1
|
Xu C, Xiong Y, Wang Q, Fang F, Wang J, Huang S, Xu J, Peng Y, Xie C. Isolation of salt-tolerant Vibrio alginolyticus X511 for efficient co-production of 2,3-butanediol and alginate lyase from Laminaria japonica. Int J Biol Macromol 2025; 288:138765. [PMID: 39674475 DOI: 10.1016/j.ijbiomac.2024.138765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
In order to establish an efficient microbial transformation platform based on seaweed feedstocks, experiments were performed to isolate a salt-tolerant strain capable of producing alginate lyase and 2,3-butanediol (2,3-BDO). Its physiological and biochemical characteristics, carbon source utilization, and product synthesis capabilities were investigated, and then the process for co-producing alginate lyase and 2,3-BDO from Laminaria japonica was optimized. Results showed that the isolated strain was identified as Vibrio alginolyticus, which was capable of utilizing multiple carbon sources to produce alginate lyase and 2,3-BDO even in the presence of 5 % NaCl. The highest reducing sugar yield was achieved as the Laminaria japonica pretreated with 1 % (v/v) sulfuric acid at 120 °C for 18 min. The enzymatic hydrolysis was boosted by devising a novel tween 80-assisted enzyme complex containing 60 FPU/g of cellulase, 15 U/g of pectinase, 20 U/g of alginate lyase, and 90 mg/g of tween 80. After establishing a semi-simultaneous saccharification and fermentation (S-SSF) strategy, the sugars could be fully utilized, yielding 14.83 g/L 2,3-BDO and 11.02 kU/L alginate lyase, respectively. Mass balance calculations indicating that up to 140 g of 2,3-butanediol and 120 kU of alginate lyase can be obtained from per kg of Laminaria japonica via this integrated approach.
Collapse
Affiliation(s)
- Chao Xu
- School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410005, China
| | - Yaru Xiong
- Hunan Provincial Center for Disease Control and prevention, Changsha 410005, China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning 530007, China
| | - Fang Fang
- School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410005, China
| | - Jianhui Wang
- School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410005, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning 530007, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuande Peng
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Biological and Processing for Bast Fiber Crops of Ministry of Agriculture and Rural Affairs, Engineering and Technology Center for Bast Fiber Crops of Hunan Province, Changsha 410205, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Key Laboratory of Biological and Processing for Bast Fiber Crops of Ministry of Agriculture and Rural Affairs, Engineering and Technology Center for Bast Fiber Crops of Hunan Province, Changsha 410205, China.
| |
Collapse
|
2
|
Zeng D, Zhang Y, Ma X, Li J, Yin F, Li D, Bie W. Biosynthesis of poly(β-L-malic acid) from rubberwood enzymatic hydrolysates in co-fermentation by Aureobasidium pullulans. Int J Biol Macromol 2024; 257:128605. [PMID: 38061508 DOI: 10.1016/j.ijbiomac.2023.128605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Co-fermentation of multiple substrates has emerged as the most effective method to improve the yield of bioproducts. Herein, sustainable rubberwood enzymatic hydrolysates (RWH) were co-fermented by Aureobasidium pullulans to produce poly(β-L-malic acid) (PMA), and RWH + glucose/xylose was also investigated as co-substrates. Owing to low inhibitor concentration and abundant natural nitrogen source content of RWH, a high PMA yield of 0.45 g/g and a productivity of 0.32 g/L/h were obtained by RWH substrate fermentation. After optimization, PMA yields following the fermentation of RWH + glucose and RWH + xylose reached 59.92 g/L and 53.71 g/L, respectively, which were 52 % and 36 % higher than that after the fermentation of RWH. RWH + glucose more significantly affected the correlation between PMA yield and substrate concentration than RWH + xylose. The results demonstrated that the co-fermentation of RWH co-substrate is a promising method for the synthesis of bioproducts.
Collapse
Affiliation(s)
- Dongdong Zeng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yutian Zhang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Jianing Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Fen Yin
- College of Mechanical Engineering, Qinghai University, Xining 810016, PR China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenxuan Bie
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
3
|
Lee H, Jung Sohn Y, Jeon S, Yang H, Son J, Jin Kim Y, Jae Park S. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. BIORESOURCE TECHNOLOGY 2023; 376:128879. [PMID: 36921642 DOI: 10.1016/j.biortech.2023.128879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers. These value-added chains, which start with low-value industrial wastes and end with high-value products, can make sugarcane-based biorefinery a more viable option for the modern chemical industry. In this review, recent advances in sugarcane valorization techniques are presented, ranging from sugarcane processing, pretreatment, and microbial production of value-added products. Three lucrative products, ethanol, 2,3-butanediol, and polyhydroxyalkanoates, whose production from sugarcane wastes has been widely researched, are being explored. Future studies and development in sugarcane waste biorefinery are discussed to overcome the challenges remaining.
Collapse
Affiliation(s)
- Haeyoung Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Subeen Jeon
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyoju Yang
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
5
|
Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0783-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
C4 Bacterial Volatiles Improve Plant Health. Pathogens 2021; 10:pathogens10060682. [PMID: 34072921 PMCID: PMC8227687 DOI: 10.3390/pathogens10060682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.
Collapse
|
7
|
Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2020; 346:128860. [PMID: 33385915 DOI: 10.1016/j.foodchem.2020.128860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Molasses is a major by-product of sugar industry and contains 40-60% (w/w) of sugars. The world's annual yield of molasses reaches 55 million tons. Traditionally, molasses is simply discharged or applied to feed production. Additionally, some low-cost and environmentally friendly bioprocesses have been established for microbial production of value-added bioproducts from molasses. Over the last decade and more, increasing numbers of biofuels, polysaccharides, oligosaccharides, organic acids, and enzymes have been produced from the molasses through microbial conversion that possess an array of important applications in the industries of food, energy, and pharmaceutical. For better application, it is necessary to comprehensively understand the research status of bioconversion of molasses that has not been elaborated in detail so far. In this review, these value-added bioproducts and enzymes obtained through bioconversion of molasses, their potential applications in food and other industries, as well as the future research focus were generalized and discussed.
Collapse
|
8
|
Hazeena SH, Sindhu R, Pandey A, Binod P. Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. BIORESOURCE TECHNOLOGY 2020; 302:122873. [PMID: 32019707 DOI: 10.1016/j.biortech.2020.122873] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Bio-refinery approach using agricultural and industrial waste material as feedstock is becoming a preferred area of interest in biotechnology in the current decades. The reasons for this trend are mainly because of the declining petroleum resources, greenhouse gas emission risks and fluctuating market price of crude oil. Most chemicals synthesized petro chemically, can be produced using microbial biocatalysts. 2,3-Butanediol (BDO) is such an important platform bulk chemical with numerous industrial applications including as a fuel additive. Although microbial production of BDO is well studied, strategies that could successfully upgrade the current lab-scale researches to an industrial level have to be developed. This review presents an overview of the recent trends and developments in the microbial production of BDO from different lignocellulose biomass.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695 019, India.
| |
Collapse
|
9
|
Dheskali E, Koutinas AA, Kookos IK. A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
High 2,3-butanediol production from glycerol by Raoultella terrigena CECT 4519. Bioprocess Biosyst Eng 2019; 43:685-692. [PMID: 31848694 DOI: 10.1007/s00449-019-02266-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Bioconversion of biodiesel-derived glycerol into 2,3-butanediol has received recently much attention due to its increasing surplus and its multiple uses in industry as bulk chemical. The influence of initial glycerol concentration on 2,3-butanediol production in batch runs has been studied. A concentration higher than 140 g/L produces an inhibitory effect on the final 2,3-butanediol concentration and its production rate. In batch mode, the highest yield respect to the theoretical maximum yield (71%) was reached employing 140 g/L as initial concentration 140 g/L. Based on these results, a high 2,3-butanediol production has been achieved through a fed-batch strategy. The reached 2,3-butanediol concentration was 90.5 g/L from pure glycerol and 80.5 g/L from raw glycerol. The 2,3-butanediol yield respect to the theoretical maximum yield was also improved through the fed-batch operation (90%). To date, this concentration is the highest produced amount employing as biocatalyst a non-pathogenic bacterium (level 1).
Collapse
|
11
|
Psaki O, Maina S, Vlysidis A, Papanikolaou S, de Castro AM, Freire DM, Dheskali E, Kookos I, Koutinas A. Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Song CW, Park JM, Chung SC, Lee SY, Song H. Microbial production of 2,3-butanediol for industrial applications. J Ind Microbiol Biotechnol 2019; 46:1583-1601. [PMID: 31468234 DOI: 10.1007/s10295-019-02231-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based production process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-BD production are reviewed and their potentials for use in the commercial sector are discussed.
Collapse
Affiliation(s)
- Chan Woo Song
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea
| | - Jong Myoung Park
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea
| | - Sang Chul Chung
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea.,Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyohak Song
- Research and Development Center, GS Caltex Corporation, Yuseong-gu, Daejeon, 34122, South Korea.
| |
Collapse
|
13
|
Ji F, Feng Y, Li M, Long F, Yang Y, Wang T, Wang J, Bao Y, Xue S. Structure and catalytic mechanistic insight into Enterobacter aerogenes acetolactate decarboxylase. Enzyme Microb Technol 2019; 126:9-17. [PMID: 31000168 DOI: 10.1016/j.enzmictec.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022]
Abstract
α-Acetolactate decarboxylase (ALDC) catalyses α-acetolactate into acetoin (3-hydroxy-2-butanone, AC) and is considered to be the rate-limiting enzyme in the synthesis of 2,3-butanediol. In this work, the enzymatic activity of ALDC from Enterobacter aerogenes ALDC (E.a.-ALDC) was fully characterized with enzyme kinetics, indicating a Km of 14.83 ± 0.87 mM and a kcat of 0.81 ± 0.09 s-1. However, compared with the activities of ALDCs reported from other bacteria, the activity of E.a.-ALDC was determined to present a relatively lower value of 849.08 ± 35.21 U/mg. The enzyme showed maximum activity at pH 5.5. In addition, the activity of E.a.-ALDC was promoted by Mg2+. The crystal structure of E.a.-ALDC firstly solved by X-ray crystallography at resolution of 2.4 Å revealed a chelated zinc ion with conserved His199, His201, His212, Glu70 and Glu259. In the active center, the conservative Arg150 was particularly proven to deviate from the zinc ion of the active centre, by adopting a flexible conformational change, resulting in a weak interaction network of the enzyme and the substrate. Further in silico docking of E.a.-ALDC with two enantiomers, (R)-acetolactate and (S)-acetolactate, unaltered the interaction network of E.a.-ALDC from the apo structure, which confirmed the weakened role of Arg150 in the catalytic properties of E.a.-ALDC. Our results reveal a unique structure-function relationship of acetolactate decarboxylase and provide a fundamental basis for the enzymatic synthesis of acetoin.
Collapse
Affiliation(s)
- Fangling Ji
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Yanbin Feng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China
| | - Mingyang Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Feida Long
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yongliang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Tianqi Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China; School of Food and Environment Science and Engineering, Dalian University of Technology, Panjin, Liaoning, 12422, PR China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
14
|
Palaiogeorgou AM, Papanikolaou S, de Castro AM, Freire DMG, Kookos IK, Koutinas AA. A newly isolatedEnterobactersp. strain produces 2,3-butanediol during its cultivation on low-cost carbohydrate-based substrates. FEMS Microbiol Lett 2018; 366:5210085. [DOI: 10.1093/femsle/fny280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aline Machado de Castro
- Renewable Energy Division, Research and Development Center, PETROBRAS, Avenue Horácio Macedo, 950 Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Denise Maria Guimarães Freire
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
15
|
Feng J, Yang J, Yang W, Chen J, Jiang M, Zou X. Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:94. [PMID: 29632554 PMCID: PMC5883625 DOI: 10.1186/s13068-018-1099-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/26/2018] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans. Acid hydrolysis of PMA, resulting in release of the monomer l-malic acid (MA), which is widely used in the food and chemical industry, is a competitive process for producing bio-based platform chemicals. RESULTS In this study, the production of PMA and MA from sucrose and sugarcane molasses by A. pullulans was studied in shake flasks and bioreactors. Comparative metabolome analysis of sucrose- and glucose-based fermentation identified 81 intracellular metabolites and demonstrated that pyruvate from the glycolysis pathway may be a key metabolite affecting PMA synthesis. In silico simulation of a genome-scale metabolic model (iZX637) further verified that pyruvate carboxylase (pyc) via the reductive tricarboxylic acid cycle strengthened carbon flux for PMA synthesis. Therefore, an engineered strain, FJ-PYC, was constructed by overexpressing the pyc gene, which increased the PMA titer by 15.1% compared with that from the wild-type strain in a 5-L stirred-tank fermentor. Sugarcane molasses can be used as an economical substrate without any pretreatment or nutrient supplementation. Using fed-batch fermentation of FJ-PYC, we obtained the highest PMA titers (81.5, 94.2 g/L of MA after hydrolysis) in 140 h with a corresponding MA yield of 0.62 g/g and productivity of 0.67 g/L h. CONCLUSIONS We showed that integrated metabolome- and genome-scale model analyses were an effective approach for engineering the metabolic node for PMA synthesis, and also developed an economical and green process for PMA and MA production from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jing Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Wenwen Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jie Chen
- Wuhan Sunhy Biology Co., Ltd, Wuhan, 430074 People’s Republic of China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
16
|
Park JH, Choi MA, Kim YJ, Kim YC, Chang YK, Jeong KJ. Engineering of Klebsiella oxytoca for production of 2,3-butanediol via simultaneous utilization of sugars from a Golenkinia sp. hydrolysate. BIORESOURCE TECHNOLOGY 2017; 245:1386-1392. [PMID: 28601394 DOI: 10.1016/j.biortech.2017.05.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The Klebsiella oxytoca was engineered to produce 2,3-butanediol (2,3-BDO) simultaneously utilizing glucose and galactose obtained from a Golenkinia sp. hydrolysate. For efficient uptake of galactose at a high concentration of glucose, Escherichia coli galactose permease (GalP) was introduced, and the expression of galP under a weak-strength promoter resulted in simultaneous consumption of galactose and glucose. Next, to improve the sugar consumption, a gene encoding methylglyoxal synthase (MgsA) known as an inhibitor of multisugar metabolism was deleted, and the mgsA-null mutant showed much faster consumption of both sugars than the wild-type strain did. Finally, we demonstrated that the engineered K. oxytoca could utilize sugar extracts from a Golenkinia sp. hydrolysate and successfully produces 2,3-BDO.
Collapse
Affiliation(s)
- Jong Hyun Park
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Ah Choi
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Jae Kim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, BK21 Plus Program, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea; Institutes for the BioCentury (KIB), KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
17
|
Lee SJ, Choi HS, Kim CK, Thapa LP, Park C, Kim SW. Process strategy for 2,3-butanediol production in fed-batch culture by acetate addition. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Jang JW, Jung HM, Im DK, Jung MY, Oh MK. Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Enzyme Microb Technol 2017; 106:114-118. [DOI: 10.1016/j.enzmictec.2017.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
|
19
|
Jung HM, Kim YH, Oh MK. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Biotechnol J 2017; 12. [PMID: 28731532 DOI: 10.1002/biot.201700121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Indexed: 11/07/2022]
Abstract
Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L-1 , 0.23 g g-1 glucose, 0.18 g L-1 h-1 ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
20
|
Huang G, Chen X, Wang C, Zheng H, Huang Z, Chen D, Xie H. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv 2017. [DOI: 10.1039/c7ra09002a] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Photoluminescent carbon dots derived from sugarcane molasses were investigatedviacellular imaging and sensing for Fe3+or sunset yellow. The underlying mechanism of fluorescence quenching in the C-dots/sunset yellow system was also studied.
Collapse
Affiliation(s)
- Gang Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology
- Guangxi Academy of Sciences
- Nanning
- China
- School of Chemistry and Chemical Engineering
| | - Xing Chen
- School of Public Health
- Guangxi Medical University
- Nanning
- China
| | - Cong Wang
- Medical Examination Center
- The People’s Hospital of Guangxi Zhuang Autonomous Region
- Nanning
- China
| | - Hongyu Zheng
- Medical Examination Center
- The People’s Hospital of Guangxi Zhuang Autonomous Region
- Nanning
- China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Dong Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology
- Guangxi Academy of Sciences
- Nanning
- China
| | - Haihui Xie
- Medical Examination Center
- The Eighth People’s Hospital of Nanning
- China
| |
Collapse
|
21
|
The metabolic flux regulation of Klebsiella pneumoniae based on quorum sensing system. Sci Rep 2016; 6:38725. [PMID: 27924940 PMCID: PMC5141413 DOI: 10.1038/srep38725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023] Open
Abstract
Quorum-sensing (QS) systems exist universally in bacteria to regulate multiple biological functions. Klebsiella pneumoniae, an industrially important bacterium that produces bio-based chemicals such as 2,3-butanediol and acetoin, can secrete a furanosyl borate diester (AI-2) as the signalling molecule mediating a QS system, which plays a key regulatory role in the biosynthesis of secondary metabolites. In this study, the molecular regulation and metabolic functions of a QS system in K. pneumoniae were investigated. The results showed that after the disruption of AI-2-mediated QS by the knockout of luxS, the production of acetoin, ethanol and acetic acid were relatively lower in the K. pneumoniae mutant than in the wild type bacteria. However, 2,3-butanediol production was increased by 23.8% and reached 54.93 g/L. The observed enhancement may be attributed to the improvement of the catalytic activity of 2,3-butanediol dehydrogenase (BDH) in transforming acetoin to 2,3-butanediol. This possibility is consistent with the RT-PCR-verified increase in the transcriptional level of budC, which encodes BDH. These results also demonstrated that the physiological metabolism of K. pneumoniae was adversely affected by a QS system. This effect was reversed through the addition of synthetic AI-2. This study provides the basis for a QS-modulated metabolic engineering study of K. pneumoniae.
Collapse
|
22
|
Bonatsos N, Dheskali E, Freire DM, de Castro AM, Koutinas AA, Kookos IK. A mathematical programming formulation for biorefineries technology selection. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 2016; 32:200. [DOI: 10.1007/s11274-016-2161-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023]
|
24
|
Sikora B, Kubik C, Kalinowska H, Gromek E, Białkowska A, Jędrzejczak-Krzepkowska M, Schüett F, Turkiewicz M. Application of byproducts from food processing for production of 2,3-butanediol using Bacillus amyloliquefaciens TUL 308. Prep Biochem Biotechnol 2016; 46:610-9. [DOI: 10.1080/10826068.2015.1085401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Barbara Sikora
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Celina Kubik
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Halina Kalinowska
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Ewa Gromek
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Aneta Białkowska
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | - Marzena Jędrzejczak-Krzepkowska
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| | | | - Marianna Turkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
25
|
Koutinas AA, Yepez B, Kopsahelis N, Freire DMG, de Castro AM, Papanikolaou S, Kookos IK. Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. BIORESOURCE TECHNOLOGY 2016; 204:55-64. [PMID: 26773945 DOI: 10.1016/j.biortech.2015.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 05/23/2023]
Abstract
This study presents the techno-economic evaluation of 2,3-butanediol (BDO) production via fermentation using glycerol, sucrose and sugarcane molasses as carbon sources. Literature-cited experimental data were used to design the fermentation stage, whereas downstream separation of BDO was based on reactive extraction of BDO employing an aldehyde to convert BDO into an acetal that is immiscible with water. The selected downstream process can be used in all fermentations employed. Sensitivity analysis was carried out targeting the estimation of the minimum selling price (MSP) of BDO at different plant capacities and raw material purchase costs. In all cases, the MSP of BDO is higher than 1 $/kg that is considered as the target in order to characterize a fermentation product as platform chemical. The complex nutrient supplements, the raw material market price and the fermentation efficiency were identified as the major reasons for the relatively high MSP observed.
Collapse
Affiliation(s)
- Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Bernardo Yepez
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro 21941-909, RJ, Brazil
| | - Nikolaos Kopsahelis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Denise M G Freire
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Centro de Tecnologia, Bloco A, Lab 549, Rio de Janeiro 21941-909, RJ, Brazil
| | - Aline Machado de Castro
- Biotechnology Division, Research and Development Center, PETROBRAS, Av. Horácio Macedo, 950. Ilha do Fundão, Rio de Janeiro 21941-915, Brazil
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Ioannis K Kookos
- Department of Chemical Engineering, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
26
|
Microbial production of 2,3-butanediol through a two-stage pH and agitation strategy in 150l bioreactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. ACTA ACUST UNITED AC 2015; 42:1609-21. [DOI: 10.1007/s10295-015-1697-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/27/2015] [Indexed: 11/26/2022]
Abstract
Abstract
2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.
Collapse
|
28
|
Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl Microbiol Biotechnol 2015; 100:2663-76. [DOI: 10.1007/s00253-015-7164-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/29/2015] [Accepted: 11/08/2015] [Indexed: 10/22/2022]
|
29
|
|
30
|
Radoš D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact 2015; 14:171. [PMID: 26511723 PMCID: PMC4625470 DOI: 10.1186/s12934-015-0362-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/18/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND 2,3-Butanediol is an important bulk chemical with a wide range of applications. In bacteria, this metabolite is synthesised from pyruvate via a three-step pathway involving α-acetolactate synthase, α-acetolactate decarboxylase and 2,3-butanediol dehydrogenase. Thus far, the best producers of 2,3-butanediol are pathogenic strains, hence, the development of more suitable organisms for industrial scale fermentation is needed. Herein, 2,3-butanediol production was engineered in the Generally Regarded As Safe (GRAS) organism Corynebacterium glutamicum. A two-stage fermentation process was implemented: first, cells were grown aerobically on acetate; in the subsequent production stage cells were used to convert glucose into 2,3-butanediol under non-growing and oxygen-limiting conditions. RESULTS A gene cluster, encoding the 2,3-butanediol biosynthetic pathway of Lactococcus lactis, was assembled and expressed in background strains, C. glutamicum ΔldhA, C. glutamicum ΔaceEΔpqoΔldhA and C. glutamicum ΔaceEΔpqoΔldhAΔmdh, tailored to minimize pyruvate-consuming reactions, i.e., to prevent carbon loss in lactic, acetic and succinic acids. Producer strains were characterized in terms of activity of the relevant enzymes in the 2,3-butanediol forming pathway, growth, and production of 2,3-butanediol under oxygen-limited conditions. Productivity was maximized by manipulating the aeration rate in the production phase. The final strain, C. glutamicum ΔaceEΔpqoΔldhAΔmdh(pEKEx2-als,aldB,Ptuf butA), under optimized conditions produced 2,3-butanediol with a 0.66 mol mol(-1) yield on glucose, an overall productivity of 0.2 g L(-1) h(-1) and a titer of 6.3 g L(-1). CONCLUSIONS We have successfully developed C. glutamicum into an efficient cell factory for 2,3-butanediol production. The use of the engineered strains as a basis for production of acetoin, a widespread food flavour, is proposed.
Collapse
Affiliation(s)
- Dušica Radoš
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal.
| | - Ana Lúcia Carvalho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal. .,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK.
| | - Stefan Wieschalka
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany. .,Rentschler Biotechnologie GmbH, Erwin-Rentschler-Straße, 21, 88471, Laupheim, Germany.
| | - Ana Rute Neves
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal. .,CED-Discovery, Chr Hansen A/S, 10-12 Bøge Alle, 2970, Hørsholm, Denmark.
| | - Bastian Blombach
- Institute for Biochemical Engineering, University of Stuttgart, 70569, Stuttgart, Germany.
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, 89069, Ulm, Germany.
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, 2780-157, Oeiras, Portugal. .,Lisbon Academy of Sciences, R. Academia das Ciências 19, 1249, Lisbon, Portugal.
| |
Collapse
|
31
|
Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0191-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Jantama K, Polyiam P, Khunnonkwao P, Chan S, Sangproo M, Khor K, Jantama SS, Kanchanatawee S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab Eng 2015; 30:16-26. [PMID: 25895450 DOI: 10.1016/j.ymben.2015.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/18/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
Klebsiella oxytoca KMS005 (∆adhE∆ackA-pta∆ldhA) was metabolically engineered to improve 2,3-butanediol (BDO) yield. Elimination of alcohol dehydrogenase E (adhE), acetate kinase A-phosphotransacetylase (ackA-pta), and lactate dehydrogenase A (ldhA) enzymes allowed BDO production as a primary pathway for NADH re-oxidation, and significantly reduced by-products. KMS005 was screened for the efficient glucose utilization by metabolic evolution. KMS005-73T improved BDO production at a concentration of 23.5±0.5 g/L with yield of 0.46±0.02 g/g in mineral salts medium containing 50 g/L glucose in a shake flask. KMS005-73T also exhibited BDO yields of about 0.40-0.42 g/g from sugarcane molasses, cassava starch, and maltodextrin. During fed-batch fermentation, KMS005-73T produced BDO at a concentration, yield, and overall and specific productivities of 117.4±4.5 g/L, 0.49±0.02 g/g, 1.20±0.05 g/Lh, and 27.2±1.1 g/gCDW, respectively. No acetoin, lactate, and formate were detected, and only trace amounts of acetate and ethanol were formed. The strain also produced the least by-products and the highest BDO yield among other Klebsiella strains previously developed.
Collapse
Affiliation(s)
- Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand.
| | - Pattharasedthi Polyiam
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Panwana Khunnonkwao
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Sitha Chan
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Maytawadee Sangproo
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Kirin Khor
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
| | - Sunthorn Kanchanatawee
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, 30000 Nakhon Ratchasima, Thailand
| |
Collapse
|
33
|
Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl Microbiol Biotechnol 2015; 99:5217-25. [DOI: 10.1007/s00253-015-6442-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
34
|
Dai JY, Zhao P, Cheng XL, Xiu ZL. Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 2015; 175:3014-24. [PMID: 25586489 DOI: 10.1007/s12010-015-1481-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/01/2015] [Indexed: 11/29/2022]
Abstract
2,3-Butanediol has been known as a platform green chemical, and the production cost is the key problem for its large-scale production in which the carbon source occupies a major part. Sugarcane molasses is a by-product of sugar industry and considered as a cheap carbon source for biorefinery. In this paper, the fermentation of 2,3-butanediol with sugarcane molasses was studied by reducing the medium ingredients and operation steps. The fermentation medium was optimized by response surface methodology, and 2,3-butanediol production was explored under the deficiency of sterilization, molasses acidification, and organic nitrogen source. Based on these experiments, the fermentation medium with sugarcane molasses as carbon source was simplified to five ingredients, and the steps of molasses acidification and medium sterilization were reduced; thus, the cost was reduced and the production of 2,3-butanediol was enhanced. Under fed-batch fermentation, 99.5 g/L of 2,3-butanediol and acetoin was obtained at 60 h with a yield of 0.39 g/g sugar.
Collapse
Affiliation(s)
- Jian-Ying Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China,
| | | | | | | |
Collapse
|
35
|
Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:146. [PMID: 26379778 PMCID: PMC4570460 DOI: 10.1186/s13068-015-0336-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/04/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND 2,3-Butanediol (2,3-BDO) is a promising bio-based chemical because of its wide industrial applications. Previous studies on microbial production of 2,3-BDO has focused on sugar fermentation. Alternatively, biodiesel-derived crude glycerol can be used as a cheap resource for 2,3-BDO production; however, a considerable formation of 1,3-propanediol (1,3-PDO) and low concentration, productivity, and yield of 2,3-BDO from glycerol fermentation are limitations. RESULTS Here, we report a high production of 2,3-BDO from crude glycerol using the engineered Klebsiella oxytoca M3 in which pduC (encoding glycerol dehydratase large subunit) and ldhA (encoding lactate dehydrogenase) were deleted to reduce the formation of 1,3-PDO and lactic acid. In fed-batch fermentation with the parent strain K. oxytoca M1, crude glycerol was more effective than pure glycerol as a carbon source in 2,3-BDO production (59.4 vs. 73.8 g/L) and by-product reduction (1,3-PDO, 8.9 vs. 3.7 g/L; lactic acid, 18.6 vs. 9.8 g/L). When the double mutant was used in fed-batch fermentation with pure glycerol, cell growth and glycerol consumption were significantly enhanced and 2,3-BDO production was 1.9-fold higher than that of the parent strain (59.4 vs. 115.0 g/L) with 6.9 g/L of 1,3-PDO and a small amount of lactic acid (0.7 g/L). Notably, when crude glycerol was supplied, the double mutant showed 1,3-PDO-free 2,3-BDO production with high concentration (131.5 g/L), productivity (0.84 g/L/h), and yield (0.44 g/g crude glycerol). This result is the highest 2,3-BDO production from glycerol fermentation to date. CONCLUSIONS 2,3-BDO production from glycerol was dramatically enhanced by disruption of the pduC and ldhA genes in K. oxytoca M1 and 1,3-PDO-free 2,3-BDO production was achieved by using the double mutant and crude glycerol. 2,3-BDO production obtained in this study is comparable to 2,3-BDO production from sugar fermentation, demonstrating the feasibility of economic industrial 2,3-BDO production using crude glycerol.
Collapse
Affiliation(s)
- Sukhyeong Cho
- />Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
| | - Taeyeon Kim
- />Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
- />Interdisciplinary Program in Agriculture Biotechnology, Collage of Agriculture and Life Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Han Min Woo
- />Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
- />Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yunje Kim
- />Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
| | - Jinwon Lee
- />Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea
| | - Youngsoon Um
- />Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 Republic of Korea
- />Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Jung MY, Jung HM, Lee J, Oh MK. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:106. [PMID: 26236395 PMCID: PMC4521459 DOI: 10.1186/s13068-015-0290-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. RESULTS The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. CONCLUSIONS We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.
Collapse
Affiliation(s)
- Moo-Young Jung
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Hwi-Min Jung
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Jinwon Lee
- />Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Min-Kyu Oh
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|