1
|
Kwon DH, Lee SH, Lee JS, Ha SJ. Upregulation of the gluconeogenesis pathway was observed by Kluyveromyces marxianus KDH1, mitigating glucose catabolite repression. Food Sci Biotechnol 2025; 34:217-225. [PMID: 39758715 PMCID: PMC11695515 DOI: 10.1007/s10068-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 01/07/2025] Open
Abstract
Kluyveromyces marxianus was engineered to mitigate carbon catabolite repression to efficient co-fermenting mixed sugars, which are primary components of cellulosic biomass. Kluyveromyces marxianus KDH1 produced ethanol with 0.42 ± 0.01 g/g yield, and 0.67 ± 0.00 g/L·h productivity for 48 h. RNA sequencing-based transcriptomic analysis showed that genes from the glycolysis pathway, gluconeogenesis pathway, and the citric acid cycle were primarily upregulated when K. marxianus KDH1 fermented mixed sugars. Furthermore, critical genes from the gluconeogenesis pathway, such as fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, were upregulated by 331.72 and 47.15-fold, respectively. Citrate synthase and malate dehydrogenase, associated with the citric acid cycle, were upregulated by 2284.62 and 7.69-fold, respectively. Enzymatic assays of fructose 1, 6-bisphosphatase indicated that K. marxianus KDH1 showed 1.87-fold higher enzymatic activity than that of the parental strain. These results provide novel information on mixed sugar co-fermentation and a new glucose fermentation process that bypasses the glycolysis pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01670-5.
Collapse
Affiliation(s)
- Deok-Ho Kwon
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 305-806 Republic of Korea
| | - Sol Hee Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Jang-Sub Lee
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biohealth-Machinery Convergence Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
- Institute of Fermentation and Brewing, Kangwon National University, Chuncheon, 24341 Republic of Korea
| |
Collapse
|
2
|
Bizukojć M, Boruta T, Ścigaczewska A. A systematic approach to determine the outcome of the competition between two microbial species in bioreactor cocultures. Antonie Van Leeuwenhoek 2024; 118:26. [PMID: 39540949 PMCID: PMC11564368 DOI: 10.1007/s10482-024-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The two-species microbial cocultures are effective in terms of awakening the cryptic biosynthetic pathways. They may also lead to the improved production of previously discovered molecules. Importantly, only a few outcomes of the cocultures may prove desirable, namely those leading to the formation of useful secondary metabolites. To address this issue, a method allowing for the evaluation of the final outcome of the co-culture process and fine-tune the cocultivation strategy was proposed. The systematic approach was supported by the experimental data from the bioreactor runs with the participation of Aspergillus terreus and Penicillium rubens confronted with Streptomyces rimosus and Streptomyces noursei. Kinetic, morphological and metabolic aspects of dominance were analysed via the newly proposed formula describing the dominance pattern. The suggested method involved the determination of the numerical value representing the dominance level. When it was high (value 1) no useful metabolites were formed apart from those originating from the winning counterpart. But either for the partial dominances or when the winning organism changed within the run or when the competition ended in draw, the number of the secondary metabolites of interest in the broth was the highest. Next, the systematic approach illustrated how the delayed inoculation strategy influenced the level of dominance leading to the change of winning counterpart and the set of metabolites produced. The proposed systematic approach allows for the reliable determination of the level of dominance in the two-species cocultures to seek for the potentially useful substances for future applications.
Collapse
Affiliation(s)
- Marcin Bizukojć
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland.
| | - Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| | - Anna Ścigaczewska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Lodz, Poland
| |
Collapse
|
3
|
Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-culture systems. BIORESOURCE TECHNOLOGY 2024; 406:131049. [PMID: 38942211 DOI: 10.1016/j.biortech.2024.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.
Collapse
Affiliation(s)
- Lichun Guo
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bingwen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Abdul Manaf SF, Indera Luthfi AA, Md Jahim J, Harun S, Tan JP, Mohd Shah SS. Sequential detoxification of oil palm fronds hydrolysate with coconut shell activated charcoal and pH controlled in bioreactor for xylitol production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Physiological comparisons among Spathaspora passalidarum, Spathaspora arborariae, and Scheffersomyces stipitis reveal the bottlenecks for their use in the production of second-generation ethanol. Braz J Microbiol 2022; 53:977-990. [PMID: 35174461 PMCID: PMC9151973 DOI: 10.1007/s42770-022-00693-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023] Open
Abstract
The microbial conversion of pentoses to ethanol is one of the major drawbacks that limits the complete use of lignocellulosic sugars. In this study, we compared the yeast species Spathaspora arborariae, Spathaspora passalidarum, and Sheffersomyces stipitis regarding their potential use for xylose fermentation. Herein, we evaluated the effects of xylose concentration, presence of glucose, and temperature on ethanol production. The inhibitory effects of furfural, hydroxymethylfurfural (HMF), acetic acid, and ethanol were also determined. The highest ethanol yield (0.44 g/g) and productivity (1.02 g/L.h) were obtained using Sp. passalidarum grown in 100 g/L xylose at 32 °C. The rate of xylose consumption was reduced in the presence of glucose for the species tested. Hydroxymethylfurfural did not inhibit the growth of yeasts, whereas furfural extended their lag phase. Acetic acid inhibited the growth and fermentation of all yeasts. Furthermore, we showed that these xylose-fermenting yeasts do not produce ethanol concentrations greater than 4% (v/v), probably due to the inhibitory effects of ethanol on yeast physiology. Our data confirm that among the studied yeasts, Sp. passalidarum is the most promising for xylose fermentation, and the low tolerance to ethanol is an important aspect to be improved to increase its performance for second-generation (2G) ethanol production. Our molecular data showed that this yeast failed to induce the expression of some classical genes involved in ethanol tolerance. These findings suggest that Sp. passalidarum may have not activated a proper response to the stress, impacting its ability to overcome the negative effects of ethanol on the cells.
Collapse
|
6
|
Bajaj P, Mahajan R. Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 2019; 103:8711-8724. [DOI: 10.1007/s00253-019-10146-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
|
7
|
Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345. Appl Microbiol Biotechnol 2019; 103:2845-2855. [DOI: 10.1007/s00253-019-09625-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/18/2018] [Accepted: 12/16/2018] [Indexed: 11/25/2022]
|
9
|
Rech FR, Fontana RC, Rosa CA, Camassola M, Ayub MAZ, Dillon AJP. Fermentation of hexoses and pentoses from sugarcane bagasse hydrolysates into ethanol by Spathaspora hagerdaliae. Bioprocess Biosyst Eng 2018; 42:83-92. [PMID: 30264227 DOI: 10.1007/s00449-018-2016-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
The present study evaluated 13 strains of yeast for ethanol and xylitol production from xylose. Among them, Spathaspora hagerdaliae UFMG-CM-Y303 produced ethanol yields (YP/S) of 0.25 g g- 1 and 0.39 g g- 1 under aerobic and microaerophilic conditions, respectively, from a mixture of glucose and xylose in flasks. A pH of 5.0 and an inoculum of 3.0 × 108 cells mL- 1r resulted in the highest ethanol yields. These conditions were tested in a bioreactor for fermenting a medium containing an enzymatic hydrolysate of sugarcane bagasse with 15.5 g L- 1 of glucose and 3 g L- 1 of xylose, and achieved a YP/S of 0.47 g g- 1, in relation to total available sugar. These results suggest that S. hagerdaliae UFMG-CM-Y303 has potential for use in second-generation ethanol studies.
Collapse
Affiliation(s)
- Fernanda Roberta Rech
- Enzymes and Biomass Laboratory, Biotechnology Institute, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Roselei Claudete Fontana
- Enzymes and Biomass Laboratory, Biotechnology Institute, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Carlos A Rosa
- Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marli Camassola
- Enzymes and Biomass Laboratory, Biotechnology Institute, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, RS, 95070-560, Brazil.
| | - Marco Antônio Záchia Ayub
- Biotechnology and Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Aldo J P Dillon
- Enzymes and Biomass Laboratory, Biotechnology Institute, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
10
|
Zhang G, Li X, Chen W, Chen P, Jin X, Chen W, Chen H. Organic Acid Content, Antioxidant Capacity, and Fermentation Kinetics of Matured Coconut (Cocos nucifera) Water Fermented by Saccharomyces cerevisiae D254. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2017-0331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, the quality of matured coconut water was improved through fermentation with Saccharomyces cerevisiae D254. During fermentation, the kinetic models of yeast growth, alcohol production, and sugar consumption were established based on logistic and Leudeking–Piret equations. Fructose, glucose, sucrose, total phenolic content, and antioxidant capacity (FRAP and ABTS values) were measured consecutively during fermentation. Results showed that R2 for the three models of yeast growth, alcohol production, and sugar consumption were 0.9772, 0.9983, and 0.9887, respectively. Total phenolic and antioxidant assays showed a similar evolution during fermentation, with a rapid increase in exponential phase and an unchanged trend in stationary phase. Moreover, total phenolic and the two antioxidant capacity methods were highly positively correlated. Pyruvic, lactic, citric, and succinic acids were the main organic acids in coconut water after fermentation.
Collapse
|
11
|
Lamb CDC, Silva BMZD, de Souza D, Fornasier F, Riça LB, Schneider RDCDS. Bioethanol production from rice hull and evaluation of the final solid residue. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1422495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christiano de C. Lamb
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | | | - Diego de Souza
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Franccesca Fornasier
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Larissa Brixner Riça
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| | - Rosana de Cassia de Souza Schneider
- Environmental Technology Postgraduation Program, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
- Department of Chemistry and Physics, University of Santa Cruz do Sul, Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
12
|
Damião Xavier F, Santos Bezerra G, Florentino Melo Santos S, Sousa Conrado Oliveira L, Luiz Honorato Silva F, Joice Oliveira Silva A, Maria Conceição M. Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber. Biomolecules 2018; 8:E2. [PMID: 29320469 PMCID: PMC5871971 DOI: 10.3390/biom8010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/03/2022] Open
Abstract
Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such as sugarcane bagasse. A pretreatment with dilute acid and low temperatures was conducted in order to obtain the hemicellulose fraction. The highest xylose contents (0.132 g·g-1 of sisal fiber) were obtained at 120 °C with 2.5% (v/v) of sulfuric acid. The yeast Candida tropicalis CCT 1516 was used in the fermentation. In the sisal fiber hemicellulose hydrolysate, the maximum production of xylitol (0.32 g·g-1) and of ethanol (0.27 g·g-1) was achieved in 60 h. Thus, sisal fiber presents as a potential biomass for the production of ethanol and xylitol, creating value with the use of hemicellulosic liquor without detoxification and without the additional steps of alkaline pretreatment.
Collapse
Affiliation(s)
- Franklin Damião Xavier
- Departamento de Química, PPGQ/CCEN, Universidade Federal da Paraíba, João Pessoa 58051-970, Brazil.
| | - Gustavo Santos Bezerra
- Departamento de Química, PPGQ/CCEN, Universidade Federal da Paraíba, João Pessoa 58051-970, Brazil.
| | | | - Líbia Sousa Conrado Oliveira
- Unidade Acadêmica de Engenharia Química/CCT, Universidade Federal de Campina Grande, Campina Grande 58429-140, Brazil.
| | | | | | - Marta Maria Conceição
- Centro de Tecnologia e Desenvolvimento Regional (CTDR)/Departamento de Tecnologia de Alimentos (DTA)/IDEP, Universidade Federal da Paraíba, Av. dos Escoteiros, sn. Mangabeira VII, João Pessoa 58058-600, Brazil.
| |
Collapse
|
13
|
Morais CG, Batista TM, Kominek J, Borelli BM, Furtado C, Moreira RG, Franco GR, Rosa LH, Fonseca C, Hittinger CT, Lachance MA, Rosa CA. Spathaspora boniae sp. nov., a D-xylose-fermenting species in the Candida albicans/Lodderomyces clade. Int J Syst Evol Microbiol 2017; 67:3798-3805. [DOI: 10.1099/ijsem.0.002186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Camila G. Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thiago M. Batista
- Departamento de Bioquímica e Imunologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Beatriz M. Borelli
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Rennan G. Moreira
- Laboratorio Multiusuário de Genômica, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gloria R. Franco
- Departamento de Bioquímica e Imunologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz H. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - César Fonseca
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - Chris T. Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, N6A 5B7, London, Ontario, Canada
| | - Carlos A. Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
14
|
Draft Genome Sequence of the d-Xylose-Fermenting Yeast Spathaspora xylofermentans UFMG-HMD23.3. GENOME ANNOUNCEMENTS 2017; 5:5/33/e00815-17. [PMID: 28818907 PMCID: PMC5604780 DOI: 10.1128/genomea.00815-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome sequence of the yeast Spathaspora xylofermentans UFMG-HMD23.3 (=CBS 12681), a d-xylose-fermenting yeast isolated from the Amazonian forest. The genome consists of 298 contigs, with a total size of 15.1 Mb, including the mitochondrial genome, and 5,948 predicted genes.
Collapse
|
15
|
Ebrahimi M, Villaflores OB, Ordono EE, Caparanga AR. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. BIORESOURCE TECHNOLOGY 2017; 228:264-271. [PMID: 28081524 DOI: 10.1016/j.biortech.2016.12.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Rice husk as an abundant biomass was used in this study, and it contained 30.1% glucan and 13.5% xylan, 22.4% lignin. The pretreated rice husk with glycerol carbonate and acidified aqueous glycerol (10% water) at 90°C and 130°C for 60min had the maximum yield of glucan digestibility which was 78.2% and 69.7% respectively, using cellulase for 72h. The simultaneous saccharification and fermentation was conducted anaerobically at 37°C with Saccharomyces cerevisiae, 5% w/v glucan and 10FPU/g glucan of cellulase. 11.58 and 8.84g/L was the highest ethanol concentration after 3days of incubation form pretreated rice husk with glycerol carbonate and acidified aqueous glycerol respectively.
Collapse
Affiliation(s)
- Majid Ebrahimi
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Intramuros, Manila, Philippines.
| | - Oliver B Villaflores
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Emma E Ordono
- Bioengineering Institute, The University of Auckland, Auckland City, New Zealand
| | - Alvin R Caparanga
- School of Chemical Engineering and Chemistry, Mapúa Institute of Technology, Intramuros, Manila, Philippines
| |
Collapse
|
16
|
Zhang B, Zhu Y, Zhang J, Wang D, Sun L, Hong J. Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose. BIORESOURCE TECHNOLOGY 2017; 224:553-562. [PMID: 27955868 DOI: 10.1016/j.biortech.2016.11.110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Xylose and glucose from lignocellulose are sustainable sources for production of pyruvate, which is the starting material for the synthesis of many drugs and agrochemicals. In this study, the pyruvate decarboxylase gene (KmPDC1) and glycerol-3-phosphate dehydrogenase gene (KmGPD1) of Kluyveromyces marxianus YZJ051 were disrupted to prevent ethanol and glycerol accumulation. The deficient growth of PDC disruption was rescued by overexpressing mutant KmMTH1-ΔT. Then pentose phosphate pathway and xylitol dehydrogenase SsXYL2-ARS genes were overexpressed to obtain strain YZB053 which produced pyruvate with xylose other than glucose. It produced 24.62g/L pyruvate from 80g/L xylose with productivity of 0.51g/L/h at 42°C. Then, xylose-specific transporter ScGAL2-N376F was overexpressed to obtain strain YZB058, which simultaneously consumed 40g/L glucose and 20g/L xylose and produced 29.21g/L pyruvate with productivity of 0.81g/L/h at 42°C. Therefore, a platform for pyruvate production from glucose and xylose at elevated temperature was developed.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Yelin Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Dongmei Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Lianhong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
17
|
Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P. Potential of rice straw for bio-refining: An overview. BIORESOURCE TECHNOLOGY 2016; 215:29-36. [PMID: 27067674 DOI: 10.1016/j.biortech.2016.04.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 05/24/2023]
Abstract
The biorefinery approach for the production of fuels and chemicals is gaining more and more attraction in recent years. The major advantages of biorefineries are the generation of multiple products with complete utilization of biomass with zero waste generation. Moreover the process will be economically viable when it targets low volume high value products in addition to high volume low value products like bioethanol. The present review discuss about the potential of rice straw based biorefinery. Since rice is a major staple food for many Asian countries, the utilization of the rice straw residue for fuel and chemicals would be very economical. The review focuses the availability and the potential of this residue for the production of fuel and other high value chemicals.
Collapse
Affiliation(s)
- Amith Abraham
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Anil Kuruvilla Mathew
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Raveendran Sindhu
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Ashok Pandey
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India
| | - Parameswaran Binod
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019, India.
| |
Collapse
|
18
|
Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2016; 216:227-37. [PMID: 27240239 DOI: 10.1016/j.biortech.2016.05.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 05/08/2023]
Abstract
Engineered Kluyveromyces marxianus strains were constructed through over-expression of various transporters for simultaneous co-fermentation of glucose and xylose. The glucose was converted into ethanol, whereas xylose was converted into xylitol which has higher value than ethanol. Over-expressing xylose-specific transporter ScGAL2-N376F mutant enabled yeast to co-ferment glucose and xylose and the co-fermentation ability was obviously improved through increasing ScGAL2-N376F expression. The production of glycerol was blocked and acetate production was reduced by disrupting gene KmGPD1. The obtained K. marxianus YZJ119 utilized 120g/L glucose and 60g/L xylose simultaneously and produced 50.10g/L ethanol and 55.88g/L xylitol at 42°C. The yield of xylitol from consumed xylose was over 98% (0.99g/g). Through simultaneous saccharification and co-fermentation at 42°C, YZJ119 produced a maximal concentration of 44.58g/L ethanol and 32.03g/L xylitol or 29.82g/L ethanol and 31.72g/L xylitol, respectively, from detoxified or non-detoxified diluted acid pretreated corncob.
Collapse
Affiliation(s)
- Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Ruixiang Han
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Rui Ding
- Institutes of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA
| | - Lianhong Sun
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
19
|
Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro APT, Fonseca C, Lachance MA, Hittinger CT, Rosa CA. Genomic analysis and D-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f. a., sp. nov. and Spathaspora gorwiae f. a., sp. nov. FEMS Yeast Res 2016; 16:fow044. [PMID: 27188884 DOI: 10.1093/femsyr/fow044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 02/03/2023] Open
Abstract
Three novel D-xylose-fermenting yeast species of Spathaspora clade were recovered from rotting wood in regions of the Atlantic Rainforest ecosystem in Brazil. Differentiation of new species was based on analyses of the gene encoding the D1/D2 sequences of large subunit of rRNA and on 642 conserved, single-copy, orthologous genes from genome sequence assemblies from the newly described species and 15 closely-related Debaryomycetaceae/Metschnikowiaceae species. Spathaspora girioi sp. nov. produced unconjugated asci with a single elongated ascospore with curved ends; ascospore formation was not observed for the other two species. The three novel species ferment D-xylose with different efficiencies. Spathaspora hagerdaliae sp. nov. and Sp. girioi sp. nov. showed xylose reductase (XR) activity strictly dependent on NADPH, whereas Sp. gorwiae sp. nov. had XR activity that used both NADH and NADPH as co-factors. The genes that encode enzymes involved in D-xylose metabolism (XR, xylitol dehydrogenase and xylulokinase) were also identified for these novel species. The type strains are Sp. girioi sp. nov. UFMG-CM-Y302(T) (=CBS 13476), Sp. hagerdaliae f.a., sp. nov. UFMG-CM-Y303(T) (=CBS 13475) and Sp. gorwiae f.a., sp. nov. UFMG-CM-Y312(T) (=CBS 13472).
Collapse
Affiliation(s)
- Mariana R Lopes
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Camila G Morais
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Raquel M Cadete
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Marco A Soares
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ana Paula T Uetanabaro
- Departamento de Ciências Biológicas e Agroindústria, Universidade Estadual Santa Cruz, Ilhéus, BA 45662-900, Brazil
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen SV, Denmark
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., N6A 5B7, London, Ontario, Canada
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
20
|
Kim M, Liang M, He Q, Wang J. A novel bioreactor to study the dynamics of co-culture systems. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Unrean P. Bioprocess modelling for the design and optimization of lignocellulosic biomass fermentation. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-015-0079-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
22
|
Unrean P, Khajeeram S. Model-based optimization of Scheffersomyces stipitis and Saccharomyces cerevisiae co-culture for efficient lignocellulosic ethanol production. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0069-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Zhang J, Zhang B, Wang D, Gao X, Hong J. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. BIORESOURCE TECHNOLOGY 2015; 175:642-645. [PMID: 25465792 DOI: 10.1016/j.biortech.2014.10.150] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion.
Collapse
Affiliation(s)
- Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|
24
|
Mohamad NL, Mustapa Kamal SM, Mokhtar MN. Xylitol Biological Production: A Review of Recent Studies. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.961077] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Cheng KK, Wu J, Lin ZN, Zhang JA. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:166. [PMID: 25431622 PMCID: PMC4245779 DOI: 10.1186/s13068-014-0166-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/07/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work was to combine inhibitor degradation, xylitol fermentation, and ethanol production using a single yeast strain. RESULTS A new process of integrated aerobic xylitol production and anaerobic ethanol fermentation using non-detoxified acid pretreated corncob by Candida tropicalis W103 was proposed. C. tropicalis W103 is able to degrade acetate, furfural, and 5-hydromethylfurfural and metabolite xylose to xylitol under aerobic conditions, and the aerobic fermentation residue was used as the substrate for ethanol production by anaerobic simultaneous saccharification and fermentation. With 20% substrate loading, furfural and 5-hydroxymethylfurfural were degraded totally after 60 h aerobic incubation. A maximal xylitol concentration of 17.1 g l(-1) was obtained with a yield of 0.32 g g(-1) xylose. Then under anaerobic conditions with the addition of cellulase, 25.3 g l(-1) ethanol was produced after 72 h anaerobic fermentation, corresponding to 82% of the theoretical yield. CONCLUSIONS Xylitol and ethanol were produced in Candida tropicalis W103 using dual-phase fermentations, which comprise a changing from aerobic conditions (inhibitor degradation and xylitol production) to anaerobic simultaneous saccharification and ethanol fermentation. This is the first report of integrated xylitol and ethanol production from non-detoxified acid pretreated corncob using a single microorganism.
Collapse
Affiliation(s)
- Ke-Ke Cheng
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 P.R. China
| | - Jing Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 P.R. China
| | - Zhang-Nan Lin
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 P.R. China
| | - Jian-An Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 P.R. China
| |
Collapse
|
26
|
Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 2014; 32:1180-204. [PMID: 24651031 DOI: 10.1016/j.biotechadv.2014.03.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 02/08/2023]
Abstract
Microorganisms have a long track record as important sources of novel bioactive natural products, particularly in the field of drug discovery. While microbes have been shown to biosynthesize a wide array of molecules, recent advances in genome sequencing have revealed that such organisms have the potential to yield even more structurally diverse secondary metabolites. Thus, many microbial gene clusters may be silent under standard laboratory growth conditions. In the last ten years, several methods have been developed to aid in the activation of these cryptic biosynthetic pathways. In addition to the techniques that demand prior knowledge of the genome sequences of the studied microorganisms, several genome sequence-independent tools have been developed. One of these approaches is microorganism co-culture, involving the cultivation of two or more microorganisms in the same confined environment. Microorganism co-culture is inspired by the natural microbe communities that are omnipresent in nature. Within these communities, microbes interact through signaling or defense molecules. Such compounds, produced dynamically, are of potential interest as new leads for drug discovery. Microorganism co-culture can be achieved in either solid or liquid media and has recently been used increasingly extensively to study natural interactions and discover new bioactive metabolites. Because of the complexity of microbial extracts, advanced analytical methods (e.g., mass spectrometry methods and metabolomics) are key for the successful detection and identification of co-culture-induced metabolites. This review focuses on co-culture studies that aim to increase the diversity of metabolites obtained from microbes. The various strategies are summarized with a special emphasis on the multiple methods of performing co-culture experiments. The analytical approaches for studying these interaction phenomena are discussed, and the chemical diversity and biological activity observed among the induced metabolites are described.
Collapse
Affiliation(s)
- Samuel Bertrand
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland; Groupe Mer, Molécules, Santé-EA 2160, Faculté des Sciences pharmaceutiques et biologiques, Université de Nantes, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 01, France
| | - Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Sylvain Schnee
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Olivier Schumpp
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Katia Gindro
- Mycology and Biotechnology group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P.O. Box 1012, 1260 Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
27
|
Ha SJ, Kim SR, Kim H, Du J, Cate JHD, Jin YS. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2013; 149:525-31. [PMID: 24140899 DOI: 10.1016/j.biortech.2013.09.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
Simultaneous fermentation of cellobiose and xylose by an engineered Saccharomyces cerevisiae has been demonstrated in batch fermentation, suggesting the feasibility of continuous co-fermentation of cellulosic sugars. As industrial S. cerevisiae strains have known to possess higher ethanol productivity and robustness compared to laboratory S. cerevisiae strains, xylose and cellobiose metabolic pathways were introduced into a haploid strain derived from an industrial S. cerevisiae. The resulting strain (JX123-BTT) was able to ferment a mixture of cellobiose and xylose simultaneously in batch fermentation with a high ethanol yield (0.38 g/g) and productivity (2.00 g/L · h). Additionally, the JX123-BTT strain co-consumed glucose, cellobiose, and xylose under continuous culture conditions at a dilution rate of 0.05 h(-1) and produced ethanol resulting in 0.38 g/g of ethanol yield and 0.96 g/L · h of productivity. This is the first demonstration of co-fermentation of cellobiose and xylose by an engineered S. cerevisiae under continuous culture conditions.
Collapse
Affiliation(s)
- Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Zhang B, Wang D, Gao X, Hong J. Xylitol production at high temperature by engineered Kluyveromyces marxianus. BIORESOURCE TECHNOLOGY 2013; 152:192-201. [PMID: 24291795 DOI: 10.1016/j.biortech.2013.10.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 05/24/2023]
Abstract
Several recombinant Kluyveromyces marxianus strains were constructed through overexpressing the Neurospora crassa xylose reductase genes. YZJ015, which maintained the original xylitol dehydrogenase gene, produced xylitol with the highest productivity (1.49 g L(-1) h(-1)) from 100 g L(-1) xylose at 42 °C. Even at 45 °C, YZJ015 was still able to produce 60.03 g L(-1) xylitol from 100 g L(-1) xylose with a productivity of 1.25 g L(-1)h(-1). In addition, for 20 rounds of cell recycling at 42 °C, YZJ015 produced 71.35 g L(-1) xylitol from 100 g L(-1) xylose with a productivity of 4.43 g L(-1) h(-1) per cycle. YZJ017, in which the xylitol dehydrogenase gene was disrupted, produced 100.02 g L(-1) xylitol at a yield of 1.01 g g(-1) from 100 g L(-1) xylose with 40 g L(-1) glycerol as co-substrate at 42 °C. These engineered strains provide an excellent foundation for xylitol production at elevated temperatures.
Collapse
Affiliation(s)
- Jia Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Biao Zhang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Dongmei Wang
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | - Xiaolian Gao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004-5001, USA; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Science at the Microscale, Hefei, Anhui 230026, PR China.
| |
Collapse
|