1
|
Gao P, Ma J, Basit RA, Lou X, Zhang W, Song H, Fu Z, Sun Q, Liu X, Wang J, Fan G, Yang R. Investigation of the enzymatic characteristics of thermotolerant xylanase McXyn0243 derived from Malbranchea cinnamomea, and its application in the degradation of three agricultural residues for the production of xylooligosaccharides. Int J Biol Macromol 2025; 313:143973. [PMID: 40334905 DOI: 10.1016/j.ijbiomac.2025.143973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/17/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
Malbranchea cinnamomea produces enzymes essential for degrading lignocellulosic materials, converting agricultural waste into high-value compounds like xylooligosaccharides (XOSs). In this study, we cloned and expressed an endo-1,4-β-xylanase, McXyn0243, from M. cinnamomea and investigated its enzymatic properties and application in agricultural wastes degradation. The cDNA of McXyn0243 (675 bp) encodes a 24.4 kDa glycoside hydrolase family 11 enzyme with optimal activity at pH 7.5 and 70 °C. McXyn0243 also demonstrated broad stability across a wide range of pH and temperatures. It showed higher activity on alcohol-insoluble xylan than water-insoluble xylan, with the highest specific activity (2163.2 U/mg) observed when rice husk alcohol-insoluble xylan was used. Kinetic parameters for beechwood xylan were Km = 8.6 ± 0.3 mg/mL, kcat = 26,212.5 s-1, and kcat/Km = 3048.0 mL/mg/s. McXyn0243 degraded xylotriose to xylobiose but not xylobiose, with xylotriose and xylobiose as the main products from xylotetraose, xylopentaose, and xylohexaose. Coupled with autohydrolysis, McXyn0243 produced XOSs yields of 123.3 ± 1.9 mg/g, 222.4 ± 1.3 mg/g, and 150.1 ± 0.9 mg/g from rice husk, corn cob, and wheat bran, with xylobiose and xylotriose as the main components.
Collapse
Affiliation(s)
- Peng Gao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiangqin Lou
- Zichuan District Inspection and Test Center, Zibo 255100, China
| | - Weiyan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Huanlu Song
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Zhilei Fu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Biology and Food Science, Hebei Minzu Normal University, Chengde 067000, China
| | - Qi Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Xiaoyan Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Guangsen Fan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Ran Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Xu L, Liang J, Xu H, Chen Q, Liu J, Luo W, Zhao Z, Wei Z, Chen L. Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin. Int J Biol Macromol 2024; 282:137288. [PMID: 39510478 DOI: 10.1016/j.ijbiomac.2024.137288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Exo-fructanase enzymes catalyze the hydrolysis of β-2,6 and β-2,1 linkages in levan and inulin fructans, respectively, yielding fructose. In this study, we identified a multidomain exo-fructanase, Mle3A, from Microbacterium sp. XL1. Mle3A is a 124.2 kDa protein comprising a GH32 N-terminal five-bladed β-propeller structure, a GH32 C-terminal β-sandwich module, and a fibronectin type 3 domain. The recombinant enzyme rMle3A exhibited peak activity at temperatures of 50-55 °C and a pH of 5.5, demonstrating hydrolytic capabilities towards levan, inulin, sucrose, and raffinose. The activity of rMle3A on inulin was enhanced in the presence of Mn2+, Ca2+, Ba2+, Sr2+, Co2+, and Mg2+ ions. Notably, 5 mM Mn2+ increased the inulin hydrolytic activity of rMle3A by over 187 %, and the enzyme's activity was unaffected by NaCl concentrations ranging from 0 to 3 M. Purified rMle3A was effectively utilized to produce high fructose syrup from inulin, achieving a maximum fructose concentration of 26.98 g/L and 71.9 % inulin hydrolysis under optimal conditions (85 rpm, 50 °C, pH 5.5) within 2.5 h. This study introduces a new salt-tolerant, multi-ion facilitated fructanase, rMle3A, for the conversion of inulin biomass into high fructose syrup and other high-value chemicals.
Collapse
Affiliation(s)
- Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.
| | - Jing Liang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Jiaqi Liu
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Wei Luo
- School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Ziyan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; School of Ocean Food and Biological Engineering, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China
| |
Collapse
|
3
|
Zheng F, Zhang H, Wang J, Chen J, Zhuang H, Basit A. Expression and characterization of a novel halophilic GH10 β-1,4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation. Int J Biol Macromol 2024; 282:136885. [PMID: 39454924 DOI: 10.1016/j.ijbiomac.2024.136885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Enzymatic hydrolysis of arabinoxylan is of cost-effective strategy to yield valuable macromolecules, e.g., xylooligosaccharides (XOS). A novel halophilic GH10 xylanase (TaXYL10) from Trichoderma asperellum ND-1 was over-expressed in Pichia pastoris and migrated as a single band (~36 kDa) in SDS-PAGE. TaXYL10 displayed >80 % activity in the presence of 4.28 M NaCl and 10 % ethanol. Moreover, TaXYL10 exhibited optimal activity at pH 6.0 and 55 °C, and remarkable pH stability (>80 % activity at pH 4.0-6.0). K+ and Al3+ could remarkably promote TaXYL10 activity, while the presence of 10 mM Fe2+, Zn2+, Cu2+ and Fe3+ decreased its activity. TaXYL10 possesses the highest catalytic activity towards beechwood xylan. TLC analysis revealed that it could rapidly degrade xylan and XOS with DP ≥ 3, yielding xylotriose and xylobiose. Site-directed mutagenesis indicated that Glu154 and Glu259 are crucial active residues for TaXYL10, while Asp295 and Glu69 played auxiliary roles in xylan hydrolysis. Additionally, TaXYL10 acted cooperatively with a commercial α-L-arabinofuranosidase (AnAra) towards arabinoxylan degradation (583.5 μg/mL), a greater synergy degree of 1.79 was obtained after optimizing enzymatic ratios. This work not only expands the diversity of Trichoderma GH10 xylanases, but also reveals the promising potential of TaXYL10 in various industrial applications.
Collapse
Affiliation(s)
- Fengzhen Zheng
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Hengbin Zhang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jiaqiang Wang
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310021, China
| | - Jun Chen
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China
| | - Huan Zhuang
- Department of ENT and Head & Neck Surgery, Children's Hospital Zhejiang University School of Medicine, Hangzhou 310051, Zhejiang, China
| | - Abdul Basit
- Department of Microbiology, University of Jhang, Jhang 35200, Pakistan
| |
Collapse
|
4
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
5
|
Tang L, Lei X, Ouyang K, Wang L, Qiu Q, Li Y, Zang Y, Liu C, Zhao X. A Glycosyl Hydrolase 30 Family Xylanase from the Rumen Metagenome and Its Effects on In Vitro Ruminal Fermentation of Wheat Straw. Animals (Basel) 2023; 14:118. [PMID: 38200851 PMCID: PMC10778502 DOI: 10.3390/ani14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The challenge of wheat straw as a ruminant feed is its low ruminal digestibility. This study investigated the impact of a xylanase called RuXyn, derived from the rumen metagenome of beef cattle, on the in vitro ruminal fermentation of wheat straw. RuXyn encoded 505 amino acids and was categorized within subfamily 8 of the glycosyl hydrolase 30 family. RuXyn was heterologously expressed in Escherichia coli and displayed its highest level of activity at pH 6.0 and 40 °C. RuXyn primarily hydrolyzed xylan, while it did not show any noticeable activity towards other substrates, including carboxymethylcellulose and Avicel. At concentrations of 5 mM, Mn2+ and dithiothreitol significantly enhanced RuXyn's activity by 73% and 20%, respectively. RuXyn's activity was almost or completely inactivated in the presence of Cu2+, even at low concentrations. The main hydrolysis products of corncob xylan by RuXyn were xylopentose, xylotriose, and xylotetraose. RuXyn hydrolyzed wheat straw and rice straw more effectively than it did other agricultural by-products. A remarkable synergistic effect was observed between RuXyn and a cellulase cocktail on wheat straw hydrolysis. Supplementation with RuXyn increased dry matter digestibility; acetate, propionate, valerate, and total volatile fatty acid yields; NH3-N concentration, and total bacterial number during in vitro fermentation of wheat straw relative to the control. RuXyn's inactivity at 60 °C and 70 °C was remedied by mutating proline 151 to phenylalanine and aspartic acid 204 to leucine, boosting activity to 20.3% and 21.8% of the maximum activity at the respective temperatures. As an exogenous enzyme preparation, RuXyn exhibits considerable potential to improve ruminal digestion and the utilization of wheat straw in ruminants. As far as we know, this is the first study on a GH30 xylanase promoting the ruminal fermentation of agricultural straws. The findings demonstrate that the utilization of RuXyn can significantly enhance the ruminal digestibility of wheat straw by approximately 10 percentage points. This outcome signifies the emergence of a novel and highly efficient enzyme preparation that holds promise for the effective utilization of wheat straw, a by-product of crop production, in ruminants.
Collapse
Affiliation(s)
- Longzhang Tang
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Xiaowen Lei
- Ganzhou Animal Husbandry and Fisheries Research Institute, Ganzhou 341000, China;
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Lei Wang
- Shandong Institute for Food and Drug Control, Jinan 250101, China;
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Yitian Zang
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition, Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (L.T.); (K.O.); (Q.Q.); (Y.L.); (Y.Z.); (C.L.)
| |
Collapse
|
6
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
7
|
Zhu L, Liu LWC, Li Y, Pan K, Ouyang K, Song X, Xiong X, Qu M, Zhao X. Characteristics of recombinant xylanase from camel rumen metagenome and its effects on wheat bran hydrolysis. Int J Biol Macromol 2022; 220:1309-1317. [PMID: 36027987 DOI: 10.1016/j.ijbiomac.2022.08.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
In the present study, we explored the effects of a novel xylanase from camel rumen metagenome (CrXyn) on wheat bran hydrolysis. CrXyn was heterologously expressed in Escherichia coli and showed maximum activity at 40 °C and pH 7.0. Furthermore, CrXyn exhibited preferential hydrolysis of xylan, but no obvious activity toward other substrates, including carboxymethylcellulose and Avicel. Using wheat straw xylan as a substrate, the Km and Vmax values for CrXyn were 5.98 g/L and 179.9 μmol xylose/min/mg protein, respectively. Mn2+ was a strong accelerator and significantly enhanced CrXyn activity. However, CrXyn activity was inhibited (~50 %) by 1 mM and 5 mM ethylenediaminetetraacetic acid (EDTA) and completely inactivated by 5 mM Cu2+. CrXyn tolerated 5 mM sodium dodecyl sulphate (SDS) and 15 % methanol, ethanol, and dimethyl sulfoxide (DMSO), with >50 % residual activity. CrXyn effectively hydrolyzed wheat bran, with xylobiose and xylotetraose accounting for 79.1 % of total sugars produced. A remarkable synergistic effect was found between CrXyn and protease, leading to an obvious increase in amino acids released from wheat bran compared with the control. CrXyn also enhanced the in vitro hydrolysis of wheat bran. Thus, CrXyn exhibits great potential as a feed additive to improve the utilization of wheat bran in monogastric animal production.
Collapse
Affiliation(s)
- Linli Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lei Wang Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
8
|
Glekas PD, Kalantzi S, Dalios A, Hatzinikolaou DG, Mamma D. Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis. Biomolecules 2022; 12:biom12060790. [PMID: 35740915 PMCID: PMC9221164 DOI: 10.3390/biom12060790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Xylanases have a broad range of applications in agro-industrial processes. In this study, we report on the discovery and characterization of a new thermotolerant GH10 xylanase from Bacillus safensis, designated as BsXyn10. The xylanase gene (bsxyn10) was cloned from Bacillus safensis and expressed in Escherichia coli. The reduced molecular mass of BsXyn10 was 48 kDa upon SDS-PAGE. Bsxyn10 was optimally active at pH 7.0 and 60 °C, stable over a broad range of pH (5.0–8.0), and also revealed tolerance toward different modulators (metal cations, EDTA). The enzyme was active toward various xylans with no activity on the glucose-based polysaccharides. KM, vmax, and kcat for oat spelt xylan hydrolysis were found to be 1.96 g·L−1, 58.6 μmole·min−1·(mg protein)−1, and 49 s−1, respectively. Thermodynamic parameters for oat spelt xylan hydrolysis at 60 °C were ΔS* = −61.9 J·mol−1·K−1, ΔH* = 37.0 kJ·mol−1 and ΔG* = 57.6 kJ·mol−1. BsXyn10 retained high levels of activity at temperatures up to 60 °C. The thermodynamic parameters (ΔH*D, ΔG*D, ΔS*D) for the thermal deactivation of BsXyn10 at a temperature range of 40–80 °C were: 192.5 ≤ ΔH*D ≤ 192.8 kJ·mol−1, 262.1 ≤ ΔS*D ≤ 265.8 J·mol−1·K−1, and 99.9 ≤ ΔG*D ≤ 109.6 kJ·mol−1. The BsXyn10-treated oat spelt xylan manifested the catalytic release of xylooligosaccharides of 2–6 DP, suggesting that BsXyn10 represents a promising candidate biocatalyst appropriate for several biotechnological applications.
Collapse
Affiliation(s)
- Panayiotis D. Glekas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Anargiros Dalios
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Correspondence: (D.G.H.); (D.M.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
- Correspondence: (D.G.H.); (D.M.)
| |
Collapse
|
9
|
Rajabi M, Nourisanami F, Ghadikolaei KK, Changizian M, Noghabi KA, Zahiri HS. Metagenomic psychrohalophilic xylanase from camel rumen investigated for bioethanol production from wheat bran using Bacillus subtilis AP. Sci Rep 2022; 12:8152. [PMID: 35581279 PMCID: PMC9114127 DOI: 10.1038/s41598-022-11412-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Bioethanol produced from lignocellulosic biomass is regarded as a clean and sustainable energy source. The recalcitrant structure of lignocellulose is a major drawback to affordable bioethanol production from plant biomass. In this study, a novel endo-1,4-xylanase, named Xyn-2, from the camel rumen metagenome, was characterized and evaluated for hydrolysis of agricultural wastes. The enzyme was identified as a psychrohalophilic xylanase with maximum activity at 20 °C, keeping 58% of the activity at 0 °C, and exhibiting twice as much activity in 0.5–4 M NaCl concentrations. Xyn-2 was able to hydrolyze wheat bran (100%), sunflower-seed shell (70%), wheat straw (56%), rice straw (56%), and rice bran (41%), in the relative order of efficiency. Besides, the ethanologenic B. subtilis AP was evaluated without and with Xyn-2 for bioethanol production from wheat bran. The strain was able to produce 5.5 g/L ethanol with a yield of 22.6% in consolidated bioprocessing (CBP). The contribution of Xyn-2 to ethanol production of B. subtilis AP was studied in an SSF system (simultaneous saccharification and fermentation) giving rise to a significant increase in ethanol production (p ≤ 0.001) to a final concentration of 7.3 g/L with a yield of 26.8%. The results revealed that the camel rumen metagenome might be an invaluable source of novel xylanolytic enzymes with potential application in lignocellulosic biomass valorization. At the same time, the results suggest that B. subtilis with a diverse carbon-source preference and sophisticated systems for production and secretion of enzymes might be a promising candidate for strain development for bioethanol production from plant biomass. It might be assumed that the fortification of B. subtilis enzymatic arsenal with select xylanolytic enzymes from camel rumen metagenome may have a great impact on bioethanol production.
Collapse
Affiliation(s)
- Marzieh Rajabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farahdokht Nourisanami
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamran Khalili Ghadikolaei
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Changizian
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kambiz Akbari Noghabi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Shahbani Zahiri
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
10
|
Liu C, Zhang W, Li Y, Pan K, OuYang K, Song X, Xiong X, Zang Y, Wang L, Qu M, Zhao X. Characterization of yeast cell surface displayed Lentinula edodes xylanase and its effects on the hydrolysis of wheat. Int J Biol Macromol 2022; 199:341-347. [PMID: 35026222 DOI: 10.1016/j.ijbiomac.2021.12.178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The current study displayed a xylanase from Lentinula edodes on the surface of Pichia pastoris (sdLeXyn) and investigated its properties and effects on the wheat hydrolysis. Fluorescence microscope results showed that sdLeXyn was successfully anchored and displayed on the surface of P. pastoris X-33 cells. The highest activity of sdLeXyn was obtained at pH 3.0 and 50 °C. The sdLeXyn exhibited anti-high temperature property and showed broad temperature adaptability (>55% of the highest activity at 20-80 °C). The sdLeXyn was very stable at room temperature and could remain functionally stable at 50 °C for 3 h. The Km value was greater in sdLeXyn than that in free recombinant L. edodes xylanase. The sdLeXyn exhibited well resistance to Mn2+, Zn2+, Ca2+, Na+, Cu2+, Mg2+, K+, Ni2+ (1 mM and 5 mM) except Cu2+, which reduced the sdLeXyn activity by 54.5% at 5 mM dosage. The activity of sdLeXyn was increased by 42.6% by 5 mM Mn2+, 5 mM DTT, Trition X-100, and Tween 20 did not affect the activity of sdLeXyn, but SDS and EDTA slightly reduced it by 12.8% and 14.6%, respectively. The sdLeXyn could resist the degradation of pepsin, efficiently hydrolyzed wheat and reduced the viscosity of wheat hydrolysate. Current data indicate that the sdLeXyn has a potential as a feed additive to improve the utilization of wheat in poultry production.
Collapse
Affiliation(s)
- Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yitian Zang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lei Wang
- Shandong Institute for Food and Drug Control, Jinan, Shandong 250101, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
11
|
Kumari M, Padhi S, Sharma S, Phukon LC, Singh SP, Rai AK. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 2021; 11:479. [PMID: 34790503 DOI: 10.1007/s13205-021-03008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.
Collapse
Affiliation(s)
- Megha Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
12
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
13
|
Identification and Characterization of a Novel, Cold-Adapted d-Xylobiose- and d-Xylose-Releasing Endo-β-1,4-xylanase from an Antarctic Soil Bacterium, Duganella sp. PAMC 27433. Biomolecules 2021; 11:biom11050680. [PMID: 33946575 PMCID: PMC8147214 DOI: 10.3390/biom11050680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Endo-β-1,4-xylanase is a key enzyme in the degradation of β-1,4-d-xylan polysaccharides through hydrolysis. A glycoside hydrolase family 10 (GH10) endo-β-1,4-xylanase (XylR) from Duganella sp. PAMC 27433, an Antarctic soil bacterium, was identified and functionally characterized. The XylR gene (1122-bp) encoded an acidic protein containing a single catalytic GH10 domain that was 86% identical to that of an uncultured bacterium BLR13 endo-β-1,4-xylanase (ACN58881). The recombinant enzyme (rXylR: 42.0 kDa) showed the highest beechwood xylan-degrading activity at pH 5.5 and 40 °C, and displayed 12% of its maximum activity even at 4 °C. rXylR was not only almost completely inhibited by 5 mM N-bromosuccinimide or metal ions (each 1 mM) including Hg2+, Ca2+, or Cu2+ but also significantly suppressed by 1 mM Ni2+, Zn2+, or Fe2+. However, its enzyme activity was upregulated (>1.4-fold) in the presence of 0.5% Triton X-100 or Tween 80. The specific activities of rXylR toward beechwood xylan, birchwood xylan, oat spelts xylan, and p-nitrophenyl-β-d-cellobioside were 274.7, 103.2, 35.6, and 365.1 U/mg, respectively. Enzymatic hydrolysis of birchwood xylan and d-xylooligosaccharides yielded d-xylose and d-xylobiose as the end products. The results of the present study suggest that rXylR is a novel cold-adapted d-xylobiose- and d-xylose-releasing endo-β-1,4-xylanase.
Collapse
|
14
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
15
|
Zhang W, Liu C, Qu M, Pan K, OuYang K, Song X, Zhao X. Construction and characterization of a chimeric enzyme of swollenin and xylanase to improve soybean straw hydrolysis. Int J Biol Macromol 2020; 156:558-564. [PMID: 32311404 DOI: 10.1016/j.ijbiomac.2020.04.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022]
Abstract
A study was carried out to produce a fusion protein (Swo-Xyn) using the Trichoderma reesei swollenin and Lentinula edodes xylanase and to investigate its characteristics and application in degrading soybean straw. In parallel, L. edodes xylanase (Xyn) alone was used as a control protein in application tests. The Swo-Xyn was recombined, expressed and produced by Pichia pastoris and had the maximum activity at 40 °C and pH 3.0 using xylan as substrate. The Swo-Xyn exhibited preferential hydrolysis of Xylan. The Swo-Xyn had slight low Km value (23.90 vs. 25.36 mg/ml) but significantly low Vmax value (162.4 vs. 227.2 μmol/mg·min) and specific activity (18.82 vs. 38.97 U/mg) relative to the Xyn. The Swo-Xyn activity was enhanced by Zn2+ in dose dependent manners with the peak activity at 30 mM of Zn2+. The Swo-Xyn could tolerate 15% of methanol, ethanol, aceton, and DMSO with >60% residual activity. The Swo-Xyn had the greater tolerance to SDS, EDTA, 2-ME than the Xyn and could be activated by DTT, Triton X-100, and Tween 20. Compared with the Xyn, the hydrolysis and sequent cellulose enzymolysis of soybean straw could be better improved by the Swo-Xyn. The Swo-Xyn should be more useful for improving the utilization of soybean straw.
Collapse
Affiliation(s)
- Wenjing Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui OuYang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
16
|
Sidar A, Albuquerque ED, Voshol GP, Ram AFJ, Vijgenboom E, Punt PJ. Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms. Front Bioeng Biotechnol 2020; 8:871. [PMID: 32850729 PMCID: PMC7410926 DOI: 10.3389/fbioe.2020.00871] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymatic degradation of abundant renewable polysaccharides such as cellulose and starch is a field that has the attention of both the industrial and scientific community. Most of the polysaccharide degrading enzymes are classified into several glycoside hydrolase families. They are often organized in a modular manner which includes a catalytic domain connected to one or more carbohydrate-binding modules. The carbohydrate-binding modules (CBM) have been shown to increase the proximity of the enzyme to its substrate, especially for insoluble substrates. Therefore, these modules are considered to enhance enzymatic hydrolysis. These properties have played an important role in many biotechnological applications with the aim to improve the efficiency of polysaccharide degradation. The domain organization of glycoside hydrolases (GHs) equipped with one or more CBM does vary within organisms. This review comprehensively highlights the presence of CBM as ancillary modules and explores the diversity of GHs carrying one or more of these modules that actively act either on cellulose or starch. Special emphasis is given to the cellulase and amylase distribution within the filamentous microorganisms from the genera of Streptomyces and Aspergillus that are well known to have a great capacity for secreting a wide range of these polysaccharide degrading enzyme. The potential of the CBM and other ancillary domains for the design of improved polysaccharide decomposing enzymes is discussed.
Collapse
Affiliation(s)
- Andika Sidar
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Department of Food Science and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Erica D Albuquerque
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Sun Pharmaceutical Industries Europe BV., Hoofddorp, Netherlands
| | - Gerben P Voshol
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| | - Arthur F J Ram
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Erik Vijgenboom
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands
| | - Peter J Punt
- Department of Microbial Biotechnology, Institute of Biology Leiden, Leiden, Netherlands.,Dutch DNA Biotech B.V., Utrecht, Netherlands
| |
Collapse
|
17
|
Isolation and Characterization of a Novel Cold-Active, Halotolerant Endoxylanase from Echinicola rosea sp. Nov. JL3085 T. Mar Drugs 2020; 18:md18050245. [PMID: 32384803 PMCID: PMC7281462 DOI: 10.3390/md18050245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/24/2022] Open
Abstract
We cloned a xylanase gene (xynT) from marine bacterium Echinicola rosea sp. nov. JL3085T and recombinantly expressed it in Escherichia coli BL21. This gene encoded a polypeptide with 379 amino acid residues and a molecular weight of ~43 kDa. Its amino acid sequence shared 45.3% similarity with an endoxylanase from Cellvibrio mixtus that belongs to glycoside hydrolases family 10 (GH10). The XynT showed maximum activity at 40 °C and pH 7.0, and a maximum velocity of 62 μmoL min−1 mg−1. The XynT retained its maximum activity by more than 69%, 51%, and 26% at 10 °C, 5 °C, and 0 °C, respectively. It also exhibited the highest activity of 135% in the presence of 4 M NaCl and retained 76% of its activity after 24 h incubation with 4 M NaCl. This novel xylanase, XynT, is a cold-active and halotolerant enzyme that may have promising applications in drug, food, feed, and bioremediation industries.
Collapse
|
18
|
Zhang R, Li N, Liu Y, Han X, Tu T, Shen J, Xu S, Wu Q, Zhou J, Huang Z. Biochemical and structural properties of a low-temperature-active glycoside hydrolase family 43 β-xylosidase: Activity and instability at high neutral salt concentrations. Food Chem 2019; 301:125266. [DOI: 10.1016/j.foodchem.2019.125266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/24/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
19
|
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019; 14:e0222648. [PMID: 31600234 PMCID: PMC6786605 DOI: 10.1371/journal.pone.0222648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to Elizabethkingia meningoseptica. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other Elizabethkingia species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in E. meningoseptica but absent in E. anophelis and E. miricola. E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.
Collapse
|
20
|
Han Z, Shang-Guan F, Yang J. Molecular and Biochemical Characterization of a Bimodular Xylanase From Marinifilaceae Bacterium Strain SPP2. Front Microbiol 2019; 10:1507. [PMID: 31312196 PMCID: PMC6614494 DOI: 10.3389/fmicb.2019.01507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/17/2019] [Indexed: 01/31/2023] Open
Abstract
In this study, the first xylantic enzyme from the family Marinifilaceae, XynSPP2, was identified from Marinifilaceae bacterium strain SPP2. Amino acid sequence analysis revealed that XynSPP2 is a rare Fn3-fused xylanase, consisting of a signal peptide, a fibronectin type-III domain (Fn3), and a C-terminal catalytic domain belonging to glycoside hydrolase family 10 (GH10). The catalytic domain shared 17–46% identities to those of biochemically characterized GH10 xylanases. Structural analysis revealed that the conserved asparagine and glutamine at the glycone −2/−3 subsite of GH10 xylanases are substituted by a tryptophan and a serine, respectively, in XynSPP2. Full-length XynSPP2 and its Fn3-deleted variant (XynSPP2ΔFn3) were overexpressed in Escherichia coli and purified by Ni-affinity chromatography. The optimum temperature and pH for both recombinant enzymes were 50°C and 6, respectively. The enzymes were stable under alkaline condition and at temperature lower than 50°C. With beechwood xylan as the substrate, XynSPP2 showed 2.8 times the catalytic efficiency of XynSPP2ΔFn3, indicating that the Fn3 module promotes xylanase activity. XynSPP2 was active toward xylooligosaccharides (XOSs) longer than xylotriose. Such a substrate preference can be explained by the unique −2/−3 subsite composition in the enzyme which provides new insight into subsite interaction within the GH10 family. XynSPP2 hydrolyzed beechwood xylan into small XOSs (xylotriose and xylotetraose as major products). No monosaccharide was detected by thin-layer chromatography which may be ascribed to putative transxylosylation activity of XynSPP2. Preferring long XOS substrate and lack of monosaccharide production suggest its potential in probiotic XOS manufacture.
Collapse
Affiliation(s)
- Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Fang Shang-Guan
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
21
|
Abd Latip MA, Abdul Hamid AA, Nordin NFH. Microbial hydrolytic enzymes: In silico studies between polar and tropical regions. POLAR SCIENCE 2019; 20:9-18. [DOI: 10.1016/j.polar.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Characterization of a novel cold-active xylanase from Luteimonas species. World J Microbiol Biotechnol 2018; 34:123. [DOI: 10.1007/s11274-018-2505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
|
23
|
Mohamed MA, Ghanem MM, Abd-Elaziz AM, Shams-Eldin IM. Purification and characterization of xylanase isoenzymes from red palm weevil Rhynchophorus ferrugineus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Ali SS, Wu J, Xie R, Zhou F, Sun J, Huang M. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis. PLoS One 2017; 12:e0181141. [PMID: 28704553 PMCID: PMC5509302 DOI: 10.1371/journal.pone.0181141] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022] Open
Abstract
The effective fermentation of xylose remains an intractable challenge in bioethanol industry. The relevant xylanase enzyme is also in a high demand from industry for several biotechnological applications that inevitably in recent times led to many efforts for screening some novel microorganisms for better xylanase production and fermentation performance. Recently, it seems that wood-feeding termites can truly be considered as highly efficient natural bioreactors. The highly specialized gut systems of such insects are not yet fully realized, particularly, in xylose fermentation and xylanase production to advance industrial bioethanol technology as well as industrial applications of xylanases. A total of 92 strains from 18 yeast species were successfully isolated and identified from the gut of wood-feeding termite, Reticulitermes chinensis. Of these yeasts and strains, seven were identified for new species: Candida gotoi, Candida pseudorhagii, Hamamotoa lignophila, Meyerozyma guilliermondii, Sugiyamaella sp.1, Sugiyamaella sp. 2, and Sugiyamaella sp.3. Based on the phylogenetic and phenotypic characterization, the type strain of C. pseudorhagii sp. nov., which was originally designated strain SSA-1542T, was the most frequently occurred yeast from termite gut samples, showed the highly xylanolytic activity as well as D-xylose fermentation. The highest xylanase activity was recorded as 1.73 and 0.98 U/mL with xylan or D-xylose substrate, respectively, from SSA-1542T. Among xylanase-producing yeasts, four novel species were identified as D-xylose-fermenting yeasts, where the yeast, C. pseudorhagii SSA-1542T, showed the highest ethanol yield (0.31 g/g), ethanol productivity (0.31 g/L·h), and its fermentation efficiency (60.7%) in 48 h. Clearly, the symbiotic yeasts isolated from termite guts have demonstrated a competitive capability to produce xylanase and ferment xylose, suggesting that the wood-feeding termite gut is a promising reservoir for novel xylanases-producing and xylose-fermenting yeasts that are potentially valued for biorefinery industry.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Jian Wu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Feng Zhou
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- * E-mail:
| | - Miao Huang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Acevedo JP, Reetz MT, Asenjo JA, Parra LP. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Enzyme Microb Technol 2017; 100:60-70. [PMID: 28284313 DOI: 10.1016/j.enzmictec.2017.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
Abstract
Enzymes active at low temperature are of great interest for industrial bioprocesses due to their high efficiency at a low energy cost. One of the particularities of naturally evolved cold-active enzymes is their increased enzymatic activity at low temperature, however the low thermostability presented in this type of enzymes is still a major drawback for their application in biocatalysis. Directed evolution of cold-adapted enzymes to a more thermostable version, appears as an attractive strategy to fulfill the stability and activity requirements for the industry. This paper describes the recombinant expression and characterization of a new and highly active cold-adapted xylanase from the GH-family 10 (Xyl-L), and the use of a novel one step combined directed evolution technique that comprises saturation mutagenesis and focused epPCR as a feasible semi-rational strategy to improve the thermostability. The Xyl-L enzyme was cloned from a marine-Antarctic bacterium, Psychrobacter sp. strain 2-17, recombinantly expressed in E. coli strain BL21(DE3) and characterized enzymatically. Molecular dynamic simulations using a homology model of the catalytic domain of Xyl-L were performed to detect flexible regions and residues, which are considered to be the possible structural elements that define the thermolability of this enzyme. Mutagenic libraries were designed in order to stabilize the protein introducing mutations in some of the flexible regions and residues identified. Twelve positive mutant clones were found to improve the T5015 value of the enzyme, in some cases without affecting the activity at 25°C. The best mutant showed a 4.3°C increase in its T5015. The efficiency of the directed evolution approach can also be expected to work in the protein engineering of stereoselectivity.
Collapse
Affiliation(s)
- Juan Pablo Acevedo
- Facultad de Medicina y Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, San Carlos de Apoquindo, 2200 Santiago, Chile
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, 45070 Mülheim, Germany; Chemistry Department, Philipps-University, 35032 Marburg, Germany
| | - Juan A Asenjo
- Centre for Biotechnology and Bioengineering, CeBiB, Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef, 851 Santiago, Chile
| | - Loreto P Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile; Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860 Santiago, Chile.
| |
Collapse
|
26
|
Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B, Luo H. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. BIORESOURCE TECHNOLOGY 2016; 222:277-284. [PMID: 27723474 DOI: 10.1016/j.biortech.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/07/2023]
Abstract
A xylanase gene of GH 10, Tlxyn10A, was cloned from Talaromyces leycettanus JCM12802 and expressed in Pichia pastoris. Purified recombinant TlXyn10A was acidic and hyperthermophilic, and retained stable over the pH range of 2.0-6.0 and at 90°C. Sequence analysis of TlXyn10A identified seven residues probably involved in substrate contacting. Three mutants (TlXyn10A_P, _N and _C) were then constructed by substituting some or all of the residues with corresponding ones of hyperthermal Xyl10C from Bispora sp. MEY-1. TlXyn10A_P with mutations at subsites +2 to +4 exhibited improved specific activity (by 0.44-fold) and pH stability (2.0-10.0). Molecular dynamics simulation analysis indicated that mutations E229I and F232E probably weaken the substrate affinity at subsites +3 to +4, and G149D may introduce a new hydrogen bond. These modifications altogether account for the improved performance of TlXyn10A_P. Moreover, TlXyn10A_P was able to hydrolyze wheat straw persistently, and has the application potentials in various industries.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huifang Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|
27
|
Wang G, Wu J, Lin J, Ye X, Yao B. The disruption of two salt bridges of the cold-active xylanase XynGR40 results in an increase in activity, but a decrease in thermostability. Biochem Biophys Res Commun 2016; 481:139-145. [DOI: 10.1016/j.bbrc.2016.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022]
|
28
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
29
|
Dong M, Yang Y, Tang X, Shen J, Xu B, Li J, Wu Q, Zhou J, Ding J, Han N, Mu Y, Huang Z. NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis. SPRINGERPLUS 2016; 5:746. [PMID: 27376014 PMCID: PMC4909688 DOI: 10.1186/s40064-016-2360-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Bos frontalis, which consumes
bamboo and weeds, may have evolved unique gastrointestinal microorganisms that digest cellulase. A Paenibacillus sp. YD236 strain was isolated from B. frontalis feces, from which a GH8 endoglucanase gene, pglue8 (1107 bp, 54.5 % GC content), encoding a 368-residue polypeptide (PgluE8, 40.4 kDa) was cloned. PgluE8 efficiently hydrolyzed barley-β-d-glucan followed by CMC-Na, soluble starch, laminarin, and glucan from black yeast optimally at pH 5.5 and 50 °C, and retained 78.6, 41.6, and 34.5 % maximum activity when assayed at 20, 10, and 0 °C, respectively. Enzyme activity remained above 176.6 % after treatment with 10.0 mM β-mercaptoethanol, and was 83.0, 78, and 56 % after pre-incubation in 30 % (w/v) NaCl, 16.67 mg/mL trypsin, and 160.0 mg/mL protease K, respectively. Cys23 and Cys364 residues were critical for PgluE8 activity. pglue8, identified from B. frontalis feces for the first time in this study, is a potential alternative for applications including food processing, washing, and animal feed preparation.
Collapse
Affiliation(s)
- Mingjie Dong
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yunjuan Yang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Xianghua Tang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Jidong Shen
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Bo Xu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junjun Li
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junpei Zhou
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Junmei Ding
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Nanyu Han
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Yuelin Mu
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500 People's Republic of China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, No.1 Yuhua District, Chenggong, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500 Yunnan People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500 People's Republic of China
| |
Collapse
|
30
|
Sarmiento F, Peralta R, Blamey JM. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Front Bioeng Biotechnol 2015; 3:148. [PMID: 26539430 PMCID: PMC4611823 DOI: 10.3389/fbioe.2015.00148] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
The development of enzymes for industrial applications relies heavily on the use of microorganisms. The intrinsic properties of microbial enzymes, e.g., consistency, reproducibility, and high yields along with many others, have pushed their introduction into a wide range of products and industrial processes. Extremophilic microorganisms represent an underutilized and innovative source of novel enzymes. These microorganisms have developed unique mechanisms and molecular means to cope with extreme temperatures, acidic and basic pH, high salinity, high radiation, low water activity, and high metal concentrations among other environmental conditions. Extremophile-derived enzymes, or extremozymes, are able to catalyze chemical reactions under harsh conditions, like those found in industrial processes, which were previously not thought to be conducive for enzymatic activity. Due to their optimal activity and stability under extreme conditions, extremozymes offer new catalytic alternatives for current industrial applications. These extremozymes also represent the cornerstone for the development of environmentally friendly, efficient, and sustainable industrial technologies. Many advances in industrial biocatalysis have been achieved in recent years; however, the potential of biocatalysis through the use of extremozymes is far from being fully realized. In this article, the adaptations and significance of psychrophilic, thermophilic, and hyperthermophilic enzymes, and their applications in selected industrial markets will be reviewed. Also, the current challenges in the development and mass production of extremozymes as well as future prospects and trends for their biotechnological application will be discussed.
Collapse
Affiliation(s)
| | - Rocío Peralta
- Fundación Científica y Cultural Biociencia , Santiago , Chile
| | - Jenny M Blamey
- Swissaustral USA , Athens, GA , USA ; Fundación Científica y Cultural Biociencia , Santiago , Chile
| |
Collapse
|
31
|
Investigation on lignocellulosic saccharification and characterization of haloalkaline solvent tolerant endo-1,4 β-d-xylanase from Halomonas meridiana APCMST-KS4. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Sun MZ, Zheng HC, Meng LC, Sun JS, Song H, Bao YJ, Pei HS, Yan Z, Zhang XQ, Zhang JS, Liu YH, Lu FP. Direct cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob. Biotechnol Lett 2015; 37:1877-86. [DOI: 10.1007/s10529-015-1857-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|
33
|
Graciano L, Corrêa JM, Vieira FGN, Bosetto A, Loth EA, Kadowaki MK, Gandra RF, Simão RDCG. Cloning and Expression of the xynA1 Gene Encoding a Xylanase of the GH10 Group in Caulobacter crescentus. Appl Biochem Biotechnol 2015; 175:3915-29. [DOI: 10.1007/s12010-015-1560-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
|
34
|
Zhou J, Lu Q, Peng M, Zhang R, Mo M, Tang X, Li J, Xu B, Ding J, Huang Z. Cold-active and NaCl-tolerant exo-inulinase from a cold-adapted Arthrobacter sp. MN8 and its potential for use in the production of fructose at low temperatures. J Biosci Bioeng 2015; 119:267-74. [DOI: 10.1016/j.jbiosc.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/19/2014] [Accepted: 08/07/2014] [Indexed: 01/09/2023]
|
35
|
Zhou J, Liu Y, Shen J, Zhang R, Tang X, Li J, Wang Y, Huang Z. Kinetic and thermodynamic characterization of a novel low-temperature-active xylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Bioengineered 2015; 6:111-4. [PMID: 25587940 DOI: 10.1080/21655979.2014.1004021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We previously presented the cloning, heterologous expression, and characterization of a novel multidomain endoxylanase from Arthrobacter sp. GN16 isolated from the feces of Grus nigricollis. Molecular and biochemical characterization studies indicate that the glycoside hydrolase (GH) family 10 domain at the N-terminus of the multidomain xylanase (rXynAGN16L) is a low-temperature-active endoxylanase. Many low-temperature-active enzymes contain regions of high local flexibility related to their kinetic and thermodynamic properties compared with mesophilic and thermophilic enzymes. However, the thermodynamic property of low-temperature-active xylanases, including rXynAGN16L, has rarely been reported. In this study, the kinetic and thermodynamic properties of rXynAGN16L were determined using different substrates and temperature conditions to completely characterize its activity properties. The kinetic property of rXynAGN16L is similar to some low-temperature-active GH 10 endoxylanases. Moreover, the thermodynamic property indicates that rXynAGN16L is typically characterized as a low-temperature-active enzyme.
Collapse
Affiliation(s)
- Junpei Zhou
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy; Ministry of Education; Yunnan Normal University ; Kunming , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Isolation of a Novel Cold-Active Family 11 Xylanase from the Filamentous Fungus Bispora antennata and Deletion of its N-Terminal Amino Acids on Thermostability. Appl Biochem Biotechnol 2014; 175:925-36. [DOI: 10.1007/s12010-014-1344-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
37
|
Molecular and Biochemical Characterization of a Novel Multidomain Xylanase from Arthrobacter sp. GN16 Isolated from the Feces of Grus nigricollis. Appl Biochem Biotechnol 2014; 175:573-88. [DOI: 10.1007/s12010-014-1295-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022]
|
38
|
Walia A, Mehta P, Chauhan A, Kulshrestha S, Shirkot CK. Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost. World J Microbiol Biotechnol 2014; 30:2597-608. [PMID: 24908422 DOI: 10.1007/s11274-014-1683-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 06/02/2014] [Indexed: 11/26/2022]
Abstract
Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is first report on actinomycetes that has the ability to produce thermostable cellulase-free xylanase, which is an important industrial enzyme used in the pulp and paper industry. Strain CKMX1 was characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis and 16Sr DNA and found to be C. cellulans CKMX1.The enzyme was purified by gel permeation and anion exchange chromatography and had a molecular mass of 29 kDa. Xylanase activity was optimum at pH 8.0 and 55 °C. The enzyme was somewhat thermostable, retaining 50 % of the original activity after incubation at 50 °C for 30 min. The xylanase had K m and V max values of 2.64 mg/ml and 2,000 µmol/min/mg protein in oat spelt xylan, respectively. All metal ions except HgCl2, CoCl2 as well as CdCl2 were well tolerated and did not adversely affect xylanase activity. The deduced internal amino acid sequence of C. cellulans CKMX1 xylanase by matrix assisted laser desorption ionization-time of flight mass spectrometry resembled the sequence of β-1,4-endoxylanase, which is a member of glycoside hydrolase family 11. Some of the novel characteristics that make this enzyme potentially effective in xylan biodegradation could be useful for pulp and paper biobleaching are discussed in this manuscript.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Basic Sciences (Microbiology Section), Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, H.P., India,
| | | | | | | | | |
Collapse
|
39
|
A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14. Folia Microbiol (Praha) 2014; 59:423-31. [DOI: 10.1007/s12223-014-0316-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/27/2014] [Indexed: 12/13/2022]
|
40
|
Takahashi Y, Kawabata H, Murakami S. Analysis of functional xylanases in xylan degradation by Aspergillus niger E-1 and characterization of the GH family 10 xylanase XynVII. SPRINGERPLUS 2013; 2:447. [PMID: 24083101 PMCID: PMC3786065 DOI: 10.1186/2193-1801-2-447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022]
Abstract
Xylanases produced by Aspergillus niger are industrially important and many types of xylanases have been reported. Individual xylanases have been well studied for their enzymatic properties, gene cloning, and heterologous expression. However, less attention has been paid to the relationship between xylanase genes carried on the A. niger genome and xylanases produced by A. niger strains. Therefore, we examined xylanase genes encoded on the genome of A. niger E-1 and xylanases produced in culture. Seven putative xylanase genes, xynI–VII (named in ascending order of the molecular masses of the deduced amino acid sequences), were amplified from the strain E-1 genome using primers designed from the genome sequence of A. niger CBS 513.88 by PCR and phylogenetically classified into three clusters. Additionally, culture supernatant analysis by DE52 anion–exchange column chromatography revealed that this strain produced three xylanases, XynII, XynIII, and XynVII, which were identified by N-terminal amino acid sequencing and MALDI-TOF-MS analyses, in culture when gown in 0.5% xylan medium supplemented with 50 mM succinate. Furthermore, XynVII, the only GH family 10 xylanase in A. niger E-1, was purified and characterized. The purified enzyme showed a single band with a molecular mass of 35 kDa by SDS-PAGE. The highest activity of purified XynVII was observed at 55°C and pH 5.5. The enzyme was stable in the broad pH range of 3–10 and up to 60°C and was resistant to most metal ions and modifying regents. XynVII showed high specificity against beechwood xylan with Km and Vmax values of 2.8 mg mL–1 and 127 μmol min–1mg–1, respectively. TLC and MALDI-TOF-MS analyses showed that the final hydrolyzed products of the enzyme from beechwood xylan were xylose, xylobiose, and xylotriose substituted with a 4-o-metylglucuronic acid residue.
Collapse
Affiliation(s)
- Yui Takahashi
- Department of Agricultural Chemistry, Graduate School of Agriculture, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki, 214-8571 Japan
| | | | | |
Collapse
|