1
|
Zhukov V, Moldon I, Zagustina N, Mironov V. Removal of terpenes in the presence of easily degradable compounds during biofiltration of gas emissions from composting of municipal solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123162. [PMID: 39550942 DOI: 10.1016/j.jenvman.2024.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Composting of the organic fraction of municipal solid waste (OFMSW) is accompanied by the emission of large volumes of harmful, hazardous and foul-smelling volatile organic compounds (VOCs). To improve the efficiency of terpenes removal, which constitute a significant part of VOCs, pure cultures of microorganisms dominating in its microbiota were isolated from the microbial community of the biofilter, which has been cleaning such emissions for a long time. Seven pure cultures were isolated and then tested for being able to grow on a mineral medium in the presence of terpene vapor as the only source of carbon and energy. Three of the most actively growing cultures were selected, characterized and identified by the 16S rRNA gene as Rhodococcus erythropolis CA1, Rhodococcus pyridinivorans CA3 and Gordonia sp. CA6. Three identical laboratory biofilters (BF) were inoculated with a mix of these cultures to test the possibility of more complete removal of terpenes. Biofilters were adapting to clearing the model mix of terpineols and geraniol vapors for 45 days. During 45 days the purification efficiency of the model mix reached an average of 91.5% with a contact time (CT) of 3.7 ± 0.2 s and the terpene vapors concentration of 14 ± 2 mg m-3. Then the biofilters number BF2.1 and BF3.1 were connected to real emission from composting OFMSW. The biofilter BF2.1 purified the emission directly, whereas BF3.1 purified similar discharge after the intermediate biofilter of the 1st stage of purification (BF0.0). The BF1.0 was left connected to purification of the model mix as a control. The effectiveness of biofiltration of hard-to-remove terpenes was evaluated by gas chromatography of samples taken at the inlet and outlet of biofilters. The average efficiency of removing terpenes from real emissions by BF2.1 was 93.1 % (CT = 5.5 s). The total efficiency of removing terpenes by (BF0.0 + BF3.1) complex was 93.2 % (total CT = 7.4 s). A study of the microbiota of inoculated biofilters after 60 and 90 days of purification the real emission by cultivation from dilutions, identification by the 16S rRNA gene and fingerprinting showed that in BF2.1 and BF3.1 Rhodococcus erythropolis CA1 and Rhodococcus pyridinivorans CA3 were preserved among living cells at a level of 6.5-12.4 %, and genetically fully corresponded to the original cultures. These results could have a positive impact on improving the results of deodorization of emissions from OFMSW composting by biofiltration, simplifying the design of the biofiltration facility (one stage instead of two) and reducing the total time for effective biofiltration. This, in turn, would contribute to the wider introduction of highly efficient emission purification methods at OFMSW composting facilities in order to create more comfortable and ecologically clean environmental conditions around them.
Collapse
Affiliation(s)
- Vitaly Zhukov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ivan Moldon
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Nataliya Zagustina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir Mironov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Chaghouri M, Gennequin C, Tidahy LH, Cazier F, Abi-Aad E, Veignie E, Rafin C. Low cost and renewable H 2S-biofilter inoculated with Trichoderma harzianum. ENVIRONMENTAL TECHNOLOGY 2024; 45:1508-1521. [PMID: 36377420 DOI: 10.1080/09593330.2022.2147024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The use of biogas to produce hydrogen is currently gaining more attention. One of the drawbacks for the valorization of biogas is the presence of H2S, a hazardous molecule that can cause damage in the metallic internal structures of industries. In this study, the H2S-removal performance of a fungi-based biofilter was investigated. First, an H2S-resistant fungal species was isolated from an industrial digestate and identified as Trichoderma harzianum. The capacity of this microorganism to metabolize H2S in a mineral medium was confirmed. Then, a bioreactor was constructed and put in place to monitor the elimination of gaseous H2S. A mix of cardboard, perlite, woodchips, and wood pellets was used as filling. Microbial development and the outlet gas composition were monitored during a 60-day experimental process during which H2S was completely removed. 97% of the introduced sulphur was detected in the used filling material (fungal species + packing material) by elemental analysis. 24% of the detected sulphur was identified by ion-exchange chromatography as SO42-. Elemental analysis, gas chromatography, and ion-exchange chromatography were used to determine the bioreactor sulphur balance. Metagenomic analysis underlined that H2S elimination was due to the presence of Trichoderma harzianum with a H2S-specific bacterial consortium.
Collapse
Affiliation(s)
- Muriel Chaghouri
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Cédric Gennequin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Lucette Haingomalala Tidahy
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Centre commun de mesures, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Edmond Abi-Aad
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Etienne Veignie
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Catherine Rafin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UR4492, Université du Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
3
|
Sakhaei A, Zamir SM, Rene ER, Veiga MC, Kennes C. Neural network-based performance assessment of one- and two-liquid phase biotrickling filters for the removal of a waste-gas mixture containing methanol, α-pinene, and hydrogen sulfide. ENVIRONMENTAL RESEARCH 2023; 237:116978. [PMID: 37633629 DOI: 10.1016/j.envres.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The performance of one- and two-liquid phase biotrickling filters (OLP/TLP-BTFs) treating a mixture of gas-phase methanol (M), α-pinene (P), and hydrogen sulfide (H) was assessed using artificial neural network (ANN) modeling. The best ANN models with the topologies 3-9-3 and 3-10-3 demonstrated an exceptional capacity for predicting the performance of O/TLP-BTFs, with R2 > 99%. The analysis of causal index (CI) values for the model of OLP-BTF revealed a negative impact of M on P removal (CI = -2.367), a positive influence of P and H on M removal (CI = +7.536 and CI = +3.931) and a negative effect of H on P removal (CI = -1.640). The addition of silicone oil in TLP-BTF reduced the negative impact of M and H on P degradation (CI = -1.261 and CI = -1.310, respectively) compared to the OLP-BTF. These findings suggested that silicone oil had the potential to improve P availability to the biofilm by increasing the concentration gradient of P between the air/gas and aqueous phases. Multi-objective particle swarm optimization (MOPSO) suggested an optimum operational condition, i.e. inlet M, P, and H concentrations of 1.0, 1.1, and 0.3 g m-3, respectively, with elimination capacities (ECs) of 172.1, 26.5, and 0.025 g m-3 h-1 for OLP-BTF. Likewise, one of the optimum operational conditions for TLP-BTF is achievable at inlet concentrations of 4.9, 1.7, and 0.8 g m-3, leading to the optimum ECs of 299.7, 52.9, and 0.072 g m-3 h-1 for M, P, and H, respectively. These results provide important insights into the treatment of complex waste gas mixtures, addressing the interactions between the pollutant removal characteristics in OLP/TLP-BTFs and providing novel approaches in the field of biological waste gas treatment.
Collapse
Affiliation(s)
- Amirmohammad Sakhaei
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran
| | - Seyed Morteza Zamir
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-114, Iran.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| |
Collapse
|
4
|
Zamir SM, Rene ER, Veiga MC, Kennes C. Comparative assessment of the performance of one- and two-liquid phase biotrickling filters for the simultaneous abatement of gaseous mixture of methanol, α-pinene, and hydrogen sulfide. CHEMOSPHERE 2023; 341:140022. [PMID: 37657695 DOI: 10.1016/j.chemosphere.2023.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
A gaseous mixture of methanol (M), α-pinene (P), and hydrogen sulfide (H) was treated in one/two-liquid phase biotrickling filters (OLP/TLP-BTFs) at varying inlet concentrations and at an empty bed residence time (EBRT) of 57 s. The performance of TLP-BTF [BTF (A)] improved significantly in terms of M and P removal due to the presence of silicone oil at 5% v/v. The maximum elimination capacities (ECs) of M, P, and H in BTF (A) were obtained as 309, 73, and 56 g m-3 h-1, respectively. While, the maximum ECs achieved in the BTF operated without silicone oil [BTF (B)] were 172, 28, and 21 g m-3 h-1 for M, P, and H removal, respectively. Increasing the inlet concentration of H from 32 to 337 ppm inhibited P removal in both the BTFs. The presence of silicone oil enhanced gas-liquid mass transfer, prevented the BTF from experiencing substrate inhibition effects and allowed reaching high ECs for M and P. The experiments showed promising results for the long-term operation of removal of M, P, and H mixture in a one-stage TLP-BTF with the decreasing negative effects of M and H on P degradation.
Collapse
Affiliation(s)
- Seyed Morteza Zamir
- Biochemical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P.O. Box 3015, 2611 AX, Delft, the Netherlands
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E - 15008, A Coruña, Spain.
| |
Collapse
|
5
|
Deng Y, Yang G, Lens PNL, He Y, Qie L, Shen X, Chen J, Cheng Z, Chen D. Enhanced removal of mixed VOCs with different hydrophobicities by Tween 20 in a biotrickling filter: Kinetic analysis and biofilm characteristics. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131063. [PMID: 36867905 DOI: 10.1016/j.jhazmat.2023.131063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Mass transfer limitation usually causes the poor performance of biotrickling filters (BTFs) for the treatment of hydrophobic volatile organic compounds (VOCs) during long-term operation. In this study, two identical lab-scale BTFs were established to remove a mixture of n-hexane and dichloromethane (DCM) gases using non-ionic surfactant Tween 20 by Pseudomonas mendocina NX-1 and Methylobacterium rhodesianum H13. A low pressure drop (≤110 Pa) and a rapid biomass accumulation (17.1 mg g-1) were observed in the presence of Tween 20 during the startup period (30 d). The removal efficiency (RE) of n-hexane was enhanced by 15.0%- 20.5% while DCM was completely removed with the inlet concentration (IC) of 300 mg·m-3 at different empty bed residence times in the Tween 20 added BTF. The viable cells and the relative hydrophobicity of the biofilm were increased under the action of Tween 20, which facilitated the mass transfer and enhanced the metabolic utilization of pollutants by microbes. Besides, Tween 20 addition enhanced the biofilm formation processes including the increased extracellular polymeric substance (EPS) secretion, biofilm roughness and biofilm adhesion. The kinetic model simulated the removal performance of the BTF with Tween 20 for the mixed hydrophobic VOCs, and the goodness-of-fit was above 0.9.
Collapse
Affiliation(s)
- Ya Deng
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guangfeng Yang
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China
| | - Piet N L Lens
- National University of Ireland, Galway H91TK33, Ireland
| | - Yaxue He
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Key Laboratory of Petrochemical Environmental Pollution Control of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lingxiang Qie
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xingyu Shen
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jianmeng Chen
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Key Laboratory of Petrochemical Environmental Pollution Control of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongzhi Chen
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316004, China; Key Laboratory of Petrochemical Environmental Pollution Control of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
6
|
Marycz M, Brillowska-Dąbrowska A, Cantera S, Gębicki J, Muñoz R. Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters. CHEMOSPHERE 2023; 313:137609. [PMID: 36566789 DOI: 10.1016/j.chemosphere.2022.137609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The present study systematically evaluated the potential of Candida subhashii, Fusarium solani and their consortium for the abatement of n-hexane, trichloroethylene (TCE), toluene and α-pinene in biofilters (BFs) and biotrickling filters (BTFs). Three 3.2 L BFs packed with polyurethane foam and operated at a gas residence time of 77 s with an air mixture of hydrophobic volatile organic compounds (VOCs) were inoculated with C. subhashii, F. solani and a combination of thereof. The systems were also operated under a BTF configuration with a liquid recirculating rate of 2.5 L h-1. Steady state elimination capacities (ECs) of total VOCs of 17.4 ± 0.7 g m-3 h-1 for C. subhashii, 21.2 ± 0.8 g m-3 h-1 for F. solani and 24.4 ± 1.4 g m-3 h-1 for their consortium were recorded in BFs, which increased up to 27.2 ± 1.6 g m-3 h-1, 29.2 ± 1.9 g m-3 h-1, 37.7 ± 3.3 g m-3 h-1 in BTFs. BTFs supported a superior biodegradation performance compared to BF, regardless of the VOCs. Moreover, a more effective VOC biodegradation was observed when C. subhashii and F. solani were grown as a consortium. The microbial analysis conducted revealed that the fungi initially introduced in each BF represented the dominant species by the end of the experiment, with C. subhashii gradually overcoming F. solani in the system inoculated with the fungal consortium.
Collapse
Affiliation(s)
- Milena Marycz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina S/n, 47011, Spain; Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Anna Brillowska-Dąbrowska
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Sara Cantera
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, Netherlands
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina S/n, 47011, Spain.
| |
Collapse
|
7
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
8
|
Marycz M, Rodríguez Y, Gębicki J, Muñoz R. Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. CHEMOSPHERE 2022; 306:135608. [PMID: 35810858 DOI: 10.1016/j.chemosphere.2022.135608] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This work systematically compared the potential of a conventional fungal biofilter (BF) and a fungal biotrickling filter (BTF) for the abatement of a mixture of hydrophobic volatile organic compounds (VOCs). Candida subhashii was herein used for the first time, to the best of the author's knowledge, to remove n-hexane, trichloroethylene, toluene and α-pinene under aerobic conditions. C. subhashii immobilized on polyurethane foam supported steady state removal efficiencies of n-hexane, trichloroethylene, toluene and α-pinene of 25.4 ± 0.9%, 20.5 ± 1.0%, 19.6 ± 1.5% and 25.6 ± 2.8% in the BF, and 35.7 ± 0.9%, 24.0 ± 1.6%, 44.0 ± 1.7% and 26.2 ± 1.8% in the BTF, respectively, at relatively short gas residence times (30 s). The ability of C. subhashii to biodegrade n-hexane, TCE, toluene and α-pinene was confirmed in a batch test conducted in serum bottles, where a biodegradation pattern (toluene ≈ n-hexane > α-pinene > trichloroethylene) comparable to that recorded in the BF and BTF was recorded.
Collapse
Affiliation(s)
- Milena Marycz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain; Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Yadira Rodríguez
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233, Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, Universidad de Valladolid, Dr. Mergelina s/n, 47011, Spain.
| |
Collapse
|
9
|
Liu HY, Yang GF, Cheng ZW, Chu QY, Xu YF, Zhang WX, Ye JX, Chen JM, Wang LN, Yang ZY, Tang ZQ, Chen DZ. Interaction of tetrahydrofuran and methyl tert-butyl ether in waste gas treatment by a biotrickling filter bioaugmented with Piscinibacter caeni MQ-18 and Pseudomonas oleovorans DT4. CHEMOSPHERE 2022; 286:131552. [PMID: 34320440 DOI: 10.1016/j.chemosphere.2021.131552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/26/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmented biotrickling filter (BTF) seeded with Piscinibacter caeni MQ-18, Pseudomonas oleovorans DT4, and activated sludge was established to investigate the treatment performance and biodegradation kinetics of the gaseous mixtures of tetrahydrofuran (THF) and methyl tert-butyl ether (MTBE). Experimental results showed an enhanced startup performance with a startup period of 9 d in bioaugmented BTF (25 d in control BTF seeded with activated sludge). The interaction parameter I2,1 of control (7.462) and bioaugmented BTF (3.267) obtained by the elimination capacity-sum kinetics with interaction parameter (EC-SKIP) model indicated that THF has a stronger inhibition of MTBE biodegradation in the control BTF than in the bioaugmented BTF. Similarly, the self-inhibition EC-SKIP model quantified the positive effects of MTBE on THF biodegradation, as well as the negative effects of THF on MTBE biodegradation and the self-inhibition of MTBE and THF. Metabolic intermediate analysis, real-time quantitative polymerase chain reaction, biofilm-biomass determination, and high-throughput sequencing revealed the possible mechanism of the enhanced treatment performance and biodegradation interactions of MTBE and THF.
Collapse
Affiliation(s)
- Hao-Yang Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guang-Feng Yang
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China; Key Laboratory of Petrochemical Environmental Pollution Control of Zhejiang Province, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qi-Ying Chu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yu-Feng Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wei-Xi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Li-Ning Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ze-Yu Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ze-Qin Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China.
| |
Collapse
|
10
|
Zhang Y, Liu J, Chen Y, Li J. Screening and study of the degradation characteristics of efficient toluene degrading bacteria combinations. ENVIRONMENTAL TECHNOLOGY 2021; 42:3403-3410. [PMID: 32070244 DOI: 10.1080/09593330.2020.1732477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
In this paper, three effective toluene-degrading bacteria were obtained through acclimation and screening by using landfill leachate as the initial liquid strain. The three obtained bacteria were denoted as J1, J2 and J3, and identified as Pseudomonas, Bacillus and Staphylococcus, respectively. We then identified the optimal combination of these toluene-degrading bacteria in the laboratory. The combination of J1 + J3 (1:1) exhibited the highest toluene removal efficiency (RE). A vertical bio-trickling filter (BTF) packed with ceramsite was started by inoculation with the effective combination. The performance of the BTF in treating toluene under various operating conditions was investigated. After 17 days of operation, the toluene RE reached about 90% and the maximum elimination capacity reached 42.0 g m-3 h-1. The scanning electron microscope (SEM) showed that after the successful start-up of the BTF, the biofilm on the packing surface primarily consisted of Bacillus and Staphylococcus. During the stable state, the RE of the BTF was maintained above 80%, the shortest empty bed residence time was 34 s and toluene concentrations ranged between 300 and 800 mg m-3. The results indicate that the BTF started using the effective combination of bacteria described here is robust. This paper also provides a preliminary analysis of the mechanism of microbial degradation of pollutants in the BTF.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jia Liu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Ying Chen
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Jian Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, People's Republic of China
| |
Collapse
|
11
|
Prikyai K, Watsuntorn W, Rene ER, Visvanathan C. Performance of an air membrane bioreactor for methanol removal under steady and transient state conditions. CHEMOSPHERE 2020; 260:127514. [PMID: 32688309 DOI: 10.1016/j.chemosphere.2020.127514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The main aim of this study was to evaluate the performance of an air membrane bioreactor (aMBR) for the treatment of gas-phase methanol. A laboratory-scale hollow fiber aMBR was operated for 150 days, at inlet methanol concentrations varying between 2 and 30 g m-3 and at empty bed residence times (EBRT) of 30, 10 and 5 s. Under steady-state conditions, a maximum methanol removal efficiency (RE) of 98% was obtained at an EBRT of 30 s and a decrease in RE of methanol was observed at lower EBRTs. On increasing the inlet loading rate, some portion of gas-phase MeOH was stripped into the liquid phase due to its solubility in water. Under transient conditions, the MeOH removal efficiency dropped from an average value of 95%-90% after 5 h of 10-fold shock load and dropped from an average value of 95%-88% under 5-fold increase in shock load. During transient-state tests, the aMBR performed well under different upset loading conditions and a drop in RE of ∼ 5-10% was observed. However, the aMBR performance was restored within 1-2 days when pre-shock conditions were restored. The results from microbial structure analysis revealed a big shift of the dominant methanol degrader, from Candida boidinii strain TBRC 217 to Xanthobacter sp. and Fusicolla sp., respectively.
Collapse
Affiliation(s)
- Kamonkarn Prikyai
- Department of Energy, Environment and Climate Change, School of Environmental, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Wannapawn Watsuntorn
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, PO Box 3015, 2601 DA, Delft, the Netherlands.
| | - Chettiyappan Visvanathan
- Department of Energy, Environment and Climate Change, School of Environmental, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| |
Collapse
|
12
|
Evaluation of Immobilization of Selected Peat-Isolated Yeast Strains of the Species Candida albicans and Candida subhashii on the Surface of Artificial Support Materials Used for Biotrickling Filtration. Processes (Basel) 2020. [DOI: 10.3390/pr8070801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The paper describes the process of n-butanol abatement by unicellular fungi, able to deplete n-butanol content in gas, by using n-butanol as source of carbon. Isolated and identified fungi species Candida albicans and Candida subhashii were subjected to a viability process via assimilation of carbon from hydrophilic and hydrophobic compounds. The isolates, which exhibited the ability to assimilate carbon, were immobilized on four different types of artificial support materials used for biotrickling filtration. Application of optical microscopy, flow cytometry and the tests employing propidium iodide and annexin V revealed viability of the fungi isolated on support materials’ surfaces at the average level of 95%. The proposed method of immobilization and its evaluation appeared to be effective, cheap and fast. Based on performed comparative analyses, it was shown that polyurethane foam and Bialecki rings (25 × 25) could be attractive support materials in biotrickling filtration.
Collapse
|
13
|
Yang K, Li L, Wang Y, Liu J. Effects of substrate fluctuation on the performance, microbial community and metabolic function of a biofilter for gaseous dichloromethane treatment. CHEMOSPHERE 2020; 249:126185. [PMID: 32088467 DOI: 10.1016/j.chemosphere.2020.126185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Dichloromethane (DCM) is a harmful volatile organic compound that usually originates from pharmaceutical industry. In this study, the treatment of gaseous DCM in a biofilter was investigated by gradually increasing the DCM inlet concentration. Nearly 80% of DCM could be removed when the inlet concentration was lower than 0.30 g m-3. The maximum elimination capacity of 26.6 g m-3·h-1 was achieved at an inlet loading rate of 38.4 g m-3·h-1. However, with the increase in the inlet concentration to more than 0.60 g m-3, the removal efficiency obviously decreased to about 40%. After a starvation period of 2 weeks, the biofilter rapidly recovered its performance. The Haldane model including a substrate inhibition term was applied to describe the kinetics of the biofilter. High-throughput sequencing indicated that DCM-degrading genera, such as Rhodanobacter sp., Hyphomicrobium sp., Rhizomicrobium sp., Bacillus sp., Pseudomonas sp., and Clostridium sp., were dominant in the biofilter in different operation phases. The microbial communities and diversities were greatly affected by the DCM concentration. Microbial metabolic functions were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The results indicated that xenobiotics biodegradation and metabolism, carbohydrate metabolism, and amino acid metabolism were the three most abundant metabolic pathways of the microbes. The abundances of these metabolic functions were also altered by the DCM concentration.
Collapse
Affiliation(s)
- Kaixiong Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Feng R, Zhao G, Yang Y, Xu M, Huang S, Sun G, Guo J, Li J. Enhanced biological removal of intermittent VOCs and deciphering the roles of sodium alginate and polyvinyl alcohol in biofilm formation. PLoS One 2019; 14:e0217401. [PMID: 31116790 PMCID: PMC6530866 DOI: 10.1371/journal.pone.0217401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023] Open
Abstract
Developing a robust biofilm is a prerequisite for a biotrickling filter to obtain the good performance in removing volatile organic compounds (VOCs). But the biofilm formation can be seriously disturbed under intermittent loading condition due to carbon starvation stress in idle time. In this study, a biotrickling filter, with its packing materials being modified by 3% sodium alginate and 5% polyvinyl alcohol (v/v = 1:3), was employed to treat intermittent VOCs. Results showed that the removal efficiencies of toluene, ethylbenzene, p-xylene, m-xylene, and o-xylene was significantly enhanced in the BTF compared to the control one. Under relatively lower inlet loading, nearly complete removal of the five pollutants was achieved. A quantitative analysis showed that the concentration of total organic compound (TOC) in the leachate maintained at a high level, and had a strongly positive correlation with the divergence of microbial communities. The capacity of biofilm formation in the BTF was approximately four-fold higher than the control BTF, while the quantity of EPS secreted was more than ten-fold. EPS comprised largely of protein, and to less extent, polysaccharide. The biofilm formed on the modified packing materials maintained higher levels of microbial diversity and stability, even when modifiers were complete depleted or the VOCs inlet loading was increased. This study highlights the importance of packing materials for reducing the gap in performance between laboratory and industrial applications of BTFs.
Collapse
Affiliation(s)
- Rongfang Feng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Yonggang Yang
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Guoping Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Jun Guo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
15
|
Kuyukina MS, Ivshina IB. Bioremediation of Contaminated Environments Using Rhodococcus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11461-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J. Treatment of malodorous air in biotrickling filters: A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Qian H, Cheng Y, Yang C, Wu S, Zeng G, Xi J. Performance and biofilm characteristics of biotrickling filters for ethylbenzene removal in the presence of saponins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30021-30030. [PMID: 29177780 DOI: 10.1007/s11356-017-0776-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
Saponins were applied to enhance ethylbenzene removal in biotrickling filters (BTFs), and comparison experiments were carried out to evaluate the effects of saponins on ethylbenzene removal and biofilm characteristics at various saponin concentrations. Results showed that the optimum concentration of saponins was 40 mg/L and a maximum removal efficiency (RE) of ethylbenzene reached 84.3%. When the inlet ethylbenzene concentration increased, ranging from 750 to 2300 mg/m3, the RE decreased from 92.1 to 60.8% and from 69.4 to 44.2% for BTF1 and BTF2 in which saponin was and was not added, respectively. The corresponding RE declined from 91.1 to 40.8% and from 71.5 to 35.8% with a decreased empty bed residence time ranging from 45 to 7.5 s. Additionally, significant differences existed between both BTFs not only in the contents of polysaccharide and proteins but also in the surface charge of biofilms, and the ratio of protein to polysaccharide increased with the increase of saponin concentration, which indicated the presumable effect of saponins on liquid-biofilm transfer rates of ethylbenzene. Mechanisms for the enhanced removal of hydrophobic volatile organic compounds at the presence of surfactants were also discussed.
Collapse
Affiliation(s)
- Hui Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yan Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Jinying Xi
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Yang C, Qian H, Li X, Cheng Y, He H, Zeng G, Xi J. Simultaneous Removal of Multicomponent VOCs in Biofilters. Trends Biotechnol 2018; 36:673-685. [DOI: 10.1016/j.tibtech.2018.02.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
|
19
|
Chen DZ, Zhao XY, Miao XP, Chen J, Ye JX, Cheng ZW, Zhang SH, Chen JM. A solid composite microbial inoculant for the simultaneous removal of volatile organic sulfide compounds: Preparation, characterization, and its bioaugmentation of a biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:589-596. [PMID: 28892796 DOI: 10.1016/j.jhazmat.2017.08.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Volatile organic sulfide compounds (VOSCs) are usually resistant to biodegradation, thereby limiting the performance of traditional biotechnology dealing with waste gas containing such pollutants especially in mixture. In this study, a solid composite microbial inoculant (SCMI) was prepared to remove dimethyl sulfide (DMS) and propanethiol (PT). Given that the DMS degradation activity of Alcaligenes sp. SY1 is inducible and the PT-degradation activity of Pseudomonas putida S-1 is constitutive, different strategies are designed for cell cultivation to obtain high VOSC removal rates of SCMI. Compared with the microbial suspension, the prepared SCMI exhibited better storage stability at 4 and 25°C. Inoculation of the SCMI in biotrickling filters (BTFs) could effectively shorten the start-up period and enhance the removal performance. Microbial analysis by Illumina MiSeq indicated that Alcaligenes sp. SY1 and P. putida S-1 might be dominant and persistent among the microbial communities of the BTF during the operation.
Collapse
Affiliation(s)
- Dong-Zhi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Xiang-Yu Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiao-Ping Miao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shi-Han Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jian-Meng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
20
|
Rene ER, Sergienko N, Goswami T, López ME, Kumar G, Saratale GD, Venkatachalam P, Pakshirajan K, Swaminathan T. Effects of concentration and gas flow rate on the removal of gas-phase toluene and xylene mixture in a compost biofilter. BIORESOURCE TECHNOLOGY 2018; 248:28-35. [PMID: 28844689 DOI: 10.1016/j.biortech.2017.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study the performance of a compost/ceramic bead biofilter (6:4 v/v) for the removal of gas-phase toluene and xylene at different inlet loading rates (ILR). The inlet toluene (or) xylene concentrations were varied from 0.1 to 1.5gm-3, at gas flow rates of 0.024, 0.048 and 0.072m3h-1, respectively, corresponding to total ILR varying between 7 and 213gm-3h-1. Although there was mutual inhibition, xylene removal was severely inhibited by the presence of toluene than toluene removal by the presence of xylene. The biofilter was also exposed to transient variations such as prolonged periods of shutdown (30days) and shock loads to envisage the response and recuperating ability of the biofilter. The maximum elimination capacity (EC) for toluene and xylene were 29.2 and 16.4gm-3h-1, respectively, at inlet loads of 53.8 and 43.7gm-3h-1.
Collapse
Affiliation(s)
- Eldon R Rene
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | - Natalia Sergienko
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Torsha Goswami
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - M Estefanía López
- Department of Chemical Engineering, Faculty of Sciences, Campus da Zapateira, University of La Coruńa, Rua da Fraga, 10, E-15008 La Coruña, Spain
| | - Gopalakrishnan Kumar
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Perumal Venkatachalam
- Periyar University, Department of Biotechnology, Plant Genetic Engineering and Molecular Biology Lab, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
| | - K Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - T Swaminathan
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
21
|
Tu X, Guo J, Yang Y, Feng R, Sun G, Li J. Biofilms formed within the acidic and the neutral biotrickling filters for treating H2S-containing waste gases. RSC Adv 2017. [DOI: 10.1039/c7ra04053a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial cell in the innermost biofilm have higher viability, and produce polysaccharide as the main component of EPS in acidic environment.
Collapse
Affiliation(s)
- Xiang Tu
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Jun Guo
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Yonggang Yang
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Rongfang Feng
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou
- PR China
- Guangdong Institute of Microbiology
| | - Guoping Sun
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| | - Jianjun Li
- Guangdong Institute of Microbiology
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangzhou
- PR China
| |
Collapse
|
22
|
Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions. Appl Microbiol Biotechnol 2016; 100:10637-10647. [DOI: 10.1007/s00253-016-7861-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/01/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
23
|
Pérez M, Álvarez-Hornos F, Engesser K, Dobslaw D, Gabaldón C. Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam. N Biotechnol 2016; 33:263-72. [DOI: 10.1016/j.nbt.2015.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
|
24
|
Zeng P, Li J, Liao D, Tu X, Xu M, Sun G. Performance of a combined system of biotrickling filter and photocatalytic reactor in treating waste gases from a paint-manufacturing plant. ENVIRONMENTAL TECHNOLOGY 2015; 37:237-244. [PMID: 26137915 DOI: 10.1080/09593330.2015.1068375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A pilot-scale biotrickling filter (BTF) was established in treating the waste gases that are intermittently produced from an automobile paint-manufacturing workshop. Results showed that the BTF required longer time to adapt to the aromatic compounds. The removal efficiencies (REs) for all aliphatic compounds reached more than 95% on day 80. Aromatic compounds were not easily removed by the BTF. The REs obtained by the BTF for toluene, ethylbenzene, m-xylene, o-xylene and p-xylene on day 80 were 72.7%, 77.2%, 71.9%, 74.8% and 60.0%, respectively. A maximum elimination capacity (EC) of 13.8 g-C m(-3) h(-1) of the BTF was achieved at an inlet loading rate of 19.4 g-C m(-3) h(-1) with an RE of 72%. Glucose addition promoted the biomass accumulation despite the fact that temporal decrease of REs for aromatic compounds occurred. When the inlet loading rates exceed 11.1 g-C m(-3) h(-1), the REs of the aromatic compounds decreased by 10% to 15%. This negative effect of shock loads on the performance of the BTF can be attenuated by the pre-treatment of the photocatalytic reactor. Nearly all components were removed by the combined system with REs of 99%.
Collapse
Affiliation(s)
- Peiyuan Zeng
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| | - Jianjun Li
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| | - Dongqi Liao
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| | - Xiang Tu
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| | - Meiying Xu
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| | - Guoping Sun
- a Guangdong Institute of Microbiology , 100 Central Xianlie Road, Building 58, Guangzhou 510070 , People's Republic of China
- b Guangdong Open Laboratory of Applied Microbiology , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
- c State Key Laboratory of Applied Microbiology South China , 100 Central Xianlie Road, Guangzhou 510070 , People's Republic of China
| |
Collapse
|
25
|
Montes M, Veiga MC, Kennes C. Optimization of the performance of a thermophilic biotrickling filter for alpha-pinene removal from polluted air. ENVIRONMENTAL TECHNOLOGY 2014; 35:2466-2475. [PMID: 25145201 DOI: 10.1080/09593330.2014.910557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biodegradation of alpha-pinene was investigated in a biological thermophilic trickling filter, using a lava rock and polymer beads mixture as packing material. Partition coefficient (PC) between alpha-pinene and the polymeric material (Hytrel G3548 L) was measured at 50 degrees C. PCs of 57 and 846 were obtained between the polymer and either the water or the gas phase, respectively. BTF experiments were conducted under continuous load feeding. The effect of yeast extract (YE) addition in the recirculating nutrient medium was evaluated. There was a positive relationship between alpha-pinene biodegradation, CO2 production and YE addition. A maximum elimination capacity (ECmax) of 98.9 g m(-3) h(-1) was obtained for an alpha-pinene loading rate of about 121 g m(-3) h(-1) in the presence of 1 g L(-1) YE. The ECmax was reduced by half in the absence of YE. It was also found that a decrease in the liquid flow rate enhances alpha-pinene biodegradation by increasing the ECmax up to 103 gm(-3) h(-1) with a removal efficiency close to 90%. The impact of short-term shock-loads (6 h) was tested under different process conditions. Increasing the pollutant load either 10- or 20-fold resulted in a sudden drop in the BTF's removal capacity, although this effect was attenuated in the presence of YE.
Collapse
|
26
|
Li ZX, Yang BR, Jin JX, Pu YC, Ding C. The operating performance of a biotrickling filter with Lysinibacillus fusiformis for the removal of high-loading gaseous chlorobenzene. Biotechnol Lett 2014; 36:1971-9. [PMID: 24930097 PMCID: PMC4150996 DOI: 10.1007/s10529-014-1559-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Removal of gaseous chlorobenzene (CB) by a biotrickling filter (BTF) filled with modified ceramics and multi-surface hollow balls during gas-liquid mass transfer at the steady state was by microbial degradation rather than dissolution in the spray liquid or emission into the atmosphere. The BTF was flexible and resistant to the acid environment of the spray liquid, with the caveat that the spray liquid should be replaced once every 6-7 days. The BTF, loaded with Lysinibacillus fusiformis, performed well for purification of high-loading CB gas. The maximum CB gas inlet loading rate, 103 g m(-3) h(-1), CB elimination capacity, 97 g m(-3) h(-1), and CB removal efficiency, 97.7 %, were reached at a spray liquid flow rate of 27.6 ml min(-1), an initial CB concentration of up to 1,300 mg m(-3), and an empty bed retention time of more than 45 s.
Collapse
Affiliation(s)
- Zhao-Xia Li
- School of Chemical and Biological Engineering, Yancheng Institute of Technology, YanCheng, 224051, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
López ME, Boger Z, Rene ER, Veiga MC, Kennes C. Transient-state studies and neural modeling of the removal of a gas-phase pollutant mixture in a biotrickling filter. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:45-55. [PMID: 24315813 DOI: 10.1016/j.jhazmat.2013.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/31/2013] [Accepted: 11/07/2013] [Indexed: 06/02/2023]
Abstract
The removal efficiency (RE) of gas-phase hydrogen sulfide (H), methanol (M) and α-pinene (P) in a biotrickling filter (BTF) was modeled using artificial neural networks (ANNs). The inlet concentrations of H, M, P, unit flow and operation time were used as the model inputs, while the outputs were the RE of H, M and P, respectively. After testing and validating the results, an optimal network topology of 5-8-3 was obtained. The model predictions were analyzed using Casual index (CI) values. M removal in the BTF was influenced positively by the inlet concentration of M in mixture (CI=3.79), while the removal of P and H were influenced more by the time of BTF operation (CI=25.36, 15.62). The BTF was subjected to different types of short-term shock-loads: 5-h shock-load of HMP mixture simultaneously, and 2.5-h shock-load of either H, M, or P, individually. It was observed that, short-term shock-loads of individual pollutants (M or H) did not significantly affect their own removal, but the removal of P was affected by 50%. The results from this study also show the sensitiveness of the well-acclimated BTF to handle sudden load variations and also revival capability of the BTF when pre-shock conditions were restored.
Collapse
Affiliation(s)
- M Estefanía López
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - Zvi Boger
- OPTIMAL - Industrial Neural Systems, 54 Rambal St., Be'er Sheva 84243, Israel
| | - Eldon R Rene
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga, 10, 15008 La Coruña, Spain.
| |
Collapse
|