1
|
Jian C, Sun M, Ma T, Wang W, Lv B, Wang J, Su X, Li S, Guo Y. Revealing the formation mechanisms of key flavor components during the fermentation of bamboo shoots by combining flavoromics and metagenomics. Food Res Int 2024; 198:115361. [PMID: 39643345 DOI: 10.1016/j.foodres.2024.115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/20/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Microbial metabolism plays a critical role in the flavor development of Guangxi fermented bamboo shoots (GFBS). To clarify the role of microorganisms in flavor formation and predict the metabolic pathways of key characteristic flavor compounds, this study employed metabolomics, Odor Activity Value (OAV), and Taste Activity Value (TAV) calculations, integrated with Partial Least Squares Discriminant Analysis (PLS-DA), to investigate changes in GFBS flavors-represented by volatile flavor compounds, organic acids, and free amino acids-across a 30-day fermentation period. Metagenomic datasets were used to identify taxonomic and functional changes in the microbial community. As a result, 26 characteristic flavor compounds (OAV or TAV > 1) were identified in mature GFBS, and 23 differential flavor compounds were identified at different fermentation stages using PLS-DA (VIP > 1.2). The top 10 microbial genera associated with these characteristic flavor compounds were identified, including Acinetobacter, Enterobacter, Raoultella, Enterococcus, Klebsiella, Lactococcus, Leuconostoc, Weissella, Lactiplantibacillus and Limosilactobacillus. Based on these findings, a predictive metabolic network of key flavor compounds in GFBS was constructed, providing a comprehensive understanding of the diverse metabolic roles of microorganisms during fermentation. This work lays a theoretical foundation for the standardized production and quality control of GFBS flavor.
Collapse
Affiliation(s)
- Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Minghao Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ting Ma
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaochun Su
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Yuan Guo
- Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, China; National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Huang E, Yan JS, Gicana RG, Chiang YR, Yeh FI, Huang CC, Wang PH. Valorization of soybean pulp for sustainable α-ketoisocaproate production using engineered Bacillus subtilis whole-cell biocatalyst. CHEMOSPHERE 2023; 322:138200. [PMID: 36828109 DOI: 10.1016/j.chemosphere.2023.138200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/04/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The disposal of soybean pulp (okara) (∼14 M tons annually) represents a global concern. α-ketoisocaproate (KIC) is an intrinsic l-leucine metabolite boosting mammalian muscle growth and has great potential in animal husbandry. However, the use of pure l-leucine (5000 USD/kg) for KIC (22 USD/kg) bioproduction is cost-prohibitive in practice, while okara rich in l-leucine (10%) could serve as an economical alternative. Following the concept of a circular bioeconomy, we managed to develop a cost-efficient platform to valorize okara into KIC. In this study, proteolytic Bacillus subtilis strain 168 capable of utilizing okara as a comprehensive substrate was employed as the whole-cell biocatalyst for KIC bioproduction. First, we elucidated the function of genes involved in KIC downstream metabolism in strain 168, including those encoding 2-oxoisovalerate dehydrogenase (bkdAA), 2-oxoisovalerate decarboxylase (bkdAB), enoyl-CoA hydratase (fadB), and bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (fadN). Among those KIC downstream metabolizing mutants of strain 168, the 2-oxoisovalerate decarboxylase gene knockout strain (ΔbkdAB) was found to have a better accumulation of KIC. To further improve the KIC yield, a soluble l-amino acid deaminase (LAAD) from Proteus vulgaris was heterologously expressed in the ΔbkdAB strain and a ∼50% conversion of total l-leucine contained in okara was catalyzed into KIC, along with a ∼50% reduction of CO2 emission compared to the wild-type cultures. Altogether, this renovated biocatalytic system provides an alternative platform to valorize okara for producing value-added chemicals in an eco-friendly manner.
Collapse
Affiliation(s)
- Eugene Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jhen-Sheng Yan
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Ronnie G Gicana
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Fang-I Yeh
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan.
| |
Collapse
|
3
|
Moxley WC, Brown RE, Eiteman MA. Escherichia coli aceE variants coding pyruvate dehydrogenase improve the generation of pyruvate-derived acetoin. Eng Life Sci 2023; 23:e2200054. [PMID: 36874610 PMCID: PMC9978916 DOI: 10.1002/elsc.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023] Open
Abstract
Several chromosomally expressed AceE variants were constructed in Escherichia coli ΔldhA ΔpoxB ΔppsA and compared using glucose as the sole carbon source. These variants were examined in shake flask cultures for growth rate, pyruvate accumulation, and acetoin production via heterologous expression of the budA and budB genes from Enterobacter cloacae ssp. dissolvens. The best acetoin-producing strains were subsequently studied in controlled batch culture at the one-liter scale. PDH variant strains attained up to four-fold greater acetoin than the strain expressing the wild-type PDH. In a repeated batch process, the H106V PDH variant strain attained over 43 g/L of pyruvate-derived products, acetoin (38.5 g/L) and 2R,3R-butanediol (5.0 g/L), corresponding to an effective concentration of 59 g/L considering the dilution. The acetoin yield from glucose was 0.29 g/g with a volumetric productivity of 0.9 g/L·h (0.34 g/g and 1.0 g/L·h total products). The results demonstrate a new tool in pathway engineering, the modification of a key metabolic enzyme to improve the formation of a product via a kinetically slow, introduced pathway. Direct modification of the pathway enzyme offers an alternative to promoter engineering in cases where the promoter is involved in a complex regulatory network.
Collapse
Affiliation(s)
- W. Chris Moxley
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Rachel E. Brown
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| | - Mark A. Eiteman
- Department of MicrobiologyUniversity of GeorgiaAthensGeorgiaUSA
- School of ChemicalMaterials and Biomedical EngineeringUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
4
|
Conesa J, Morales M, García-Bosch N, Ramos IR, Guerrero-Ruiz A. GRAPHITE SUPPORTED HETEROPOLYACID AS A REGENERABLE CATALYST IN THE DEHYDRATION OF 1-BUTANOL TO BUTENES. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Lindberg P, Kenkel A, Bühler K. Introduction to Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:1-24. [PMID: 37009973 DOI: 10.1007/10_2023_217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Cyanobacteria are highly interesting microbes with the capacity for oxygenic photosynthesis. They fulfill an important purpose in nature but are also potent biocatalysts. This chapter gives a brief overview of this diverse phylum and shortly addresses the functions these organisms have in the natural ecosystems. Further, it introduces the main topics covered in this volume, which is dealing with the development and application of cyanobacteria as solar cell factories for the production of chemicals including potential fuels. We discuss cyanobacteria as industrial workhorses, present established chassis strains, and give an overview of the current target products. Genetic engineering strategies aiming at the photosynthetic efficiency as well as approaches to optimize carbon fluxes are summarized. Finally, main cultivation strategies are sketched.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Amelie Kenkel
- Helmholtzcenter for Environmental Research, Leipzig, Germany
| | - Katja Bühler
- Helmholtzcenter for Environmental Research, Leipzig, Germany.
| |
Collapse
|
6
|
Rajagopal S, Hmar RV, Mookherjee D, Ghatak A, Shanbhag AP, Katagihallimath N, Venkatraman J, Ks R, Datta S. Validated In Silico Population Model of Escherichia coli. ACS Synth Biol 2022; 11:2672-2684. [PMID: 35801944 DOI: 10.1021/acssynbio.2c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flux balance analysis (FBA) and ordinary differential equation models have been instrumental in depicting the metabolic functioning of a cell. Nevertheless, they demonstrate a population's average behavior (summation of individuals), thereby portraying homogeneity. However, living organisms such as Escherichia coli contain more biochemical reactions than engaging metabolites, making them an underdetermined and degenerate system. This results in a heterogeneous population with varying metabolic patterns. We have formulated a population systems biology model that predicts this degeneracy by emulating a diverse metabolic makeup with unique biochemical signatures. The model mimics the universally accepted experimental view that a subpopulation of bacteria, even under normal growth conditions, renders a unique biochemical state, leading to the synthesis of metabolites and persister progenitors of antibiotic resistance and biofilms. We validate the platform's predictions by producing commercially important heterologous (isobutanol) and homologous (shikimate) metabolites. The predicted fluxes are tested in vitro resulting in 32- and 42-fold increased product of isobutanol and shikimate, respectively. Moreover, we authenticate the platform by mimicking a bacterial population in the presence of glyphosate, a metabolic pathway inhibitor. Here, we observe a fraction of subsisting persisters despite inhibition, thus affirming the signature of a heterogeneous populace. The platform has multiple uses based on the disposition of the user.
Collapse
Affiliation(s)
- Sreenath Rajagopal
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Rothangmawi Victoria Hmar
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Debdatto Mookherjee
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Arindam Ghatak
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700073, India
| | - Anirudh P Shanbhag
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700073, India
| | - Nainesh Katagihallimath
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| | - Janani Venkatraman
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Ramanujan Ks
- Biomoneta Research Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560092, India
| | - Santanu Datta
- Bugworks Research India Private Limited, C-CAMP, National Center for Biological Sciences (TIFR), Bangalore 560065, India
| |
Collapse
|
7
|
Velmurugan R, Incharoensakdi A. Metabolic transformation of cyanobacteria for biofuel production. CHEMOSPHERE 2022; 299:134342. [PMID: 35307390 DOI: 10.1016/j.chemosphere.2022.134342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
World-wide, an emerging demand is moving towards the biofuels to replace the fossil fuels. In alternative biofuel production strategies, cyanobacteria have unique characteristic of accumulating glycogen, lipid, and fuel molecules through natural mechanisms. Moreover, the cyanobacteria can be easily engineered to synthesis a plenty of fuel molecules from CO2. To obtain the fuel molecule from cyanobacteria, various techniques were invented in which the metabolic engineering is found to be a prerequisite to develop an economically feasible process. The expression of indigenous or heterologous pathways plays an important role in developing successful production process. In addition, the engineering of photosynthetic apparatus, destruction of competitive pathways and improvement of tolerance were also proven to improve the product specific synthesis. Although various metabolic engineering approaches have been developed, there are certain obstacles when it comes to implementation for the production. In this review, the important biosynthetic pathways for biofuels, alteration of other genes to improve the actual pathway and possibilities of developing cyanobacterial fuel production have been elaborated.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
8
|
Santos Correa S, Schultz J, Lauersen KJ, Soares Rosado A. Natural carbon fixation and advances in synthetic engineering for redesigning and creating new fixation pathways. J Adv Res 2022; 47:75-92. [PMID: 35918056 PMCID: PMC10173188 DOI: 10.1016/j.jare.2022.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Autotrophic carbon fixation is the primary route through which organic carbon enters the biosphere, and it is a key step in the biogeochemical carbon cycle. The Calvin-Benson-Bassham pathway, which is predominantly found in plants, algae, and some bacteria (mainly cyanobacteria), was previously considered to be the sole carbon-fixation pathway. However, the discovery of a new carbon-fixation pathway in sulfurous green bacteria almost two decades ago encouraged further research on previously overlooked ancient carbon-fixation pathways in taxonomically and phylogenetically distinct microorganisms. AIM OF REVIEW In this review, we summarize the six known natural carbon-fixation pathways and outline the newly proposed additions to this list. We also discuss the recent achievements in synthetic carbon fixation and the importance of the metabolism of thermophilic microorganisms in this field. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently, at least six carbon-fixation routes have been confirmed in Bacteria and Archaea. Other possible candidate routes have also been suggested on the basis of emerging "omics" data analyses, expanding our knowledge and stimulating discussions on the importance of these pathways in the way organisms acquire carbon. Notably, the currently known natural fixation routes cannot balance the excessive anthropogenic carbon emissions in a highly unbalanced global carbon cycle. Therefore, significant efforts have also been made to improve the existing carbon-fixation pathways and/or design new efficient in vitro and in vivo synthetic pathways.
Collapse
Affiliation(s)
- Sulamita Santos Correa
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Junia Schultz
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kyle J Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Bioscience Program, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Wiatrowski M, Klein BC, Davis RW, Quiroz-Arita C, Tan ECD, Hunt RW, Davis RE. Techno-economic assessment for the production of algal fuels and value-added products: opportunities for high-protein microalgae conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:8. [PMID: 35418157 PMCID: PMC8764804 DOI: 10.1186/s13068-021-02098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/24/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microalgae possess numerous advantages for use as a feedstock in producing renewable fuels and products, with techno-economic analysis (TEA) frequently used to highlight the economic potential and technical challenges of utilizing this biomass in a biorefinery context. However, many historical TEA studies have focused on the conversion of biomass with elevated levels of carbohydrates and lipids and lower levels of protein, incurring substantial burdens on the ability to achieve high cultivation productivity rates relative to nutrient-replete, high-protein biomass. Given a strong dependence of algal biomass production costs on cultivation productivity, further TEA assessment is needed to understand the economic potential for utilizing potentially lower-cost but lower-quality, high-protein microalgae for biorefinery conversion. RESULTS In this work, we conduct rigorous TEA modeling to assess the economic viability of two conceptual technology pathways for processing proteinaceous algae into a suite of fuels and products. One approach, termed mild oxidative treatment and upgrading (MOTU), makes use of a series of thermo-catalytic operations to upgrade solubilized proteins and carbohydrates to hydrocarbon fuels, while another alternative focuses on the biological conversion of those substrates to oxygenated fuels in the form of mixed alcohols (MA). Both pathways rely on the production of polyurethanes from unsaturated fatty acids and valorization of unconverted solids for use as a material for synthesizing bioplastics. The assessment found similar, albeit slightly higher fuel yields and lower costs for the MA pathway, translating to a residual solids selling price of $899/ton for MA versus $1033/ton for MOTU as would be required to support a $2.50/gallon gasoline equivalent (GGE) fuel selling price. A variation of the MA pathway including subsequent upgrading of the mixed alcohols to hydrocarbon fuels (MAU) reflected a required solids selling price of $975/ton. CONCLUSION The slight advantages observed for the MA pathway are partially attributed to a boundary that stops at oxygenated fuels versus fungible drop-in hydrocarbon fuels through a more complex MOTU configuration, with more comparable results obtained for the MAU scenario. In either case, it was shown that an integrated algal biorefinery can be economical through optimal strategies to utilize and valorize all fractions of the biomass.
Collapse
Affiliation(s)
- Matthew Wiatrowski
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| | - Bruno C Klein
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Carlos Quiroz-Arita
- Biomass Science and Conversion Technologies, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Eric C D Tan
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Ryan W Hunt
- Algix, 5168 Water Tower Rd, Meridian, MS, 39301, USA
| | - Ryan E Davis
- Catalytic Carbon Transformation and Scale-up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| |
Collapse
|
10
|
Xu D, Yang H, Hong X, Liu G, Edman Tsang SC. Tandem Catalysis of Direct CO 2 Hydrogenation to Higher Alcohols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR, United Kingdom
| |
Collapse
|
11
|
Quantification of Branched-Chain Alcohol-Based Biofuels and Other Fermentation Metabolites via High-Performance Liquid Chromatography. Methods Mol Biol 2021. [PMID: 34009583 DOI: 10.1007/978-1-0716-1323-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As the consequences of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce bio-gasoline and other biofuels from renewable feedstocks can significantly reduce dependence on fossil fuels as well as lower the emissions of greenhouse gases. A significant amount of research over the past two decades has led to the development of microbial strains for the production of advanced fuel compounds. Crucial to these efforts are robust methods to quantify the amount of the biofuel compound being produced as well as the other metabolites that might be present during fermentation. Here, we provide a protocol for the quantification of branched-chain alcohols, specifically isobutanol and isopropanol, using high-performance liquid chromatography (HPLC).
Collapse
|
12
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
13
|
|
14
|
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Fang Y, Zhang S, Wang J, Yin L, Zhang H, Wang Z, Song J, Hu X, Wang X. Metabolic Detoxification of 2-Oxobutyrate by Remodeling Escherichia coli Acetate Bypass. Metabolites 2021; 11:metabo11010030. [PMID: 33406667 PMCID: PMC7824062 DOI: 10.3390/metabo11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/03/2022] Open
Abstract
2-Oxobutyrate (2-OBA), as a toxic metabolic intermediate, generally arrests the cell growth of most microorganisms and blocks the biosynthesis of target metabolites. In this study, we demonstrated that using the acetate bypass to replace the pyruvate dehydrogenase complex (PDHc) in Escherichia coli could recharge the intracellular acetyl-CoA pool to alleviate the metabolic toxicity of 2-OBA. Furthermore, based on the crystal structure of pyruvate oxidase (PoxB), two candidate residues in the substrate-binding pocket of PoxB were predicted by computational simulation. Site-directed saturation mutagenesis was performed to attenuate 2-OBA-binding affinity, and one of the variants, PoxBF112W, exhibited a 20-fold activity ratio of pyruvate/2-OBA in substrate selectivity. PoxBF112W was employed to remodel the acetate bypass in E. coli, resulting in l-threonine (a precursor of 2-OBA) biosynthesis with minimal inhibition from 2-OBA. After metabolic detoxification of 2-OBA, the supplies of intracellular acetyl-CoA and NADPH (nicotinamide adenine dinucleotide phosphate) used for l-threonine biosynthesis were restored. Therefore, 2-OBA is the substitute for pyruvate to engage in enzymatic reactions and disturbs pyruvate metabolism. Our study makes a straightforward explanation of the 2-OBA toxicity mechanism and gives an effective approach for its metabolic detoxification.
Collapse
Affiliation(s)
- Yu Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
| | - Shuyan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
| | - Lianghong Yin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai 264005, China;
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
| | - Jie Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.F.); (S.Z.); (J.W.); (Z.W.); (J.S.); (X.H.)
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel./Fax: +86-510-85329239
| |
Collapse
|
17
|
Jia W, Du A, Fan Z, Zhang R, Li Y, Shi Q, Shi L, Chu X. Molecular mechanism of the role of Mare Nectaris in the Feng-Flavor Baijiu aging. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Xu D, Ding M, Hong X, Liu G. Mechanistic Aspects of the Role of K Promotion on Cu–Fe-Based Catalysts for Higher Alcohol Synthesis from CO 2 Hydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03575] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Huang C, Guo L, Wang J, Wang N, Huo YX. Efficient long fragment editing technique enables large-scale and scarless bacterial genome engineering. Appl Microbiol Biotechnol 2020; 104:7943-7956. [PMID: 32794018 DOI: 10.1007/s00253-020-10819-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
Abstract
Bacteria are versatile living systems that enhance our understanding of nature and enable biosynthesis of valuable chemicals. Long fragment editing techniques are of great importance for accelerating bacterial genome engineering to obtain desirable and genetically stable strains. However, the existing genome editing methods cannot meet the needs of engineers. We herein report an efficient long fragment editing method for large-scale and scarless genome engineering in Escherichia coli. The method enabled us to insert DNA fragments up to 12 kb into the genome and to delete DNA fragments up to 186.7 kb from the genome, with positive rates over 95%. We applied this method for E. coli genome simplification, resulting in 12 individual deletion mutants and four cumulative deletion mutants. The simplest genome lost a total of 370.6 kb of DNA sequence containing 364 open reading frames. Additionally, we applied this technique to metabolic engineering and obtained a genetically stable plasmid-independent isobutanol production strain that produced 1.3 g/L isobutanol via shake-flask fermentation. These results suggest that the method is a powerful genome engineering tool, highlighting its potential to be applied in synthetic biology and metabolic engineering. KEY POINTS: • This article reports an efficient genome engineering tool for E. coli. • The tool is advantageous for the manipulations of long DNA fragments. • The tool has been successfully applied for genome simplification. • The tool has been successfully applied for metabolic engineering.
Collapse
Affiliation(s)
- Chaoyong Huang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.,SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingge Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. .,SIP-UCLA Institute for Technology Advancement, Suzhou, 215123, China.
| |
Collapse
|
20
|
Martínez AF, Sánchez CA, Orjuela A, Gil ID, Rodríguez G. Isobutyl acetate by reactive distillation. Part II. Kinetic study. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
22
|
Ganesh I, Gwon DA, Lee JW. Gas-Sensing Transcriptional Regulators. Biotechnol J 2020; 15:e1900345. [PMID: 32362055 DOI: 10.1002/biot.201900345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Indexed: 11/10/2022]
Abstract
Gas molecules are ubiquitous in the environment and are used as nutrient and energy sources for living organisms. Many organisms, therefore, have developed gas-sensing systems to respond efficiently to changes in the atmospheric environment. In microorganisms and plants, two-component systems (TCSs) and transcription factors (TFs) are two primary mechanisms to sense gas molecules. In this review, gas-sensing transcriptional regulators, TCSs, and TFs, focusing on protein structures, mechanisms of gas molecule interaction, DNA binding regions of transcriptional regulators, signal transduction mechanisms, and gene expression regulation are discussed. At first, transcriptional regulators that directly sense gas molecules with the help of a prosthetic group is described and then gas-sensing systems that indirectly recognize the presence of gas molecules is explained. Overall, this review provides a comprehensive understanding of gas-sensing transcriptional regulators in microorganisms and plants, and proposes a future perspective on the use of gas-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
23
|
Paiano P, Menini M, Zeppilli M, Majone M, Villano M. Electro-fermentation and redox mediators enhance glucose conversion into butyric acid with mixed microbial cultures. Bioelectrochemistry 2019; 130:107333. [DOI: 10.1016/j.bioelechem.2019.107333] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/25/2022]
|
24
|
Jawed K, Yazdani SS, Koffas MA. Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun 2019; 9:e00095. [PMID: 31720211 PMCID: PMC6838517 DOI: 10.1016/j.mec.2019.e00095] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 01/09/2023] Open
Abstract
Recent advances in metabolic engineering enable the production of high-value chemicals via expressing complex biosynthetic pathways in a single microbial host. However, many engineered strains suffer from poor product yields due to redox imbalance and excess metabolic burden, and require compartmentalization of the pathway for optimal function. To address this problem, significant developments have been made towards co-cultivation of more than one engineered microbial strains to distribute metabolic burden between the co-cultivation partners and improve the product yield. In this emerging approach, metabolic pathway modules can be optimized separately in suitable hosts that will then be combined to enable optimal functionality of the complete pathway. This modular approach broadens the possibilities to fine tune sophisticated production platforms and thus achieve the biosynthesis of very complex compounds. Here, we review the different applications and the overall potential of natural and artificial co-cultivation systems in metabolic engineering in order to improve bioproduction/bioconversion. In addition to the several advantages over monocultures, major challenges and opportunities associated with co-cultivation are also discussed in this review. Benefits of using co-cultivation system in metabolic engineering. Existence of natural consortia and their application. Recent advancement in co-cultivation methodology for bioproductions. Challenges in implementing microbial consortia for microbial biosynthesis.
Collapse
Affiliation(s)
- Kamran Jawed
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mattheos Ag Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
25
|
Sawa N, Tatsuke T, Ogawa A, Hirokawa Y, Osanai T, Hanai T. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement. J Biosci Bioeng 2019; 127:256-264. [DOI: 10.1016/j.jbiosc.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
|
26
|
Kolesinska B, Fraczyk J, Binczarski M, Modelska M, Berlowska J, Dziugan P, Antolak H, Kaminski ZJ, Witonska IA, Kregiel D. Butanol Synthesis Routes for Biofuel Production: Trends and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E350. [PMID: 30678076 PMCID: PMC6384976 DOI: 10.3390/ma12030350] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/05/2022]
Abstract
Butanol has similar characteristics to gasoline, and could provide an alternative oxygenate to ethanol in blended fuels. Butanol can be produced either via the biotechnological route, using microorganisms such as clostridia, or by the chemical route, using petroleum. Recently, interest has grown in the possibility of catalytic coupling of bioethanol into butanol over various heterogenic systems. This reaction has great potential, and could be a step towards overcoming the disadvantages of bioethanol as a sustainable transportation fuel. This paper summarizes the latest research on butanol synthesis for the production of biofuels in different biotechnological and chemical ways; it also compares potentialities and limitations of these strategies.
Collapse
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Michal Binczarski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Magdalena Modelska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Joanna Berlowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Piotr Dziugan
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Izabela A Witonska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Dorota Kregiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biochemistry and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| |
Collapse
|
27
|
Vassilev I, Kracke F, Freguia S, Keller J, Krömer JO, Ledezma P, Virdis B. Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation. Chem Commun (Camb) 2019; 55:4351-4354. [DOI: 10.1039/c9cc00208a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microbial electrosynthesis cell comprising two biological cathode chambers sharing the same anode compartment is used to promote the production of C2–C4 carboxylic acids and alcohols from carbon dioxide.
Collapse
Affiliation(s)
- Igor Vassilev
- Advanced Water Management Centre
- The University of Queensland
- Brisbane
- Australia
| | - Frauke Kracke
- Department of Civil and Environmental Engineering
- Stanford University
- Stanford
- USA
| | - Stefano Freguia
- Advanced Water Management Centre
- The University of Queensland
- Brisbane
- Australia
| | - Jürg Keller
- Advanced Water Management Centre
- The University of Queensland
- Brisbane
- Australia
| | - Jens O. Krömer
- Department for Solar Materials
- Helmholtz Centre for Environmental Research (UFZ)
- Leipzig 04318
- Germany
| | - Pablo Ledezma
- Advanced Water Management Centre
- The University of Queensland
- Brisbane
- Australia
| | - Bernardino Virdis
- Advanced Water Management Centre
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
28
|
Jiang TT, Zhou X, Liang Y. A small-scale investigation process for the Clostridium acetobutylicum production of butanol using high-energy carbon heavy ion irradiation. Eng Life Sci 2018; 18:721-731. [PMID: 32624866 DOI: 10.1002/elsc.201800090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
Applied heavy ion irradiation technology and butanol industrial practices as a whole have been used as a strategy for the development of an attractive alternative to petroleum-based fuels. Clostridium acetobutylicum (C. acetobutylicum) strains are well documented as fermentation strains for the production of biobutanol. However, it has been reported that solvent production inhibits the growth of these strains, and the accumulation of acetate also inhibits biomass synthesis, rendering the production of butanol from acetone-butanol-ethanol (ABE) fermentation processes economically challenging. In this manuscript, we propose the use of high-energy carbon heavy ion irradiation from the Heavy Ion Research Facility in Lanzhou (HIRFL) to obtain a culture with an increased butanol yield. Our findings suggest that the use of a high-energy 12C6+ heavy ion irradiation dose of 45 Gy with an energy of 135 AMeV and ion pulses/levels of 106-108 favours ABE solvent production in an irradiated strain compared with the non-irradiated strain. The strategy reported in this manuscript may contribute to the development of a cost-effective butanol fermentation process that is competitive with similar fermentation processes.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- Chinese Academy of Sciences Institute of Modern Physics Lanzhou Gansu P. R. China.,University of Chinese Academy of Sciences Beijing P. R. China
| | - Xiang Zhou
- Chinese Academy of Sciences Institute of Modern Physics Lanzhou Gansu P. R. China
| | - Yan Liang
- Lanzhou University Lanzhou Gansu P. R. China
| |
Collapse
|
29
|
Luan X, Yong J, Dai X, Zhang X, Qiao H, Yang Y, Zhao H, Peng W, Huang X. Tungsten-Doped Molybdenum Sulfide with Dominant Double-Layer Structure on Mixed MgAl Oxide for Higher Alcohol Synthesis in CO Hydrogenation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuebin Luan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Jiaxi Yong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xiaoping Dai
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hongyan Qiao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Yang Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Huihui Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Wenyu Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Xingliang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
30
|
Jung HM, Lee JY, Lee JH, Oh MK. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. BIORESOURCE TECHNOLOGY 2018; 259:373-380. [PMID: 29579689 DOI: 10.1016/j.biortech.2018.03.081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
A process of isobutanol production from sugarcane bagasse hydrolysates in Enterobacter aerogenes was developed here with a pervaporation-integrated procedure. Isobutanol pathway was overexpressed in a mutant strain with eliminated byproduct-forming enzymes (LdhA, BudA, and PflB). A glucose-and-xylose-coconsuming ptsG mutant was constructed for effective utilization of lignocellulosic biomass. Toxic effects of isobutanol were alleviated by in situ recovery via a pervaporation procedure. Compared to single-batch fermentation, cell growth and isobutanol titer were improved by 60% and 100%, respectively, in the pervaporation-integrated fermentation process. A lab-made cross-linked polydimethylsiloxane membrane was cast on polyvinylidene fluoride and used in the pervaporation process. The membrane-penetrating condensate contained 55-226 g m-2 h-1 isobutanol with 6-25 g L-1 ethanol after separation. This study offers improved fermentative production of isobutanol from lignocellulosic biomass with a pervaporation procedure.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Ju Yeon Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jung-Hyun Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
31
|
Fontana J, Voje WE, Zalatan JG, Carothers JM. Prospects for engineering dynamic CRISPR–Cas transcriptional circuits to improve bioproduction. ACTA ACUST UNITED AC 2018; 45:481-490. [DOI: 10.1007/s10295-018-2039-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Abstract
Dynamic control of gene expression is emerging as an important strategy for controlling flux in metabolic pathways and improving bioproduction of valuable compounds. Integrating dynamic genetic control tools with CRISPR–Cas transcriptional regulation could significantly improve our ability to fine-tune the expression of multiple endogenous and heterologous genes according to the state of the cell. In this mini-review, we combine an analysis of recent literature with examples from our own work to discuss the prospects and challenges of developing dynamically regulated CRISPR–Cas transcriptional control systems for applications in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Jason Fontana
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
| | - William E Voje
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemical Engineering University of Washington 98195 Seattle WA USA
| | - Jesse G Zalatan
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemistry University of Washington 98195 Seattle WA USA
| | - James M Carothers
- 0000000122986657 grid.34477.33 Molecular Engineering and Sciences Institute and Center for Synthetic Biology University of Washington 98195 Seattle WA USA
- 0000000122986657 grid.34477.33 Department of Chemical Engineering University of Washington 98195 Seattle WA USA
| |
Collapse
|
32
|
Synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria. Nat Commun 2018; 9:2489. [PMID: 29950558 PMCID: PMC6021436 DOI: 10.1038/s41467-018-04901-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
Methods to regulate gene expression programs in bacterial cells are limited by the absence of effective gene activators. To address this challenge, we have developed synthetic bacterial transcriptional activators in E. coli by linking activation domains to programmable CRISPR-Cas DNA binding domains. Effective gene activation requires target sites situated in a narrow region just upstream of the transcription start site, in sharp contrast to the relatively flexible target site requirements for gene activation in eukaryotic cells. Together with existing tools for CRISPRi gene repression, these bacterial activators enable programmable control over multiple genes with simultaneous activation and repression. Further, the entire gene expression program can be switched on by inducing expression of the CRISPR-Cas system. This work will provide a foundation for engineering synthetic bacterial cellular devices with applications including diagnostics, therapeutics, and industrial biosynthesis. The absence of effective gene activators in bacteria limits regulated expression programs. Here the authors design synthetic bacterial CRISPR-Cas transcriptional activators that can be used to construct multi-gene programs of activation and repression.
Collapse
|
33
|
Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RAI, Kim KH, Yang IS, Govindwar SP, Kim S, Jeon BH. Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. BIORESOURCE TECHNOLOGY 2018; 258:365-375. [PMID: 29501272 DOI: 10.1016/j.biortech.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Microalgal biomass has received much attention as feedstock for biofuel production due to its capacity to accumulate a substantial amount of biocomponents (including lipid, carbohydrate, and protein), high growth rate, and environmental benefit. However, commercial realization of microalgal biofuel is a challenge due to its low biomass production and insufficient technology for complete utilization of biomass. Recently, advanced strategies have been explored to overcome the challenges of conventional approaches and to achieve maximum possible outcomes in terms of growth. These strategies include a combination of stress factors; co-culturing with other microorganisms; and addition of salts, flue gases, and phytohormones. This review summarizes the recent progress in the application of single and combined abiotic stress conditions to stimulate microalgal growth and its biocomponents. An innovative schematic model is presented of the biomass-energy conversion pathway that proposes the transformation of all potential biocomponents of microalgae into biofuels.
Collapse
Affiliation(s)
- El-Sayed Salama
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32817, USA
| | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Akhil N Kabra
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Il-Seung Yang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sunjoon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
34
|
Yu H, Li X, Duchoud F, Chuang DS, Liao JC. Augmenting the Calvin-Benson-Bassham cycle by a synthetic malyl-CoA-glycerate carbon fixation pathway. Nat Commun 2018; 9:2008. [PMID: 29789614 PMCID: PMC5964204 DOI: 10.1038/s41467-018-04417-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
The Calvin–Benson–Bassham (CBB) cycle is presumably evolved for optimal synthesis of C3 sugars, but not for the production of C2 metabolite acetyl-CoA. The carbon loss in producing acetyl-CoA from decarboxylation of C3 sugar limits the maximum carbon yield of photosynthesis. Here we design a synthetic malyl-CoA-glycerate (MCG) pathway to augment the CBB cycle for efficient acetyl-CoA synthesis. This pathway converts a C3 metabolite to two acetyl-CoA by fixation of one additional CO2 equivalent, or assimilates glyoxylate, a photorespiration intermediate, to produce acetyl-CoA without net carbon loss. We first functionally demonstrate the design of the MCG pathway in vitro and in Escherichia coli. We then implement the pathway in a photosynthetic organism Synechococcus elongates PCC7942, and show that it increases the intracellular acetyl-CoA pool and enhances bicarbonate assimilation by roughly 2-fold. This work provides a strategy to improve carbon fixation efficiency in photosynthetic organisms. Improving carbon fixation efficiency and reducing carbon loss have been long term goals for people working on photosynthetic organism improvement. Here, the authors design a synthetic malyl-CoA-glycerate pathway for efficient acetyl-CoA synthesis and verify its function in vitro, in E. coli and in cyanobacterium.
Collapse
Affiliation(s)
- Hong Yu
- UCLA-DOE Institute of Genomics and Proteomics, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Xiaoqian Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Fabienne Duchoud
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Derrick S Chuang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - James C Liao
- Academia Sinica, 128 Academia Road, Section 2, 115, Taipei, Taiwan.
| |
Collapse
|
35
|
Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, Bhatia SK, Ahn J, Lee H, Kim W, Park YC, Choi KY, Kim YG, Yang YH. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnol Bioeng 2018; 115:1971-1978. [DOI: 10.1002/bit.26710] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hun-Suk Song
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Hyung-Min Seo
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Jong-Min Jeon
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Yu-Mi Moon
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Ju Won Hong
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Yoon Gi Hong
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
- Institute for Ubiquitous Information Technology and Applications (CBRU); Konkuk University; Seoul South Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center; Korea Research Institute Bioscience Biotechnology (KRIBB); Daejeon Korea
| | - Hongweon Lee
- Biotechnology Process Engineering Center; Korea Research Institute Bioscience Biotechnology (KRIBB); Daejeon Korea
| | - Wooseong Kim
- Division of Infectious Diseases; Rhode Island Hospital; Alpert Medical School of Brown University; Providence Rhode Island
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology; Kookmin University; Seoul Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering; Ajou University; Suwon Gyeonggi-do Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering; Soongsil University; Seoul Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul Korea
- Institute for Ubiquitous Information Technology and Applications (CBRU); Konkuk University; Seoul South Korea
| |
Collapse
|
36
|
Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel. Appl Microbiol Biotechnol 2018; 102:5021-5031. [DOI: 10.1007/s00253-018-9026-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
|
37
|
Exploring the combinatorial space of complete pathways to chemicals. Biochem Soc Trans 2018; 46:513-522. [DOI: 10.1042/bst20170272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol.
Collapse
|
38
|
Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, Girguis P. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas. Biotechnol Bioeng 2018; 115:1450-1464. [PMID: 29460958 PMCID: PMC5947824 DOI: 10.1002/bit.26576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023]
Abstract
Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Amit Kumar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brandon C Enalls
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Linda M Reynard
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Noreen Tuross
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
39
|
Kannan S, Sams T, Maury J, Workman CT. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data. ACS Synth Biol 2018; 7:832-841. [PMID: 29457721 DOI: 10.1021/acssynbio.7b00223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.
Collapse
Affiliation(s)
- Soumya Kannan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Thomas Sams
- Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jérôme Maury
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
40
|
Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J. Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 2018; 46:1358-1426. [PMID: 28009907 DOI: 10.1039/c6cs00324a] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H2) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO2 and recycle side-products in the process are described in the third section.
Collapse
Affiliation(s)
- Ho Ting Luk
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E125, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland.
| | - Cecilia Mondelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E125, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland.
| | - Daniel Curulla Ferré
- Total Research & Technology Feluy, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Joseph A Stewart
- Total Research & Technology Feluy, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI E125, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland.
| |
Collapse
|
41
|
Sun C, Zhang S, Xin F, Shanmugam S, Wu YR. Genomic comparison of Clostridium species with the potential of utilizing red algal biomass for biobutanol production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:42. [PMID: 29467820 PMCID: PMC5815214 DOI: 10.1186/s13068-018-1044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sustainable biofuels, which are widely considered as an attractive alternative to fossil fuels, can be generated by utilizing various biomass from the environment. Marine biomass, such as red algal biomass, is regarded as one potential renewable substrate source for biofuels conversion due to its abundance of fermentable sugars (e.g., galactose). Previous studies focused on the enhancement of biofuels production from different Clostridium species; however, there has been limited investigation into their metabolic pathways, especially on the conversion of biofuels from galactose, via whole genomic comparison and evolutionary analysis. RESULTS Two galactose-utilizing Clostridial strains were examined and identified as Clostridium acetobutylicum strain WA and C. beijerinckii strain WB. Via the genomic sequencing of both strains, the comparison of the whole genome together with the relevant protein prediction of 33 other Clostridium species was established to reveal a clear genome profile based upon various genomic features. Among them, five representative strains, including C. beijerinckii NCIMB14988, C. diolis DSM 15410, C. pasteurianum BC1, strain WA and WB, were further discussed to demonstrate the main differences among their respective metabolic pathways, especially in their carbohydrate metabolism. The metabolic pathways involved in the generation of biofuels and other potential products (e.g., riboflavin) were also reconstructed based on the utilization of marine biomass. Finally, a batch fermentation process was performed to verify the fermentative products from strains WA and WB using 60 g/L of galactose, which is the main hydrolysate from algal biomass. It was observed that strain WA and WB could produce up to 16.98 and 12.47 g/L of biobutanol, together with 21,560 and 10,140 mL/L biohydrogen, respectively. CONCLUSIONS The determination of the production of various biofuels by both strains WA and WB and their genomic comparisons with other typical Clostridium species on the analysis of various metabolic pathways was presented. Through the identification of their metabolic pathways, which are involved in the conversion of galactose into various potential products, such as biobutanol, the obtained results extend the current insight into the potential capability of utilizing marine red algal biomass and provide a systematic investigation into the relationship between this genus and the generation of sustainable bioenergy.
Collapse
Affiliation(s)
- Chongran Sun
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Shuangfei Zhang
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
| | - Fengxue Xin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 Jiangsu China
| | | | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, 515063 Guangdong China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063 Guangdong China
- STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|
42
|
Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review. ENERGIES 2017. [DOI: 10.3390/en10122110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M. State of the art review of biofuels production from lignocellulose by thermophilic bacteria. BIORESOURCE TECHNOLOGY 2017. [PMID: 28634129 DOI: 10.1016/j.biortech.2017.05.142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
44
|
Wei L, Wang Z, Zhang G, Ye B. Characterization of Terminators in Saccharomyces cerevisiae and an Exploration of Factors Affecting Their Strength. Chembiochem 2017; 18:2422-2427. [PMID: 29058813 DOI: 10.1002/cbic.201700516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 11/06/2022]
Abstract
Terminators in eukaryotes play an important role in regulating the transcription process by influencing mRNA stability, translational efficiency, and localization. Herein, the strengths of 100 natural terminators in Saccharomyces cerevisiae have been characterized by inserting each terminator downstream of the TYS1p-enhanced green fluorescent protein (eGFP) reporter gene and measuring the fluorescent intensity (FI) of eGFP. Within this library, there are 45 strong terminators, 31 moderate terminators, and 24 weak terminators. The strength of these terminators, relative to that of PGK1t standard terminator, ranges from 0.0613 to 1.8002, with a mean relative FI of 0.9945. Mutating the control elements of terminators further suggests that the efficiency element has an important effect on terminator strength. The use of strong terminators will result in an enhanced level of mRNA and protein production; this indicates that gene expression can be directly influenced by terminator selection. Pairing a terminator with an inducible promoter or a strong constitutive promoter has less effect on gene expression; however, pairing with a week promoter will significantly increase the level of gene expression. Through exchange of the reporter genes, it can be demonstrated that the terminator functions as a genetic component and is independent of the coding region. This work demonstrates that the terminator is an important regulatory element and can be considered in applications for the fine-tuning of gene expression and metabolic pathways.
Collapse
Affiliation(s)
- Linna Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Zhaoxia Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Bangce Ye
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| |
Collapse
|
45
|
Moncada J, Posada JA, Ramírez A. Comparative early stage assessment of multiproduct biorefinery systems: An application to the isobutanol platform. BIORESOURCE TECHNOLOGY 2017; 241:44-53. [PMID: 28549254 DOI: 10.1016/j.biortech.2017.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
An early stage assessment method is applied to the production of isobutanol from lignocellulosic biomass, and to three multiproduct portfolios from the conversion of isobutanol: Case 1: production of isobutyl acetate and glycerol tert-butyl ether (GTBE), Case 2: production of isobutyl acetate and ketones, and Case 3: production of isobutyl acetate alkanes. The method screens and compares each route with its equivalent petrochemical counterpart. The method is composed by different indicators involving economic and environmental aspects. Sensitivity analyses were carried out to account for variation in prices, weighting factors and distribution of isobutanol to isobutyl acetate (in multiproduct portfolios). Results show that bio-based isobutanol has advantages over fossil-based isobutanol. In multiproduct systems, case 1 performs better, followed by cases 2 and 3. Screening using economic or environmental aspects show to have a significant effect on the results, where bio-based systems tend to perform better when environmental aspects are included.
Collapse
Affiliation(s)
- Jonathan Moncada
- Energy & Resources, Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands.
| | - John A Posada
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, The Netherlands
| | - Andrea Ramírez
- Energy & Resources, Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands; Energy & Industry, Faculty of Technology, Policy and Management, Delft University of Technology, The Netherlands
| |
Collapse
|
46
|
Ye W, Li J, Han R, Xu G, Dong J, Ni Y. Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. BIORESOURCE TECHNOLOGY 2017; 235:140-148. [PMID: 28365341 DOI: 10.1016/j.biortech.2017.03.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Clostridium saccharobutylicum has been proved to be efficient in butanol fermentation from various feedstocks. Whereas, lack of genetic manipulation system has severely hindered the engineering of C. saccharobutylicum for more extensive applications. In this study, recombinant Escherichia coli harboring heterologous coenzyme A-dependent pathway from C. saccharobutylicum DSM 13864 was constructed, which consisted of solventogenic pathway genes: acetoacetyl-CoA thiolase (thlA), aldehyde/alcohol dehydrogenase (adhE2) and bcs-operon (crt-bcd1-etfB2-fixB2-hbd). Then, a butanol titer of 67mg/L was attained. After replacing thlA with acetyl-CoA acetyltransferase (atoB) from E. coli and deleting the competitive branch genes lactate dehydrogenase (ldhA), aldehyde/alcohol dehydrogenase (adhE1) and fumarate reductase (frdBC), the butanol titer was successfully improved for 3.8-fold (254mg/L). Under the optimum fermentation conditions, the final butanol titer reached 584mg/L after 120h. This result demonstrates the feasibility of adapting CoA-dependent solventogenic pathway from C. saccharobutylicum in E. coli for butanol synthesis.
Collapse
Affiliation(s)
- Weihua Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruizhi Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guochao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinjun Dong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
47
|
Su H, Lin J, Wang Y, Chen Q, Wang G, Tan F. Engineering Brevibacterium flavum
for the production of renewable bioenergy: C4-C5 advanced alcohols. Biotechnol Bioeng 2017; 114:1946-1958. [DOI: 10.1002/bit.26324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- HaiFeng Su
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - JiaFu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province; Sichuan Industrial Institute of Antibiotics, Chengdu University; Chengdu P. R. China
| | - YuanHong Wang
- Center of Analysis and Testing; School of Public Health; Institute of Analytical Chemistry for Life Science; Nantong University; Nantong P. R. China
| | - Qiao Chen
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - GuangWei Wang
- Chongqing Institute of Green and Interligent Technology; Chinese Academy of Science; 266, Fangzheng Avenue, Shuitu High-Tech Park, Beibei Chongqing 400714 P. R. China
| | - FuRong Tan
- Biogas Institute of Ministry of Agriculture; Chengdu 610041 Sichuan P. R. China
| |
Collapse
|
48
|
Generoso WC, Brinek M, Dietz H, Oreb M, Boles E. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3821180. [DOI: 10.1093/femsyr/fox029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/11/2017] [Indexed: 01/23/2023] Open
|
49
|
Zhang YHP, Sun J, Ma Y. Biomanufacturing: history and perspective. ACTA ACUST UNITED AC 2017; 44:773-784. [PMID: 27837351 DOI: 10.1007/s10295-016-1863-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/30/2016] [Indexed: 01/09/2023]
Abstract
Abstract
Biomanufacturing is a type of manufacturing that utilizes biological systems (e.g., living microorganisms, resting cells, animal cells, plant cells, tissues, enzymes, or in vitro synthetic (enzymatic) systems) to produce commercially important biomolecules for use in the agricultural, food, material, energy, and pharmaceutical industries. History of biomanufacturing could be classified into the three revolutions in terms of respective product types (mainly), production platforms, and research technologies. Biomanufacturing 1.0 focuses on the production of primary metabolites (e.g., butanol, acetone, ethanol, citric acid) by using mono-culture fermentation; biomanufacturing 2.0 focuses on the production of secondary metabolites (e.g., penicillin, streptomycin) by using a dedicated mutant and aerobic submerged liquid fermentation; and biomanufacturing 3.0 focuses on the production of large-size biomolecules—proteins and enzymes (e.g., erythropoietin, insulin, growth hormone, amylase, DNA polymerase) by using recombinant DNA technology and advanced cell culture. Biomanufacturing 4.0 could focus on new products, for example, human tissues or cells made by regenerative medicine, artificial starch made by in vitro synthetic biosystems, isobutanol fermented by metabolic engineering, and synthetic biology-driven microorganisms, as well as exiting products produced by far better approaches. Biomanufacturing 4.0 would help address some of the most important challenges of humankind, such as food security, energy security and sustainability, water crisis, climate change, health issues, and conflict related to the energy, food, and water nexus.
Collapse
Affiliation(s)
- Yi-Heng Percival Zhang
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
- 0000 0001 0694 4940 grid.438526.e Biological Systems Engineering Department Virginia Tech 304 Seitz Hall 24061 Blacksburg VA USA
| | - Jibin Sun
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| | - Yanhe Ma
- 0000000119573309 grid.9227.e Tianjin Institute of Industrial Biotechnology Chinese Academy of Science 32 West 7th Avenue, Tianjin Airport Economic Area 300308 Tianjin China
| |
Collapse
|
50
|
Xue C, Zhao J, Chen L, Yang ST, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 2017; 35:310-322. [DOI: 10.1016/j.biotechadv.2017.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|