence: (B.R.); (B.C.); Tel.: +351-223-401-840 (B.R.); +351-223-401-838 (B.C.)
| |
Collapse
|
11
|
Tian S, Wang F, Luo M, Yan F, Du K, Chen H, Gao S. Effect of
Chlorella pyrenoidosa
powder on rheological properties and fermentation characteristics of dough. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuangqi Tian
- College of Food science and Technology Henan University of Technology Zhengzhou China
| | - Fan Wang
- College of Food science and Technology Henan University of Technology Zhengzhou China
| | - Mengyao Luo
- College of Food science and Technology Henan University of Technology Zhengzhou China
| | - Feng Yan
- College of Food science and Technology Henan University of Technology Zhengzhou China
| | - Ke Du
- College of Food science and Technology Henan University of Technology Zhengzhou China
| | - Hu Chen
- Kemen Noodle Manufacturing Co., Ltd. Changsha China
| | - Sensen Gao
- Kemen Noodle Manufacturing Co., Ltd. Changsha China
| |
Collapse
|
12
|
Islam MS, Hongxin W, Admassu H, Noman A, Ma C, An wei F. Degree of hydrolysis, functional and antioxidant properties of protein hydrolysates from Grass Turtle ( Chinemys reevesii) as influenced by enzymatic hydrolysis conditions. Food Sci Nutr 2021; 9:4031-4047. [PMID: 34401055 PMCID: PMC8358382 DOI: 10.1002/fsn3.1903] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Grass turtle muscle was hydrolyzed with papain enzyme to produce protein hydrolysate (PH) and the degree of hydrolysis (DH) was determined. Under optimal conditions, the highest DH was 19.52% and the yield was recorded as 17.26%. Protein content of the hydrolysates was ranged from 73.35% to 76.63%. Total amino acids were more than 96.77% for each PH. The PH obtained at DH 19.52% achieved excellent solubility and emulsifying activity which were 95.56% and 108.76 m2/g, respectively at pH 6. Foam capacity amounted 100% in PH of DH 19.52% at pH 2, and water-holding capacity was 4.38 g/g. The antioxidant activity showed the strongest hydroxyl radical scavenging activity (95.25%), ABTS (84.88%), DPPH (75.89%), iron chelating (63.25%), and cupper chelating (66.90%) at DH 11.96%, whereas reducing power (0.88) at DH 19.52%. Thus, the findings indicated that utilization of grass turtle muscle protein hydrolysate is a potential alternative protein resource to improve the nutritional and functional properties in food ingredients and product formulations.
Collapse
Affiliation(s)
- Md. Serajul Islam
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
- Department of Food Technology and Nutritional ScienceMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Wang Hongxin
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
| | - Habtamu Admassu
- Department of Food Process Engineering, Biotechnology and Bioprocessing Center of ExcellenceAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
| | - Anwar Noman
- State key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu province214122China
| | - Chaoyang Ma
- National Engineering Research Center for Functional FoodJiangnan UniversityWuxiJiangsu province214122China
| | - Fu An wei
- Guangxi zhongtaikang Technology Industry Co., Ltd.NanningGuangxi530029P. R. China
| |
Collapse
|
13
|
Bae H, Paludan M, Knoblauch J, Jensen KH. Neural networks and robotic microneedles enable autonomous extraction of plant metabolites. PLANT PHYSIOLOGY 2021; 186:1435-1441. [PMID: 34014283 PMCID: PMC8260139 DOI: 10.1093/plphys/kiab178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plant metabolites comprise a wide range of extremely important chemicals. In many cases, like savory spices, they combine distinctive functional properties-deterrence against herbivory-with an unmistakable flavor. Others have remarkable therapeutic qualities, for instance, the malaria drug artemisinin, or mechanical properties, for example natural rubber. We present a breakthrough in plant metabolite extraction technology. Using a neural network, we teach a computer how to recognize metabolite-rich cells of the herbal plant rosemary (Rosmarinus officinalis) and automatically extract the chemicals using a microrobot while leaving the rest of the plant undisturbed. Our approach obviates the need for chemical and mechanical separation and enables the extraction of plant metabolites that currently lack proper methods for efficient biomass use. Computer code required to train the neural network, identify regions of interest, and control the micromanipulator is available as part of the Supplementary Material.
Collapse
Affiliation(s)
- Hansol Bae
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Magnus Paludan
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jan Knoblauch
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kaare H. Jensen
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Cruz-Chamorro I, Álvarez-Sánchez N, Álvarez-Ríos AI, Santos-Sánchez G, Pedroche J, Millán F, Carrera Sánchez C, Fernández-Pachón MS, Millán-Linares MC, Martínez-López A, Lardone PJ, Bejarano I, Guerrero JM, Carrillo-Vico A. Safety and Efficacy of a Beverage Containing Lupine Protein Hydrolysates on the Immune, Oxidative and Lipid Status in Healthy Subjects: An Intervention Study (the Lupine-1 Trial). Mol Nutr Food Res 2021; 65:e2100139. [PMID: 34015184 DOI: 10.1002/mnfr.202100139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/02/2021] [Indexed: 12/30/2022]
Abstract
SCOPE We have previously demonstrated the anti-inflammatory and antioxidant properties of in vitro administered Lupinus angustifolius protein hydrolysates (LPHs) on human peripheral blood mononuclear cells (PBMCs). This study aims to evaluate the safety and efficacy of a beverage containing LPHs (LPHb) on the immune, oxidative and metabolic status of healthy subjects. METHODS AND RESULTS In this open-label intervention, 33 participants daily ingest a LPHb containing 1 g LPHs for 28 days. Biochemical parameters are assayed in fasting peripheral blood and urine samples before, during (14 days) and after LPHb ingestion. Participants' health status and the immune and antioxidant responses of PBMCs are also evaluated throughout the trial. The LPHb ingestion is safe and effective in both increasing the anti-/pro-inflammatory response of PBMCs and improving the cellular anti-oxidant capacity. LPHb also reduces the low-density lipoprotein-cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C) atherogenic index. LPHb effect is particularly beneficial on decreasing not only the LDL-C/HDL-C index but also serum total cholesterol levels in the male cohort that shows the highest baseline levels of well-known cardiovascular risk factors. CONCLUSION This is the first study to show the pleiotropic actions of a lupine bioactive peptides-based functional food on key steps of atherosclerosis including inflammation, oxidative stress, and cholesterol metabolism.
Collapse
Affiliation(s)
- Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain
| | - Ana Isabel Álvarez-Ríos
- Departamento de Bioquímica Clínica, Unidad de Gestión, de Laboratorios, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Justo Pedroche
- Plant Protein Group, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, Seville, 41013, Spain
| | - Francisco Millán
- Plant Protein Group, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, Seville, 41013, Spain
| | - Cecilio Carrera Sánchez
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, Seville, Spain
| | - María Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera Km 1, Seville, 41013, Spain
| | - María Carmen Millán-Linares
- Plant Protein Group, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, Seville, 41013, Spain.,Cell Biology Unit, Instituto de la Grasa, CSIC, Ctra. Utrera Km 1, Seville, 41013, Spain
| | - Alicia Martínez-López
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| | - Juan Miguel Guerrero
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain.,Departamento de Bioquímica Clínica, Unidad de Gestión, de Laboratorios, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), Seville, Spain.,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
Sushytskyi L, Lukáč P, Synytsya A, Bleha R, Rajsiglová L, Capek P, Pohl R, Vannucci L, Čopíková J, Kaštánek P. Immunoactive polysaccharides produced by heterotrophic mutant of green microalga Parachlorella kessleri HY1 (Chlorellaceae). Carbohydr Polym 2020; 246:116588. [PMID: 32747247 DOI: 10.1016/j.carbpol.2020.116588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022]
Abstract
Hot water extract from biomass of heterotrophic mutant green alga Parachlorella kessleri HY1 (Chlorellaceae) was deproteinised, and three polysaccharidic fractions were obtained by preparative chromatography. The low-molecular fraction (1.5 × 104g mol-1) was defined mainly as branched O-2-β-xylo-(1→3)-β-galactofuranan where xylose is partially methylated at O-4. Two high-molecular fractions (3.05 × 105 and 9.84 × 104g mol-1) were complex polysaccharides containing α-l-rhamnan and xylogalactofuranan parts in different ratios. The polysaccharides were well soluble in hot water and, upon cooling, tended to self-segregate. Immunomodulatory activities of the obtained fractions were preliminary tested using ELISA, FACS and ImmunoSpot kits. The polysaccharides increased the TNF-α production in melanoma bearing mice with much higher intensity than in healthy mice. This was in agreement with the FACS results on T and B cells indicating their possibly secondary activation by innate immunity cells.
Collapse
Affiliation(s)
- Leonid Sushytskyi
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic.
| | - Pavol Lukáč
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Lenka Rajsiglová
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic; Faculty of Science, Charles University, Albertov 6, 128 00, Prague 2, Czech Republic
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo sq. 2, 166 28, Prague 6, Czech Republic
| | - Luca Vannucci
- Czech Academy of Sciences, Institute of Microbiology, Vídeňská 1083, 142 20, Prague 4 Krč, Czech Republic
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic
| | - Petr Kaštánek
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Prague 6 Dejvice, Czech Republic; EcoFuel Laboratories s.r.o., Ocelářská 9, Prague 9 Libeň, 190 00, Czech Republic
| |
Collapse
|
16
|
Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Desai RK, Fernandez MS, Wijffels RH, Eppink MHM. Mild Fractionation of Hydrophilic and Hydrophobic Components From Neochloris oleoabundans Using Ionic Liquids. Front Bioeng Biotechnol 2019; 7:284. [PMID: 31709246 PMCID: PMC6824408 DOI: 10.3389/fbioe.2019.00284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022] Open
Abstract
Microalgae are a promising source for proteins, lipids, and carbohydrates for the food/feed and biofuel industry. To make microalgae production economically feasible, it is necessary to optimally use all produced compounds keeping full functionality. Therefore, biorefining of microalgae is the key to lower the cost of algal products using mild and effective processing techniques. In this article, we have tested the feasibility of aqueous solutions of imidazolium and phosponium ionic liquids to selectively milk the hydrophobic lipids from Neochloris oleoabundans biomass out of intact cells and recover after cell disruption the hydrophilic fraction containing proteins and carbohydrates. The results showed that the ionic liquid tributylmethylphosphonium methylsulfate (TBP SO4; Cyphos 108) is able to permeabilize fresh intact cells of N. oleoabundans for extracting 68% of total lipids out of the cells, whereas, after cell disruption, 80% of total proteins, and 77% of total carbohydrates could be obtained in aqueous buffers. This concept kept the recovered proteins in their native form without interacting with the ionic liquids that will denature the proteins. Selective biorefinery of different components from microalgae using ionic liquid TBP SO4 explains the novelty of this concept.
Collapse
Affiliation(s)
- Rupali K Desai
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, Netherlands
| | | | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
18
|
Tejano LA, Peralta JP, Yap EES, Chang Y. Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Sci Nutr 2019; 7:2381-2390. [PMID: 31367367 PMCID: PMC6657813 DOI: 10.1002/fsn3.1097] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chlorella sorokiniana protein isolates were enzymatically hydrolyzed using pepsin, bromelain, and thermolysin, with their molecular characteristics and bioactivities determined. Thermolysin hydrolysates exhibited the highest degree of hydrolysis (18.08% ± 1.13%). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that peptides with molecular weights <10 kDa were found in the hydrolysates compared to the protein isolates. Bioactivity assays revealed that pepsin peptide fraction <5 kDa showed the highest angiotensin-converting enzyme (ACE)-inhibitory (34.29% ± 3.45%) and DPPH radical scavenging activities (48.86% ± 1.95%), while pepsin peptide fraction <10 kDa demonstrated the highest reducing power with 0.2101% ± 0.02% absorbance. Moreover, antibacterial assessment revealed that pepsin hydrolysate and peptide fractions displayed inhibition to the test microorganisms. Overall, the present findings suggest that C. sorokiniana protein hydrolysates can be valuable bio-ingredients with pharmaceutical and nutraceutical application potentials.
Collapse
Affiliation(s)
- Lhumen A. Tejano
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Jose P. Peralta
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Encarnacion Emilia S. Yap
- College of Fisheries and Ocean Sciences, Institute of Fish Processing TechnologyUniversity of the PhilippinesVisayasMiagaoIloiloPhilippines
| | - Yu‐Wei Chang
- Department of Food ScienceNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
19
|
The antioxidant activity of nanoemulsions based on lipids and peptides from Spirulina sp. LEB18. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Purification and identification of intestinal mucosal cell proliferation-promoting peptides from Crassostrea hongkongensis. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Zhao Q, Chu H, Zhao B, Liang Z, Zhang L, Zhang Y. Advances of ionic liquids-based methods for protein analysis. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
He Y, Wu T, Wang X, Chen B, Chen F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. BIORESOURCE TECHNOLOGY 2018; 268:583-591. [PMID: 30138870 DOI: 10.1016/j.biortech.2018.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 05/13/2023]
Abstract
In this study, a novel two-step enzymatic process was firstly established to produce microalgae biodiesel using wet Chlorella biomass. In the first hydrolysis step, to reduce energy consumption and effectively disrupt microalgal cell wall, among cellulase, hemicellulase, papain, lysozyme and pectinase, the highest hydrolysis efficiency (67.52%) was obtained by cellulase at pH 5.0 with enzyme dosage of 200 U/g dry biomass at 40 °C for 12 h. In the second transesterification step, compared with liquid CAL-A/B from Candida antarctica and PLA from Aspergillus oryzae, liquid lipase TL from Thermomyces lanuginosus achieved the highest biodiesel conversion at 81.15:1 (v/w) ethanol/g TFAs ratio in 78-83% water content with 100 PLU/g TFAs lipase loading at 25 °C for 48 h. Moreover, similar results were obtained with three Chlorella species by this process. Overall, this two-step enzymatic process was a green, low-energy and efficient method for cost-effective biodiesel production using wet microalgal biomass.
Collapse
Affiliation(s)
- Yongjin He
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaofei Wang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RAI, Kim KH, Yang IS, Govindwar SP, Kim S, Jeon BH. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. BIORESOURCE TECHNOLOGY 2018; 258:365-375. [PMID: 29501272 DOI: 10.1016/j.biortech.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32817, USA
| | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Akhil N Kabra
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Il-Seung Yang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sunjoon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
24
|
Zhang R, Chen J, Zhang X. Extraction of intracellular protein from Chlorella pyrenoidosa using a combination of ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. BIORESOURCE TECHNOLOGY 2018; 247:267-272. [PMID: 28950135 DOI: 10.1016/j.biortech.2017.09.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Due to the rigid cell wall of Chlorella species, it is still challenging to effectively extract significant amounts of protein. Mass methods were used for the extraction of intracellular protein from microalgae with biological, mechanical and chemical approaches. In this study, based on comparison of different extraction methods, a new protocol was established to maximize extract amounts of protein, which was involved in ethanol soaking, enzyme digest, ultrasonication and homogenization techniques. Under the optimized conditions, 72.4% of protein was extracted from the microalgae Chlorella pyrenoidosa, which should contribute to the research and development of Chlorella protein in functional food and medicine.
Collapse
Affiliation(s)
- Ruilin Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China; Era (China) Company Ltd, Shenzhen, China
| | - Jian Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Fan X, Bai L, Mao X, Zhang X. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Ventura SM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem Rev 2017; 117:6984-7052. [PMID: 28151648 PMCID: PMC5447362 DOI: 10.1021/acs.chemrev.6b00550] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/22/2022]
Abstract
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
Collapse
Affiliation(s)
- Sónia
P. M. Ventura
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisca A. e Silva
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria V. Quental
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Dibyendu Mondal
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Lupatini AL, Colla LM, Canan C, Colla E. Potential application of microalga Spirulina platensis as a protein source. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:724-732. [PMID: 27507218 DOI: 10.1002/jsfa.7987] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/28/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The high protein level of various microalgal species is one of the main reasons to consider them an unconventional source of this compound. Spirulina platensis stands out for being one of the richest protein sources of microbial origin (460-630 g kg-1 , dry matter basis), having similar protein levels when compared to meat and soybeans. The use of S. platensis in food can bring benefits to human health owing to its chemical composition, since it has high levels of vitamins, minerals, phenolics, essential fatty acids, amino acids and pigments. Furthermore, the development of new protein sources to supply the shortage of this nutrient is an urgent need, and protein from S. platensis plays an important role in this scenario. In this sense, extraction processes that allow maximum protein yield and total utilization of biomass is an urgent need, and ultrasonic waves have proven to be an effective extraction technique. The number of scientific papers related to protein fraction from S. platensis is still limited; thus further studies on its functional and technological properties are needed. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anne Luize Lupatini
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul, Brazil
| | - Cristiane Canan
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| | - Eliane Colla
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, Brazil
| |
Collapse
|
28
|
Lupatini AL, de Oliveira Bispo L, Colla LM, Costa JAV, Canan C, Colla E. Protein and carbohydrate extraction from S. platensis biomass by ultrasound and mechanical agitation. Food Res Int 2016; 99:1028-1035. [PMID: 28865613 DOI: 10.1016/j.foodres.2016.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
Abstract
Spirulina platensis is considered an alternative and excellent source of protein [46-63% dry basis (DB)], having protein levels comparable to meat and soybeans. Thus, it can be considered an adequate ingredient to supply the necessity of this compound in the food industry. Its carbohydrates (8-14% DB) may also be a useful food ingredient or a potential source of bioenergy. Thus, extracting these compounds from the microalgae biomass will maximize its exploitation. Sonication can completely or partially degrade the microalgal cell wall, providing a useful technique to extract the protein and carbohydrate. This study used a sequential strategy of experimental design (fractional factorial design and central composite rotatable design) to evaluate the protein and carbohydrate extraction from S. platensis defatted biomass using ultrasonic waves and mechanical agitation, under alkaline conditions. The optimal conditions for protein and carbohydrate co-extraction were established by selecting and maximizing the variables that significantly influenced the extraction. The optimized percentages recovery from the extraction process yielded 75.76% protein and 41.52% carbohydrate at 33-40min sonication and 40-55min agitation. The protein fraction may be further concentrated and purified for use in food formulations, and the carbohydrates may be a useful feedstock for bioethanol production.
Collapse
Affiliation(s)
- Anne Luize Lupatini
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Larissa de Oliveira Bispo
- Department of Food, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Luciane Maria Colla
- Graduate Program in Food Science and Technology, University of Passo Fundo (UPF), Campus I, Passo Fundo, Rio Grande do Sul, P.O. Box: 611, Postal Code 99.001-970, Brazil.
| | - Jorge Alberto Vieira Costa
- Graduate Program in Engineering and Food Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, P.O. Box: 474, Postal Code 96.201-900, Brazil.
| | - Cristiane Canan
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| | - Eliane Colla
- Graduate Program in Food Technology, Federal Technological University of Paraná (UTFPR), Medianeira, Paraná, P.O. Box: 271, Postal Code 85.884-000, Brazil.
| |
Collapse
|
29
|
Waghmare AG, Salve MK, LeBlanc JG, Arya SS. Concentration and characterization of microalgae proteins from Chlorella pyrenoidosa. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0094-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Eldalatony MM, Kabra AN, Hwang JH, Govindwar SP, Kim KH, Kim H, Jeon BH. Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 2015; 39:95-103. [PMID: 26508325 DOI: 10.1007/s00449-015-1493-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Microalgae species including Chlamydomonas mexicana, Micractinium reisseri, Scenedesmus obliquus and Tribonema aequale were cultivated in batch cultures, and their biochemical composition was determined. C. mexicana showed the highest carbohydrate content of 52.6% and was selected for further study. Sonication pretreatment under optimum conditions (at 40 kHz, 2.2 Kw, 50 °C for 15 min) released 74 ± 2.7 mg g(-1) of total reducing sugars (TRS) of dry cell weight, while the combined sonication and enzymatic hydrolysis treatment enhanced the TRS yield by fourfold (280.5 ± 4.9 mg g(-1)). The optimal ratio of enzyme [E]:substrate [S] for maximum TRS yield was [1]:[5] at 50 °C and pH 5. Combined sonication and hydrolysis treatment released 7.3% (27.1 ± 0.9 mg g(-1)) soluble protein of dry cell weight, and further fermentation of the dissolved carbohydrate fraction enhanced the soluble protein content up to 56% (228.4 mg g(-1)) of total protein content. Scanning and transmission electron microscopic analyses indicated that microalgae cells were significantly disrupted by the combined sonication and enzyme hydrolysis treatment. This study indicates that pretreatment and subsequent fermentation of the microalgal biomass enhance the recovery of carbohydrates and proteins which can be used as feedstocks for generation of biofuels.
Collapse
Affiliation(s)
- Marwa M Eldalatony
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Akhil N Kabra
- Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, 416004, India
| | - Jae-Hoon Hwang
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ, 85287-5701, USA
| | - Sanjay P Govindwar
- Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, 416004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Hoo Kim
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea
| | - Byong-Hun Jeon
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791, South Korea.
| |
Collapse
|
31
|
Buyel JF, Twyman RM, Fischer R. Extraction and downstream processing of plant-derived recombinant proteins. Biotechnol Adv 2015; 33:902-13. [PMID: 25922318 DOI: 10.1016/j.biotechadv.2015.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
Plants offer the tantalizing prospect of low-cost automated manufacturing processes for biopharmaceutical proteins, but several challenges must be addressed before such goals are realized and the most significant hurdles are found during downstream processing (DSP). In contrast to the standardized microbial and mammalian cell platforms embraced by the biopharmaceutical industry, there are many different plant-based expression systems vying for attention, and those with the greatest potential to provide inexpensive biopharmaceuticals are also the ones with the most significant drawbacks in terms of DSP. This is because the most scalable plant systems are based on the expression of intracellular proteins in whole plants. The plant tissue must therefore be disrupted to extract the product, challenging the initial DSP steps with an unusually high load of both particulate and soluble contaminants. DSP platform technologies can accelerate and simplify process development, including centrifugation, filtration, flocculation, and integrated methods that combine solid-liquid separation, purification and concentration, such as aqueous two-phase separation systems. Protein tags can also facilitate these DSP steps, but they are difficult to transfer to a commercial environment and more generic, flexible and scalable strategies to separate target and host cell proteins are preferable, such as membrane technologies and heat/pH precipitation. In this context, clarified plant extracts behave similarly to the feed stream from microbes or mammalian cells and the corresponding purification methods can be applied, as long as they are adapted for plant-specific soluble contaminants such as the superabundant protein RuBisCO. Plant-derived pharmaceutical proteins cannot yet compete directly with established platforms but they are beginning to penetrate niche markets that allow the beneficial properties of plants to be exploited, such as the ability to produce 'biobetters' with tailored glycans, the ability to scale up production rapidly for emergency responses and the ability to produce commodity recombinant proteins on an agricultural scale.
Collapse
Affiliation(s)
- J F Buyel
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| | - R M Twyman
- TRM Ltd, PO Box 463, York, United Kingdom.
| | - R Fischer
- Institute for Molecular Biotechnology, Worringerweg 1, RWTH Aachen University, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany.
| |
Collapse
|