1
|
Recovering Apple Agro-Industrial Waste for Bioethanol and Vinasse Joint Production: Screening the Potential of Chile. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioethanol production has increased in demand as a replacement for conventional fuels. This work studies the use of apple pomace, which corresponds to 45% (w/w) of dehydrated apple production, as a reliable and inexpensive source for bioethanol production. Additionally, the vinasse obtained from the process as a byproduct is analyzed. Apple pomace has important properties for energy purposes, with high soluble sugar (6%–8%), organic compounds and low protein content. The carbohydrates were consumed in 99.3% in 144 h at a temperature of 30 °C and in a yeast Saccharomyces cerevisiae (YSC) concentration of 0.10 g/L. The bioethanol purity produced, 99.5% (v/v), was quantified by gas chromatography and calorific value (23.21 MJ/kg). This high purity, which fulfills the EN 15376, ASTM D 4806 Standard, allows its use as a fuel and oil additive. Moreover, it can be stated that vinasse obtained from alcohol distillation is a compound that has physicochemical values like other vinasses. Finally, Chile, as the most important exporting country of dehydrated apples in the world, has great potential to take advantage of the use of this raw material for bioethanol and vinasse production.
Collapse
|
2
|
Cheng MH, Sun L, Jin YS, Dien B, Singh V. Production of xylose enriched hydrolysate from bioenergy sorghum and its conversion to β-carotene using an engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2020; 308:123275. [PMID: 32272391 DOI: 10.1016/j.biortech.2020.123275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
A new bioprocess has been developed that allows for producing β-carotene from the xylose portion of bioenergy sorghum. Bioenergy sorghum was pretreated in a pilot-scale continuous hydrothermal reactor followed by disc refining. Xylose was extracted using low-severity dilute acid hydrolysis. A xylose yield of 64.9% (17.4 g/L) was obtained by hydrolyzing at 120 °C for 5 min with 2% sulfuric acid. The xylose-enriched syrup was separated and concentrated to either 32 g xylose/L (medium-concentrated hydrolysate, MCB) or 66 g xylose/L (high-concentrated hydrolysate, HCB). The non- (NCB), medium-, and high-concentrated xylose syrup were neutralized and fermented to β-carotene using Saccharomyces cerevisiae strain SR8B, which had been engineered for xylose utilization and β-carotene production. In HCB, MCB, and NCB cultures, the yeast produced β-carotene titers of 114.50 mg/L, 93.56 mg/L, and 82.50 mg/L, which corresponds to specific yeast biomass productions of 7.32 mg/g DCW, 8.10 mg/g DCW, and 8.29 mg/g DCW, respectively.
Collapse
Affiliation(s)
- Ming-Hsun Cheng
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruce Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Banoth C, Sunkar B, Tondamanati PR, Bhukya B. Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation. 3 Biotech 2017; 7:334. [PMID: 28955631 DOI: 10.1007/s13205-017-0980-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022] Open
Abstract
Lignocellulosic biomass such as agricultural and forest residues are considered as an alternative, inexpensive, renewable, and abundant source for fuel ethanol production. In the present study, three different pretreatment methods for rice straw were carried out to investigate the maximum lignin removal for subsequent bioethanol fermentation. The chemical pretreatments of rice straw were optimized under different pretreatment severity conditions in the range of 1.79-2.26. Steam explosion of rice straw at 170 °C for 10 min, sequentially treated with 2% (w/v) KOH (SEKOH) in autoclave at 121 °C for 30 min, resulted in 85 ± 2% delignification with minimum sugar loss. Combined pretreatment of steam explosion and KOH at severity factor (SF 3.10) showed improved cellulose fraction of biomass. Furthermore, enzymatic hydrolysis at 30 FPU/g enzyme loading resulted in 664.0 ± 5.39 mg/g sugar yield with 82.60 ± 1.7% saccharification efficiency. Consequently, the hydrolysate of SEKOH with 58.70 ± 1.52 g/L sugars when fermented with Saccharomyces cerevisiae OBC14 showed 26.12 ± 1.24 g/L ethanol, 0.44 g/g ethanol yield with 87.03 ± 1.6% fermentation efficiency.
Collapse
|
4
|
Chen BY, Zhao BC, Li MF, Liu QY, Sun RC. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2017; 225:127-133. [PMID: 27888729 DOI: 10.1016/j.biortech.2016.11.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 05/08/2023]
Abstract
The aim of the research was to evaluate the effect of combined treatments on fermentable sugar production from rapeseed straw. An optimum condition was found to be the combination of hydrothermal pretreatment at 180°C for 45min and post-treatment by 2% NaOH at 100°C for 2h, which was based on the quantity of monosaccharides released during enzymatic hydrolysis. As compared with the raw material without treatment, the combination of hydrothermal pretreatment and alkali post-treatment resulted in a significant increase of the saccharification rate by 5.9times. This process potentially turned rapeseed straw into value added products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Bo-Yang Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Bao-Cheng Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China
| | - Qiu-Yun Liu
- The BioComposites Centre, Bangor University, Bangor, UK
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
5
|
Nanou K, Roukas T. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. BIORESOURCE TECHNOLOGY 2016; 203:198-203. [PMID: 26724551 DOI: 10.1016/j.biortech.2015.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate a waste, waste cooking oil (WCO) as substrate for carotene production by Blakeslea trispora in shake flask culture. WCO was found to be a useful substrate for carotene production. B. trispora formed only pellets during fermentation. The oxidative stress in B. trispora induced by hydroperoxides and BHT as evidenced by increase of the specific activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly the production of carotenes. The highest concentration of carotenes (2021 ± 75 mg/l or 49.3 ± 0.2 mg/g dry biomass) was obtained in culture grown in WCO (50.0 g/l) supplemented with CSL (80.0 g/l) and BHT (4.0 g/l). In this case the carotenes produced consisted of β-carotene (74.2%), γ-carotene (23.2%), and lycopene (2.6%). The external addition in the above medium glucose, Span 80, yeast extract, casein acid hydrolysate, l-asparagine, thiamine. HCl, KH2PO4, and MgSO4·7H2O did not improve the production of carotenes.
Collapse
Affiliation(s)
- Konstantina Nanou
- Laboratory of Food Engineering and Processing, Department of Food Science and Technology, Aristotle University, Box 250, 54124 Thessaloniki, Greece
| | - Triantafyllos Roukas
- Laboratory of Food Engineering and Processing, Department of Food Science and Technology, Aristotle University, Box 250, 54124 Thessaloniki, Greece.
| |
Collapse
|
6
|
Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Appl Microbiol Biotechnol 2015; 99:4905-15. [DOI: 10.1007/s00253-015-6513-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 01/24/2023]
|
7
|
From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor. Appl Biochem Biotechnol 2014; 175:182-93. [DOI: 10.1007/s12010-014-1260-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
8
|
Petrik S, Obruča S, Benešová P, Márová I. Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Tangkhavanich B, Kobayashi T, Adachi S. Effects of repeated treatment on the properties of rice stem extract using subcritical water, ethanol, and their mixture. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2013.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Matsakas L, Kekos D, Loizidou M, Christakopoulos P. Utilization of household food waste for the production of ethanol at high dry material content. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:4. [PMID: 24401142 PMCID: PMC3892076 DOI: 10.1186/1754-6834-7-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/24/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. RESULTS Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. CONCLUSIONS In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.
Collapse
Affiliation(s)
- Leonidas Matsakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
- Department of Civil, Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87 Luleå, Sweden
| | - Dimitris Kekos
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Maria Loizidou
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, 5, Iroon Polytechniou Str, Zografou Campus, 15780 Athens, Greece
| | - Paul Christakopoulos
- Department of Civil, Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Environmental and Natural Resources Engineering, Luleå University of Technology, SE 971 87 Luleå, Sweden
| |
Collapse
|
11
|
Ambye-Jensen M, Thomsen ST, Kádár Z, Meyer AS. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:116. [PMID: 23945109 PMCID: PMC3751596 DOI: 10.1186/1754-6834-6-116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/22/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Ensiling is a well-known method for preserving green biomasses through anaerobic production of organic acids by lactic acid bacteria. In this study, wheat straw is subjected to ensiling in combination with hydrothermal treatment as a combined pretreatment method, taking advantage of the produced organic acids. RESULTS Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0.5%. When comparing hydrothermally treated wheat straw (170, 180 and 190°C) with hydrothermally treated ensiled wheat straw (same temperatures), several positive effects of ensiling were revealed. Glucan was up-concentrated in the solid fraction and the solubilisation of hemicellulose was significantly increased. Subsequent enzymatic hydrolysis of the solid fractions showed that ensiling significantly improved the effect of pretreatment, especially at the lower temperatures of 170 and 180°C. The overall glucose yields after pretreatments of ensiled wheat straw were higher than for non-ensiled wheat straw hydrothermally treated at 190°C, namely 74-81% of the theoretical maximum glucose in the raw material, which was ~1.8 times better than the corresponding yields for the non-ensiled straw pretreated at 170 or 180°C. The highest overall conversion of combined glucose and xylose was achieved for ensiled wheat straw hydrothermally treated at 180°C, with overall glucose yield of 78% and overall conversion yield of xylose of 87%. CONCLUSIONS Ensiling of wheat straw is shown to be an effective pre-step to hydrothermal treatment, and can give rise to a welcomed decrease of process temperature in hydrothermal treatments, thereby potentially having a positive effect on large scale pretreatment costs.
Collapse
Affiliation(s)
- Morten Ambye-Jensen
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, DTU, Denmark
| | - Sune Tjalfe Thomsen
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, DTU, Denmark
| | - Zsófia Kádár
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, DTU, Denmark
| | - Anne S Meyer
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, DTU, Denmark
| |
Collapse
|