1
|
Diniz BC, Wilfert P, Sorokin DY, van Loosdrecht MCM. Anaerobic digestion at high-pH and alkalinity for biomethane production: Insights into methane yield, biomethane purity, and process performance. BIORESOURCE TECHNOLOGY 2025; 429:132505. [PMID: 40220921 DOI: 10.1016/j.biortech.2025.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The role of high-pH conditions in anaerobic digestion (AD) has traditionally been confined to it's use in pre-treatment processes. However, operating AD at elevated pH and alkalinity offers significant advantages, including in-situ upgrading of biogas to biomethane. This study examines the potential and scalability of AD under these conditions (pH ∼ 9.3; alkalinity ∼ 0.5 eq/L). The substrate used was the alkaline waste generated from the extraction of extracellular polymeric substances (EPS) from aerobic granular sludge (AGS), and the inoculum used was a haloalkaliphile microbial community from soda lake sediments. To evaluate the system's performance, the organic loading rate (OLR) was incrementally increased. The highest methane production obtained was 8.4 ± 0.1 mL/day/gVSadded at a hydraulic retention time (HRT) of 15 days and an OLR of 1 kgVS/day/m3. At this loading rate, methanogenesis became the rate limiting conversion. The maximum volatile solids conversion was 48.1 ± 1.1 %. Throughout the reactor operation, methane purity in the biogas consistently exceeded 90 % peaking at 96.0 ± 0.2 %, showcasing the potential for in-situ biogas purification under these conditions. In addition, no ammonia inhibition was observed, even with free-ammonia (NH3) concentrations reaching up to 14 mM. This study underscores the potential of high-pH anaerobic digestion as a sustainable method for both waste treatment and energy recovery.
Collapse
Affiliation(s)
- Beatriz C Diniz
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Philipp Wilfert
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Labor für Siedlungswasserwirtschaft und Abfalltechnik, Fachbereich Bauwesen, Technische Hochschule Lübeck 23562 Lübeck, Germany
| | - Dimitry Y Sorokin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands; Winogradsky Institute of Microbiology, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| |
Collapse
|
2
|
Gyadi T, Bharti A, Basack S, Kumar P, Lucchi E. Influential factors in anaerobic digestion of rice-derived food waste and animal manure: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 413:131398. [PMID: 39236907 DOI: 10.1016/j.biortech.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Utilization of organic community wastes towards deriving sustainable renewable energy and adequate disposal of the residual has been an important topic of investigation. Anaerobic digestion and co-digestion of rice-derived food waste and animal manure for sustainable biogas generation is crucial from the view-point of community consumption. This paper presents an extensive review of the important and recent contributions in the related areas. The critical physico-chemical parameters involved in such digestion process are analyzed, including temperature, carbon-nitrogen ratio, microorganisms, pH, substrate characteristics, organic loading rate, hydraulic retention time, volatile fatty acids, ammonia, and light/heavy metal ions. Studies implied that the optimum yield of biogas production could be achieved only when the values of the parameters exist in the specific ranges. Few recent studies highlighted the use of emerging techniques including micro-aerobic system, additives, laser radiation, bio-electrochemical field, among others for efficiency enhancement of the digestion process and optimum yield. The entire study provided a set of important conclusions and future research directives are as well proposed.
Collapse
Affiliation(s)
- Tado Gyadi
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Ajay Bharti
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Sudip Basack
- Regent Education and Research Foundation, Affiliated: MAKA University of Technology, Kolkata 700 121, India; Department of Civil Engineering, Graphic Era Deemed to be University, Clement City, Dehradun 248002, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Elena Lucchi
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy.
| |
Collapse
|
3
|
Xiao Y, Mackey HR, Tang W, Lu H, Hao T. Disentangling microbial niche balance and intermediates' trade-offs for anaerobic digestion stability and regulation. WATER RESEARCH 2024; 261:122000. [PMID: 38944003 DOI: 10.1016/j.watres.2024.122000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Anaerobic digestion (AD) is a key technology for converting organic matters to methane-rich biogas. However, nutrient imbalance can destabilize the whole digestion. To realize stable operation of AD and improve its efficiency, this work considers a new strategy to control the intermediate concentrations of poor AD under nutrient stress. For this purpose, long-term digestion under different nutrient conditions was investigated. Results showed that the feedstock with a low C/N ratio (= 6) caused VFA accumulation (2072 ± 632 mg/L), leading to the inhibition of methane production. Employing a substrate with a higher C/N ratio (= 11) and/or adding NH4HCO3 (200 mg NH4+-N/Ladd) could alleviate the VFA inhibition, but excessive dosage of NH4HCO3 would induce ammonia inhibition. Through the established digestion balance between free ammonia nitrogen (FAN) between 0 and 25 mg/L, volatile fatty acid (VFA) 510-2100 mg/L, and alkalinity (ALK) 3300-7800 mg/L, an efficient methane yield of 150-250 mL/g VS was achieved and stable operation of AD under nutrient stress (low C/N ratio) was realized. Metabolic reconstruction between Euryarchaeota sp. MAG162, Methanosarcina mazei MAG53 and Mesotoga infera MAG119 highlighted that microbial niche balance was developed as a result of digestion balance, which is beneficial for stable operation of AD. These findings improved our understanding of the interaction mechanism between intermediates and microbial niches for stability control in AD.
Collapse
Affiliation(s)
- Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hamish R Mackey
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
| | - Wentao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
4
|
Xiao Y, Hao T. New insights on ecological roles of waste activated sludge in nutrient-stressed co-digestion. BIORESOURCE TECHNOLOGY 2024; 402:130836. [PMID: 38744398 DOI: 10.1016/j.biortech.2024.130836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
There have been extensive applications of waste activated sludge (WAS) in anaerobic co-digestion (AcoD). Nonetheless, mechanisms through which AcoD systems maintain stability, particularly under nutrient-stressed conditions, are under-appreciated. In this study, the role of WAS in a nutrient-stressed WAS-food waste AcoD system was re-evaluated. Our findings demonstrated that WAS-based co-digestion increased methane production (by 20-60%) as WAS bolsters such systems' resilience via establishing a core niche-based microbial balance. The carbon utilization investigation suggested a microbial niche balance is attainable if two conditions are satisfied: 1) hydrolysis efficiency is greater than 50%; and 2) both the acidogenesis-to-hydrolysis and acetogenesis-to-hydrolysis efficiencies surpass 0.5. Metagenomic assembly genome (MAG) analysis indicated that the versatile metabolic characteristics strengthened the microbial niche balance, rendering the system resilient and efficient through a syntrophic mode, contributing to both acidogenesis and acetogenesis. The findings of this study provide new insights into the ecological effects of WAS on AcoD.
Collapse
Affiliation(s)
- Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| |
Collapse
|
5
|
Ma J, Yao Z, Zhao L. Comprehensive study of the combined effects of biochar and iron-based conductive materials on alleviating long chain fatty acids inhibition in anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 239:117446. [PMID: 37858695 DOI: 10.1016/j.envres.2023.117446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the feasibility of alleviating the negative influence of long-chain fatty acids (LCFAs) on anaerobic digestion by biochar, micron zero-valent iron, micron-magnetite (mFe3O4) and their combination. The results demonstrate that co-addition of biochar and 6 g/L mFe3O4 (BC+6 g/L mFe3O4) increased cumulative methane production by 50% as suffered from LCFAs inhibition exerted by 2 g/L glycerol trioleate. The BC+6 g/L mFe3O4 did best in accelerating total organic carbon degradation and volatile fatty acids conversion, through successively enriching Bacteroides, Corynebacterium, and DMER64 to dominant the bacterial community. The proportion of acetotrophic Methanothrix that could alternatively reduce CO2 to methane by accepting electrons via direct interspecies electron transfer (DIET) was 0.09% with BC+6 g/L mFe3O4, nine times more than the proportion in control. Prediction of functional genes revealed the enrichment of the bacterial secretion system, indicating that BC+6 g/L mFe3O4 promoted DIET by stimulating the secretion of extracellular polymeric substances. This study provided novel insights into combining biochar and iron-based conductive materials to enhance AD performance under LCFAs inhibition.
Collapse
Affiliation(s)
- Junyi Ma
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China of Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Huang X, Miao X, Chu X, Luo L, Zhang H, Sun Y. Enhancement effect of biochar addition on anaerobic co-digestion of pig manure and corn straw under biogas slurry circulation. BIORESOURCE TECHNOLOGY 2023; 372:128654. [PMID: 36682475 DOI: 10.1016/j.biortech.2023.128654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Based on the semi-continuous anaerobic co-digestion (AcoD) reactor, the effects of biochar addition on the internal environmental changes and gas production characteristics were studied under the condition of biogas slurry recirculation. The results showed that the addition of biochar enhanced the degradation and metabolic pathways of acetate and propionate, thereby reducing the concentrations of volatile fatty acids (VFAs), total ammonia and chemical oxygen demand by 55 %, 41 % and 61 %, respectively. The buffer system formed by the combination of NH4+ and VFAs of C2-C5 was also enhanced, thereby improving the stability of the system. The addition of biochar effectively increased the relative abundance of Bacteroidetes, Chloroflexi, Spirochaetota and Synergistota, and enhanced three methanogenic metabolic pathways. This study provides scientific support for the application of biochar to solve the system inhibition in mixed substrate semi-continuous AcoD process and provides technical support for the stable operation of biogas project.
Collapse
Affiliation(s)
- Xinning Huang
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China
| | - Xinying Miao
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China
| | - Xiaodong Chu
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China
| | - Lina Luo
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China
| | - Hongqiong Zhang
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China
| | - Yong Sun
- Northeast Agriculture University, Harbin 15000, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 15000, China.
| |
Collapse
|
7
|
Pimpeach W, Polprasert C, Panyapinyopol B, Polprasert S, Mahasandana S, Patthanaissaranukool W. Enhancing anaerobic co-digestion of primary settled-nightsoil sludge and food waste for phosphorus extraction and biogas production: effect of operating parameters and determining phosphorus transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23173-23183. [PMID: 36318410 DOI: 10.1007/s11356-022-23853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to comprehensively determine P extraction efficiency and co-digestion of food waste (FW) and primary settled-nightsoil sludge (PSNS) process performance influenced by different hydraulic retention times (4, 7, 10, and 15 days) and mixture ratios of FW:PSNS in substrates (100:0, 75:25, 50:50, 25:75, and 0:100). P-transformation was evaluated to identify P fractionation in both supernatant and sludge accumulated in reactors. The results showed that anaerobic co-digestion was inhibited by the accumulation of undigested feedstock due to higher %PSNS found in AD4 (25FW:75PSNS) and AD5 (100PSNS). A more stable process was found in AD2 (75FW:25PSNS) under hydraulic retention time (HRT) 15 days in which COD removal efficiency and P release were 97.2 and 80.2%, respectively. This recommended condition allowed a high organic loading rate (OLR) at 12 gVS/L/day resulting in the highest biogas yield of 0.93 L/L/day. Distribution of P data demonstrated that most of P in feedstock was deposited and accumulated in sediment up to 97.8%. Poor biodegradability resulting from using shortened HRT led to high increased P-solid content in effluent. In addition, available P in effluents and accumulated P-solids in sediment obtained from the AcoD process has the potential to serve as sources for P recovery.
Collapse
Affiliation(s)
- Wanida Pimpeach
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Chongchin Polprasert
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Bunyarit Panyapinyopol
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Supawadee Polprasert
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Ratchathewi District, 420/1 Rajvithee Road, Bangkok, 10400, Thailand
| | - Suwisa Mahasandana
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Withida Patthanaissaranukool
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Ratchathewi District, 420/1 Rajvithee Road, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
A Recent Progress in the Leachate Pretreatment Methods Coupled with Anaerobic Digestion for Enhanced Biogas Production: Feasibility, Trends, and Techno-Economic Evaluation. Int J Mol Sci 2023; 24:ijms24010763. [PMID: 36614205 PMCID: PMC9820962 DOI: 10.3390/ijms24010763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Landfill leachate (LFL) treatment is a severe challenge due to its highly viscous nature and various complex pollutants. Leachate comprises various toxic pollutants, including inorganic macro/nano components, xenobiotics, dissolved organic matter, heavy metals, and microorganisms responsible for severe environmental pollution. Various treatment procedures are available to achieve better effluent quality levels; however, most of these treatments are nondestructive, so pollutants are merely transported from one phase to another, resulting in secondary contamination. Anaerobic digestion is a promising bioconversion technology for treating leachate while producing renewable, cleaner energy. Because of its high toxicity and low biodegradability, biological approaches necessitate employing other techniques to complement and support the primary process. In this regard, pretreatment technologies have recently attracted researchers' interest in addressing leachate treatment concerns through anaerobic digestion. This review summarizes various LFL pretreatment methods, such as electrochemical, ultrasonic, alkaline, coagulation, nanofiltration, air stripping, adsorption, and photocatalysis, before the anaerobic digestion of leachate. The pretreatment could assist in converting biogas (carbon dioxide to methane) and residual volatile fatty acids to valuable chemicals and fuels and even straight to power generation. However, the selection of pretreatment is a vital step. The techno-economic analysis also suggested the high economic feasibility of integrated-anaerobic digestion. Therefore, with the incorporation of pretreatment and anaerobic digestion, the process could have high economic viability attributed to bioenergy production and cost savings through sustainable leachate management options.
Collapse
|
9
|
Liu Y, Lv Y, Cheng H, Zou L, Li YY, Liu J. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor. BIORESOURCE TECHNOLOGY 2022; 362:127847. [PMID: 36031119 DOI: 10.1016/j.biortech.2022.127847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion of food waste receives more and more attention for waste-to-energy conversion, while easy acidification and limited efficiency hinder its wide application. To improve anaerobic digestion of food waste, its anaerobic co-digestion with mature leachate was performed using an expanded granular sludge blanket reactor. With the chemical oxidation demand (COD) removal of around 80%, the methane production and organic loading rate of the reactor reached 5.87 ± 0.45 L/L/d and 23.6 g COD/L/d, respectively. The rate of COD converted to methane was ranging from 74% to 87%. The addition of mature leachate provided ammonium to avoid acidification and trace metals for microbial growth, and the efficiencies of four stages of anaerobic digestion were all enhanced. The predominant methanogenic genera were shifted to adapt the changing condition, thus stabilizing the system. These findings support high-efficiency bioenergy recovery from food waste and leachate in practice.
Collapse
Affiliation(s)
- Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yuanyuan Lv
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
10
|
Lee C, Kim S, Park MH, Lee YS, Lee C, Lee S, Yang J, Kim JY. Valorization of petroleum refinery oil sludges via anaerobic co-digestion with food waste and swine manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114562. [PMID: 35091242 DOI: 10.1016/j.jenvman.2022.114562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Valorization of oil sludge has been gaining attention to improve the sustainability of the petroleum industry. This study aimed to assess the possibility of anaerobic co-digestion of oil scum and secondary sludge with food waste (or swine manure). Oil scum and secondary sludge were obtained from a wastewater treatment plant (WWTP) of a petrochemical plant. Physicochemical properties, hazardous materials, and microbial community were characterized and biochemical methane potential was performed by a simplex-lattice mixture design. More than 87% (wet wt.) of the oil scum consisted of total petroleum hydrocarbons (TPHs) (21,762 mg/L) that are difficult to be degraded by anaerobes. The secondary sludge showed low TPHs (5 mg/L) and a bacterial community similar to that of municipal WWTPs. The heavy metal (Cu, As, Cr, Ni, Mn, Zn, and V) concentrations in the oil scum and secondary sludge were similar (20-600 mg/L). The maximum methane potentials of the oil sludge and secondary sludges were 20 ± 2 and 56 ± 3 mL CH4/g-volatile solid, respectively. The co-digestion with food waste or swine manure led to a synergy effect on methane production of the co-digestion substrate (10-40% increase compared to the calculated value; v/v) by balancing the C/N ratio. Due to the high TPH contents, oil scum is not appropriate for co-digestion. The co-digestion of secondary sludge with food waste and/or swine manure is recommended. It is necessary to consider whether the concentration of heavy metals is at a level that inhibits the anaerobic co-digestion depending on the operating conditions such as mixing ratios and solid contents.
Collapse
Affiliation(s)
- Changmin Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seunghwan Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Ho Park
- Institute of Construction and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young Su Lee
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Changweon Lee
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Sungho Lee
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Junmo Yang
- SK Incheon Petrochem Co., Ltd, 415 Bongsu-ro, Seo-gu, Incheon, 22771, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Slezak R, Grzelak J, Krzystek L, Ledakowicz S. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. ENVIRONMENTAL TECHNOLOGY 2021; 42:4269-4278. [PMID: 32255721 DOI: 10.1080/09593330.2020.1753818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to determine the effect of initial pH on the production of volatile fatty acids (VFA) and hydrogen (H2) in the dark fermentation processes of kitchen waste. The study was conducted in batch bioreactors of working volume 1 L for different initial pH in the range from 5.5 to 9.0. The dark fermentation processes were carried out for 4 days at 37°C. Initial organic load of the kitchen waste in all bioreactors amounted to 25.5 gVS/L. Buffering of pH during the fermentation process was carried out with the use of ammonia contained mainly in digested sludge. The optimal conditions for the production of VFA and H2 were achieved at the initial pH of 8. Production of VFA and H2 in these conditions was, respectively, 13.9 g/L and 72.4 mL/gVS. The main produced components of VFA were acetic and butyric acids. The production of ethanol and lactic acid was at very low levels due to the high ratio of the volatile fatty acids to total organic content of 0.86. With the optimal initial pH of 8 the yield of CO2 production was 0.30 gC/gC. High initial pH value (above 8) extended the lag phase duration in the course of H2 production. The dominant groups of micro-organisms at the most favourable initial pH of 8 for the production of VFA and H2 were Bacteroidetes, Firmicutes, Spirochaetes and Waste Water of Evry 1 (WWE1) at the phylum level.
Collapse
Affiliation(s)
- Radosław Slezak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Justyna Grzelak
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Liliana Krzystek
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| | - Stanisław Ledakowicz
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
12
|
Isha A, D' Silva TC, Subbarao PMV, Chandra R, Vijay VK. Stabilization of anaerobic digestion of kitchen wastes using protein-rich additives: Study of process performance, kinetic modelling and energy balance. BIORESOURCE TECHNOLOGY 2021; 337:125331. [PMID: 34120065 DOI: 10.1016/j.biortech.2021.125331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of acidic kitchen waste (KW) streams is found to be unstable and leads to poor overall efficiency. This study assessed the effect of pongamia de-oiled cake addition on KW-AD. High acidic KW (pH: 2.00-5.00), medium acidic KW (pH: 5.00-7.00) and low alkaline KW (pH: 7.00-8.00) fed into digesters I, II and III at 10% total solids (TS) achieved biogas yields of 177.82 ± 19.30, 216.57 ± 7.42 and 280.45 ± 2.55 L/kg VS. d, respectively. Maximum synergistic effect of pongamia de-oiled cake was observed in digester I with increased methane production of 46.04% and volatile solids reduction of 11.18%. The principal component analysis and kinetic evaluation revealed that pongamia de-oiled cake addition had a positive effect on the AD parameters in all digesters. With energy efficiencies exceeded 96% in all the digesters, the study proposes the addition of protein-rich additives for KW-AD stabilization.
Collapse
Affiliation(s)
- Adya Isha
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Tinku Casper D' Silva
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Paruchuri M V Subbarao
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| | - Ram Chandra
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India
| |
Collapse
|
13
|
Feng K, Wang Q, Li H, Du X, Zhang Y. Microbial mechanism of enhancing methane production from anaerobic digestion of food waste via phase separation and pH control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112460. [PMID: 33780819 DOI: 10.1016/j.jenvman.2021.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Phase separation and pH control are commonly used to improve methane production during anaerobic digestion (AD) of food waste, but their influencing mechanisms have not been fully discovered through microbial analysis. In this study, single-phase AD (SPAD), two-phase AD without pH control (TPAD-pHUC), and TPAD with fermentation pH controlled at 6.0 and 4.5 were conducted. The results showed that phase separation decreased the ratio of total bacteria to total archaea in the methanogenic phase. At the organic loading rate (OLR) of 1.9 g/(L·d), methanogenesis was dominated by acetoclastic Methanosaeta in both SPAD and TPAD-pHUC, while elevated Methanoculleus and active hydrogen production initiated a shift from the acetoclastic to hydrogenotrophic pathway in SPAD as OLR increased, eventually resulting in excessive acidification at OLR 3.2 g/(L·d). TPAD-pHUC was dominated by Methanosaeta with scarce hydrogen production genes, and thus maintained a delicate balance between fewer acidogens and methanogens at OLR 3.2-3.7 g/(L·d). TPAD with pH control exhibited higher methane yield (460-482 ml/g) at OLR 1.9 g/(L·d) due to the enhancement of protein degradation and the conversion from methylated compounds to methane by Methanosarcina. High Na+ concentration facilitated the proliferation of hydrogen production bacteria, but inhibited acetoclastic methanogenesis at OLR 2.4 g/(L·d). In comparison with SPAD and pH control, TPAD without pH control, integrating 4 d acidogenesis and 22 d methanogenesis, exhibited the best and steady performance at OLR 3.7 g/(L·d) with methane production exceeding 370 ml/g.
Collapse
Affiliation(s)
- Kai Feng
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qiao Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Xinrui Du
- Shenzhen Zhonghuanbohong Environmental Technology Co, Ltd, Shenzhen, 518055, China
| | - Yangyang Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
14
|
Ma J, Chen F, Xue S, Pan J, Khoshnevisan B, Yang Y, Liu H, Qiu L. Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. BIORESOURCE TECHNOLOGY 2021; 325:124697. [PMID: 33461122 DOI: 10.1016/j.biortech.2021.124697] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion of chicken manure was carried out in this study basing on central composite design to identify the most optimal strategy for biochar supplementation. Model of cumulative methane production (CMP) was established by using response surface methodology. The optimal conditions predicted accordingly, including manure loading of 51.8 g VS/L, biochar dosage of 3.3% VSmanure, and cellulose loading of 98.0 g VS/L, were expected to maximize CMP, i.e., 294 mL/g VSmanure. The results also demonstrated that biochar dosage and its interaction with manure loading were key factors with significant impact on CMP. Biochar dosage higher than 3.5% VSmanure was observed to weaken the transformation of organic substances to methane. Higher dosage of biochar could considerably reduce concentration of organic acids, total ammonia nitrogen, as well as soluble salts. Verification experiment supported validity of the optimal strategy and provided data for cost assessment, which showed positive cost balances from biochar supplementation.
Collapse
Affiliation(s)
- Junyi Ma
- Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengfen Chen
- Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuaixing Xue
- Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junting Pan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Benyamin Khoshnevisan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yadong Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Qiu
- Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Yu Q, Sun C, Liu R, Yellezuome D, Zhu X, Bai R, Liu M, Sun M. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. BIORESOURCE TECHNOLOGY 2021; 319:124197. [PMID: 33038654 DOI: 10.1016/j.biortech.2020.124197] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 05/22/2023]
Abstract
The performance of biochar mediated anaerobic co-digestion (co-AD) of corn stover (CS) and chicken manure (CM) using continuous stirred tank reactor (CSTR) was studied. Results showed that urea pretreated CS (UPCS) and biochar addition in anaerobic digestion (AD) system can improve co-AD. The effect of urea pretreatment is similar to that of biochar addition, and their synergistic effect was apparent under medium and high OLR conditions. When the OLR was 4.2 and 6.3 g VS/L/d, the biochar mediated UPCS/CM co-AD operated stably with the VMP of 2.160 and 1.616 L/L/d, and VMP of the biochar mediated UPCS /CM were 32.8%-89.6% and 27.8%-96.4% higher than other reactors, respectively. The results reveal that urea pretreatment and biochar addition promoted AD process through strengthening the buffer capacity system established by ammonia nitrogen and volatile fatty acids and improving the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Qiong Yu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chen Sun
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang Province 314001, PR China
| | - Ronghou Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Dominic Yellezuome
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xianpu Zhu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture and Rural Affairs, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ruifeng Bai
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Mingquan Liu
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Mengzeng Sun
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
16
|
Influence of Aerobic Pretreatment of Poultry Manure on the Biogas Production Process. Processes (Basel) 2020. [DOI: 10.3390/pr8091109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anaerobic digestion of poultry manure is a potentially-sustainable means of stabilizing this waste while generating biogas. However, technical, and environmental protection challenges remain, including high concentrations of ammonia, low C/N ratios, limited digestibility of bedding, and questions about transformation of nutrients during digestion. This study evaluated the effect of primary biological treatment of poultry manure on the biogas production process and reduction of ammonia emissions. Biogas yield from organic matter content in the aerobic pretreatment groups was 13.96% higher than that of the control group. Biogas production analysis showed that aerobic pretreatment of poultry manure has a positive effect on biogas composition; methane concentration increases by 6.94–7.97% after pretreatment. In comparison with the control group, NH3 emissions after aerobic pretreatment decreased from 3.37% (aerobic pretreatment without biological additives) to 33.89% (aerobic pretreatment with biological additives), depending on treatment method.
Collapse
|
17
|
Zhang S, Zou L, Wan Y, Ye M, Ye J, Li YY, Liu J. Using an expended granular sludge bed reactor for advanced anaerobic digestion of food waste pretreated with enzyme: The feasibility and its performance. BIORESOURCE TECHNOLOGY 2020; 311:123504. [PMID: 32417658 DOI: 10.1016/j.biortech.2020.123504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The high content of solid organics in food waste (FW) results in a low and unstable anaerobic digestion (AD) efficiency. Improving methane production rate and process stability is attracting much attention towards advanced AD of FW. The feasibility of advanced AD of FW pretreated with enzyme was investigated by batch experiments and 164 days running of an expanded granular sludge bed (EGSB) reactor. Simulation study based on the results of batch experiments indicates it is possible to treat enzymatically pretreated FW using an EGSB reactor. During the running of an EGSB reactor, the organic loading rate went up to 20 g chemical oxygen demand (COD)/L.d, and the total COD removal rate reached 88%. The significance of this study is to achieve an advanced AD of enzymatically pretreated FW with a stable and efficient methane production with biogas residue being reduced greatly.
Collapse
Affiliation(s)
- Sitong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Lianpei Zou
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yulan Wan
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Min Ye
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jiongjiong Ye
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
18
|
Hyperthermophilic Treatment of Grass and Leaves to Produce Hydrogen, Methane and VFA-Rich Digestate: Preliminary Results. ENERGIES 2020. [DOI: 10.3390/en13112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the feasibility of hydrogen and methane production from grass and leaves via hyperthermophilic anaerobic digestion was investigated. The hyperthermophilic treatment of grass at 70 °C resulted in the highest concentrations of volatile fatty acids (TVFA) and reducing sugars in the supernatant of over 21 and 6.5 g/L reported on day 3 and 4 of the experiment. In contrast, hydrolysis and acidification of leaves performed slower and with lower efficiency, as the peak concentrations of TVFA and reducing sugars were observed at the end of the process. However, the highest cumulative hydrogen and methane yields of 69.64 mLH2/gVS and 38.63 mLCH4/gVS were reported for leaves digested at 70 °C, whereas the corresponding maximum productions observed for grass were 50 mLH2/gVS and 1.98 mLCH4/gVS, respectively. A temperature increase to 80 °C hampered hydrogen and methane production and also resulted in lower yields of volatile fatty acids, reducing sugars and ammonia as compared to the corresponding values reported for 70 °C.
Collapse
|
19
|
Ma J, Pan J, Qiu L, Wang Q, Zhang Z. Biochar triggering multipath methanogenesis and subdued propionic acid accumulation during semi-continuous anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 293:122026. [PMID: 31449922 DOI: 10.1016/j.biortech.2019.122026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The semi-continuous anaerobic digestion (AD) performances of dry chicken manure (DCM) were investigated at the temperature of 35 ± 1 °C with and without biochar. The average specific methane productions of 0.18 L/g VSadded and 0.17 L/g VSadded were achieved without biochar at the organic loading rate (OLR) of 3.125 and 6.25 g VS/L/d, respectively. An increase of 12% in methane production was obtained in the presence of biochar at the two operational OLRs. Accumulation of propionic acid was observed associating with AD of DCM, which was substantially alleviated by biochar supplement. The buffer capacity of biochar was supposed to develop through strengthening the buffer system established by NH4+ and volatile fatty acids. Methanosarcina that can utilize multiple nutrients for methanogenesis was the dominant archaea in the presence of biochar, while the strictly aceticlastic Methanosaeta was dominant in control digester. These results suggest that biochar enhanced methanogenesis through intensifying its available pathway.
Collapse
Affiliation(s)
- Junyi Ma
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Western Scientific Observation and Experiment Station of Development and Utilization of Rural Renewable Energy of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Pan J, Ma J, Zhai L, Luo T, Mei Z, Liu H. Achievements of biochar application for enhanced anaerobic digestion: A review. BIORESOURCE TECHNOLOGY 2019; 292:122058. [PMID: 31488335 DOI: 10.1016/j.biortech.2019.122058] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) and pyrolysis are two promising technologies used worldwide for waste biomass treatment. Interests on intensification techniques of AD has been increasing to obtain sufficient and sustainable methane production with stable digester performance. For instance, considerable attention has been devoted to the coupling of AD with biochar, which is produced by biomass thermochemical conversion. This manuscript presents a comprehensive review about recent achievements in enhancing AD efficiency with the utilization of biochar. The key roles of biochar include enhancing and equilibrating hydrolysis, acidogenesis-acetogenesis, and methanogenesis, as well as alleviating inhibitor stress were summarized. Biochar can promote biomethane process mainly by serving as a provision for bioelectrical connections between fermentative bacteria and methanogens, a support for microbial colonies, and a reinforcer for buffer capacity. Through an overview of the early applications, this paper aims to pinpoint the potential mechanism and future explorative directions of biochar enhancing AD performance.
Collapse
Affiliation(s)
- Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China
| | - Junyi Ma
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China; College of Mechanic and Electronic Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Limei Zhai
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China
| | - Tao Luo
- Biogas Institute of Ministry of Agriculture (BIOMA), 610041 Chengdu, Sichuan, PR China
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture (BIOMA), 610041 Chengdu, Sichuan, PR China
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China.
| |
Collapse
|
21
|
Interactive Effects of Chemical Composition of Food Waste during Anaerobic Co-Digestion under Thermophilic Temperature. SUSTAINABILITY 2019. [DOI: 10.3390/su11102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of chemical composition (carbohydrates, lipids, and protein) on the anaerobic co-digestion performance of food wastes (FW) were investigated from the viewpoints of methane production, dynamic parameters, and microbial community structure. The results of this study showed that a notable gasification rate was positively correlated with the proportion of the composition. A T2 reactor, which consisted of 60% carbohydrates, 20% lipids, and 20% protein, held a higher gasification rate of 65.09% compared to other groups, while its process parameters showed some deficiency regarding the stability of digestion, especially for low biochemical methane potential (BMP), which was not beneficial for the actual practice. A T4 reactor, with a highest gasification rate of 70.68%, held the maximum BMP (497.44 mL/g VS). The stable chemical parameters achieved the optimal proportion, consisting of 40% carbohydrates, 40% lipids, and 20% protein. Furthermore, its microbial populations were rich and achieved a balance of the two main dominant communities of acetoclastic methanogens and hydrogenotrophic methanogens, whose relative abundance was close. It was obvious that interactive effects were caused by different proportional composition, which led to constantly changing chemical parameters and microbial community.
Collapse
|
22
|
Integration of high-solid digestion and gasification to dispose horticultural waste and chicken manure. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Ren Y, Yu M, Wu C, Wang Q, Gao M, Huang Q, Liu Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. BIORESOURCE TECHNOLOGY 2018; 247:1069-1076. [PMID: 28965913 DOI: 10.1016/j.biortech.2017.09.109] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Miao Yu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qiqi Huang
- Department of Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
24
|
Linville JL, Shen Y, Ignacio-de Leon PA, Schoene RP, Urgun-Demirtas M. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2017; 35:669-679. [PMID: 28488463 DOI: 10.1177/0734242x17704716] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A modified version of an in-situ CO2 removal process was applied during anaerobic digestion of food waste with two types of walnut shell biochar at bench scale under batch operating mode. Compared with the coarse walnut shell biochar, the fine walnut shell biochar has a higher ash content (43 vs. 36 wt%) and higher concentrations of calcium (31 vs. 19 wt% of ash), magnesium (8.4 vs. 5.6 wt% of ash) and sodium (23.4 vs. 0.3 wt% of ash), but a lower potassium concentration (0.2 vs. 40% wt% of ash). The 0.96-3.83 g biochar (g VSadded)-1 fine walnut shell biochar amended digesters produced biogas with 77.5%-98.1% CH4 content by removing 40%-96% of the CO2 compared with the control digesters at mesophilic and thermophilic temperature conditions. In a direct comparison at 1.83 g biochar (g VSadded)-1, the fine walnut shell biochar amended digesters (85.7% CH4 content and 61% CO2 removal) outperformed the coarse walnut shell biochar amended digesters (78.9% CH4 content and 51% CO2 removal). Biochar addition also increased alkalinity as CaCO3 from 2800 mg L-1 in the control digesters to 4800-6800 mg L-1, providing process stability for food waste anaerobic digestion.
Collapse
Affiliation(s)
| | - Yanwen Shen
- Argonne National Laboratory, Energy Systems Division, Lemont, IL, USA
| | | | - Robin P Schoene
- Argonne National Laboratory, Energy Systems Division, Lemont, IL, USA
| | | |
Collapse
|
25
|
Zou L, Ma C, Liu J, Li M, Ye M, Qian G. Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement. BIORESOURCE TECHNOLOGY 2016; 222:82-88. [PMID: 27710910 DOI: 10.1016/j.biortech.2016.09.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic batch tests were performed to investigate the methane production enhancement and solid transformation rates from food waste (FW) by high voltage pulse discharge (HVPD) pretreatment. The total cumulative methane production with HVPD pretreatment was 134% higher than that of the control. The final volatile solids transformation rates of FW with and without HVPD pretreatment were 54.3% and 32.3%, respectively. Comparison study on HVPD pretreatment with acid, alkali and ultrasonic pretreatments showed that the methane production and COD removal rates of FW pretreated with HVPD were more than 100% higher than the control, but only about 50% higher can be obtained with other pretreatments. HVPD pretreatment could be a promising pretreatment method in the application of energy recovery from FW.
Collapse
Affiliation(s)
- Lianpei Zou
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China
| | - Chaonan Ma
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China
| | - Jianyong Liu
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China.
| | - Mingfei Li
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China
| | - Min Ye
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China
| | - Guangren Qian
- Shanghai University, School of Environmental and Chemical Engineering, 333 Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
26
|
Wangliang L, Zhikai Z, Guangwen X. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure. Appl Biochem Biotechnol 2016; 179:270-82. [DOI: 10.1007/s12010-016-1992-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
|
27
|
Chen S, Zhang J, Wang X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:1033-1040. [PMID: 26391806 DOI: 10.1177/0734242x15602965] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW.
Collapse
Affiliation(s)
- Shujun Chen
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| | - Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, China
| | - Xikui Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| |
Collapse
|
28
|
Linville JL, Shen Y, Wu MM, Urgun-Demirtas M. Current State of Anaerobic Digestion of Organic Wastes in North America. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40518-015-0039-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Catal T, Lesnik KL, Liu H. Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. BIORESOURCE TECHNOLOGY 2015; 187:77-83. [PMID: 25841185 DOI: 10.1016/j.biortech.2015.03.099] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
Methanogens can utilize the hydrogen produced in microbial electrolysis cells (MECs), thereby decreasing the hydrogen generation efficiency. However, various antibiotics have previously been shown to inhibit methanogenesis. In the present study antibiotics, including neomycin sulfate, 2-bromoethane sulfonate, 2-chloroethane sulfonate, 8-aza-hypoxanthine, were examined to determine if hydrogen production could be improved through inhibition of methanogenesis but not hydrogen production in MECs. 1.1mM neomycin sulfate inhibited both methane and hydrogen production while 2-chloroethane sulfonate (20mM), 2-bromoethane sulfonate (20mM), and 8-aza-hypoxanthine (3.6mM) can inhibited methane generation and with concurrent increases in hydrogen production. Our results indicated that adding select antibiotics to the mixed species community in MECs could be a suitable method to enhance hydrogen production efficiency.
Collapse
Affiliation(s)
- Tunc Catal
- Department of Molecular Biology and Genetics, Uskudar University, 34662 Uskudar, Istanbul, Turkey; Biotechnology Research and Application Center, Uskudar University, 34662 Uskudar, Istanbul, Turkey.
| | - Keaton Larson Lesnik
- Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331, USA
| | - Hong Liu
- Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331, USA
| |
Collapse
|
30
|
Su H, Liu L, Wang S, Wang Q, Jiang Y, Hou X, Tan T. Semi-continuous anaerobic digestion for biogas production: influence of ammonium acetate supplement and structure of the microbial community. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:13. [PMID: 25705255 PMCID: PMC4336496 DOI: 10.1186/s13068-015-0197-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND As an efficient disposal method of food waste, anaerobic digestion (AD) for biogas production is widely used. In order to understand the enhanced efficiency and stability of AD by appropriate amounts of ammonia and volatile fatty acids (NH4 (+)/VFAs), the characteristics of the corresponding microbial community with ammonium acetate supplement were investigated by denatured gradient gel electrophoresis (DGGE) and pyrosequencing analyses of samples, with or without supplement of NH4 (+)/VFAs. RESULTS In this study, four different supplement strategies of adding ammonium acetate were investigated, including a blank group (without supplement of ammonium acetate), a low group (L group, 0.7 g/L/d), a moderate group (M group, 1.0 g/L/d) and a high group (H group, 1.3 g/L/d), respectively. The average daily gas production was 1,839 mL/d, 1,655 mL/d, 1,448 mL/d and 1,488 mL/d for L, M, H and blank groups, respectively. The results reveal that the absence or overload of NH4 (+)/VFAs leads to the inhibition or failure of the AD operation. The blank and H groups were selected for further investigation of the microbial community by DGGE and pyrosequencing analyses. A significant difference of the microbial communities at different AD stages was observed between the blank and H groups. CONCLUSIONS Ammonium acetate, as an efficient supplement, significantly influences the characteristics of a semi-continuous AD operation. The DGGE and pyrosequencing analyses indicated that the different bacterial and archaeal communities occurred in the blank and H groups at different AD stages. Thus, an appropriate ammonium acetate supplement may maintain the balance of the microbial community and could be applied to adjust the AD operation and microbial composition towards optimal biogas production.
Collapse
Affiliation(s)
- Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Luo Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Qingfeng Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Yixin Jiang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Xiaocong Hou
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029 People’s Republic of China
| |
Collapse
|
31
|
Zhang J, Wang Q, Zheng P, Wang Y. Anaerobic digestion of food waste stabilized by lime mud from papermaking process. BIORESOURCE TECHNOLOGY 2014; 170:270-277. [PMID: 25151070 DOI: 10.1016/j.biortech.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 05/09/2023]
Abstract
The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production.
Collapse
Affiliation(s)
- Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China.
| | - Qinqing Wang
- School of Food and Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Pengwei Zheng
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yusong Wang
- Rizhao Center for Solid Waste Disposal, Rizhao 276800, China
| |
Collapse
|
32
|
Li J, Wei L, Duan Q, Hu G, Zhang G. Semi-continuous anaerobic co-digestion of dairy manure with three crop residues for biogas production. BIORESOURCE TECHNOLOGY 2014; 156:307-313. [PMID: 24525215 DOI: 10.1016/j.biortech.2014.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
The characteristics of anaerobic semi-continuous co-digestion of dairy manure (DM) with three crop straw residues (SRs), rice straw, corn stalks and wheat straw under five mass mixing ratios (SRs/DM) were investigated. During the anaerobic digestion (AD) process, four periods were identified: startup, first stage of stabilization, second stage of stabilization, and suppression. Following the four periods, the biogas production rate varied between 101 and 576mL L(-1)d(-1). A high CH4 content and volatile solid reduction was maintained at the SRs/DM mass mixing ratio 1:9. The highest cumulative biogas production of more than 19L was obtained at ratio 5:5. However, ratio 9:1 performed worst in the whole process. Systematic analysis of the elements revealed nitrogen, phosphorus, and trace elements contents were important for the AD. Overall, the semi-continuous AD is efficient within a wide range of SRs/DM mass mixing ratios.
Collapse
Affiliation(s)
- Jiang Li
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China
| | - Luoyu Wei
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China
| | - Qiwu Duan
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China
| | - Guoquan Hu
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China
| | - Guozhi Zhang
- Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China.
| |
Collapse
|
33
|
Borowski S, Domański J, Weatherley L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:513-521. [PMID: 24280622 DOI: 10.1016/j.wasman.2013.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/28/2013] [Accepted: 10/21/2013] [Indexed: 06/02/2023]
Abstract
The anaerobic digestion of municipal sewage sludge (SS) with swine manure (SM) and poultry manure (PM) was undertaken. It was found that a mixture of sewage sludge with a 30% addition of swine manure gave around 400 dm(3)/kg VS of biogas, whereas the maximal biogas yield from ternary mixture (SS:SM:PM=70:20:10 by weight) was only 336 dm(3)/kg VS. An inhibition of methanogenesis by free ammonia was observed in poultry manure experiments. The anaerobic digestion was inefficient in pathogen inactivation as the reduction in the number of E. coli an Enterobacteriaceae was only by one logarithmic unit. A substantial portion of pathogens was also released into the supernatant.
Collapse
Affiliation(s)
- Sebastian Borowski
- Technical University of Lodz, Institute of Fermentation Technology and Microbiology, Poland.
| | - Jarosław Domański
- Technical University of Lodz, Institute of Fermentation Technology and Microbiology, Poland
| | - Laurence Weatherley
- The University of Kansas, Department of Chemical and Petroleum Engineering, United States
| |
Collapse
|
34
|
Peng L, Bao M, Wang Q, Wang F, Su H. The anaerobic digestion of biologically and physicochemically pretreated oily wastewater. BIORESOURCE TECHNOLOGY 2014; 151:236-243. [PMID: 24240183 DOI: 10.1016/j.biortech.2013.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
To enhance the degradation of oily wastewater and its biogas production, a biological-physicochemical pretreatment was introduced prior to the anaerobic digestion system. The digestion thereafter proceeded more efficiently due to the inoculation by oil degrading bacteria (Bacillus). A 2-stage pre-mixing is more effective than directly mixing. The effects on the methane production were also investigated by pre-treatment with ultrasonic (US) treatment, combined with citric acid (CA) addition. US pre-treatment was found to improve the initial methane production, and CA pre-treatment could maintain this improvement during the whole digestion stage. Pre-mixing Bacillus at 9 wt.% inoculation, combined with US for 10 min and a CA concentration of 500 mg/L provided the optimum conditions. The most effective enhancement of methane yield was 1100.46 ml/g VS, exceeding that of the control by 280%. The change of coenobium shape and fatty acid content further proved that such pretreatment of oily wastewater can facilitate digestion.
Collapse
Affiliation(s)
- Liyu Peng
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|