1
|
Kong F, Ren HY, Liu D, Wang Z, Nan J, Ren NQ, Fu Q. Improved decolorization and mineralization of azo dye in an integrated system of anaerobic bioelectrochemical modules and aerobic moving bed biofilm reactor. BIORESOURCE TECHNOLOGY 2022; 353:127147. [PMID: 35421561 DOI: 10.1016/j.biortech.2022.127147] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, a stacked integrated system with anaerobic bioelectrochemical system (BES) and aerobic moving bed biofilm reactor (MBBR) was developed to improve the decolorization and mineralization of azo dye. This stacked BES-MBBR exhibited better performance with acid orange (AO7) decolorization of 96.4 ± 0.6% and chemical oxygen demand (COD) removal of 87.7 ± 4.4%. Contribution of each module in the BES and MBBR stages indicated that BES modules enhanced the pretreatment process in AO7 decolorization, and MBBR played an important role in further removal of COD. The mechanism analysis indicated that the azo bond was cleaved with reductive decolorization at biocathode in the anaerobic BES stages, and then the intermediate products can be further oxidized with COD removal in the aerobic MBBR stage. This work demonstrated that the integrated system with stacked anaerobic BES and aerobic MBBR could provide a promising way for the pretreatment and post-treatment of refractory wastewater.
Collapse
Affiliation(s)
- Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zilong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Yang K, Ji M, Liang B, Zhao Y, Zhai S, Ma Z, Yang Z. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122892. [PMID: 32768818 DOI: 10.1016/j.jhazmat.2020.122892] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/19/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn't be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.
Collapse
Affiliation(s)
- Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zehao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhifan Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
3
|
Yang LH, Cheng HY, Ding YC, Su SG, Wang B, Zeng R, Sharif HMA, Wang AJ. Enhanced treatment of coal gasification wastewater in a membraneless sleeve-type bioelectrochemical system. Bioelectrochemistry 2019; 129:154-161. [DOI: 10.1016/j.bioelechem.2019.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 11/28/2022]
|
4
|
Su SG, Cheng HY, Zhu TT, Wang HC, Wang AJ. A novel bioelectrochemical method for real-time nitrate monitoring. Bioelectrochemistry 2019; 125:33-37. [DOI: 10.1016/j.bioelechem.2018.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 02/03/2023]
|
5
|
Wang HC, Cheng HY, Cui D, Zhang B, Wang SS, Han JL, Su SG, Chen R, Wang AJ. Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:287-295. [PMID: 28578230 DOI: 10.1016/j.jhazmat.2017.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
The application of bio-electrochemical system (BESs) is strongly depended on the development of the engineering applicable electrode. Here we described an economical and readily processable electrode module with three-dimensional structure, the corrugated stainless-steel mesh electrode module (c-SMEM). This novel developed electrode module was demonstrated to provide a good hydrodynamic characteristic and significantly enhanced the decolorization performance of the BES when serving for treating azo dye (acid orange 7, AO7) containing wastewater. Compared to the conventional planar electrodes module (p-SMEM), c-SMEM was found to prolong the mean residence time (MRTθ) of AO7 and change the flow pattern closer to the plug flow. As a result, the maximum enhancement of the volumetric decolorization rate (vDR) can reach to 255%, even when the c-SMEM and p-SMEM have the same electrode surface area. In addition, a techno-economic analysis model was established to elucidated the effects of the decolorization performance and the material cost on the initial capital cost, which revealed the BES with c-SMEM could be economically comparable to or even better than the traditional bio-decolorization technologies. These results suggest c-SMEM holds great potential for engineering application, which may help paving the way of applying BES at large-scale.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Dan Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Shu-Sen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shi-Gang Su
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
6
|
He CS, Mu ZX, Yang HY, Wang YZ, Mu Y, Yu HQ. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. CHEMOSPHERE 2015; 140:12-17. [PMID: 25907762 DOI: 10.1016/j.chemosphere.2015.03.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 08/20/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect.
Collapse
Affiliation(s)
- Chuan-Shu He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Zhe-Xuan Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Hou-Yun Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Ya-Zhou Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, China
| |
Collapse
|
7
|
Kong F, Wang A, Ren HY. Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber for azo dye treatment. BIORESOURCE TECHNOLOGY 2015; 198:437-444. [PMID: 26409856 DOI: 10.1016/j.biortech.2015.09.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
In this study, the optimization of working cathode position in sleeve-type bioelectrochemical system (BES) was evaluated with inner/outer chamber for azo dye decolorization. Results showed that the working position in outer chamber performed better with decolorization efficiencies of 97.8 ± 2.1% (7h) and 94.0 ± 2.3% (16 h) than that in inner chamber as the volume ratio Vcathode:Vanode=1:1 and 3:1, respectively. The current and electrochemical impedance spectroscopy (EIS) analysis indicated that the proton/electron transfer and anolyte diffusion could be improved using outer chamber as working position. The decolorization with increased volume ratio could be further improved through the strategy of increasing substrate concentration, which would provide enough electrons and decrease diffusion resistance, further improving the whole performance with increased outer cathode volume. It has the great potential in sleeve-type configuration application and would create more challenges for process optimization and maintenance.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Sun Q, Li Z, Wang Y, Cui D, Liang B, Thangavel S, Chung JS, Wang A. A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R. BIORESOURCE TECHNOLOGY 2015; 195:73-7. [PMID: 26142821 DOI: 10.1016/j.biortech.2015.06.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/20/2023]
Abstract
An application-oriented membrane-free, continuous plug-flow baffled bioelectrocatalyzed reactor (PFB-BER), was designed and testified for the decolorization of Alizarin Yellow R. Decolorization efficiency (DE) with an external power source of 0.5 V was higher than without electrolysis, i.e. 93.4% versus 73.6% (HRT of 24 h). Product formation efficiencies of p-phenylenediamine and 5-aminosalicylic acid were above 95% and 50%, respectively. When HRT decreased to 8 h and 4 h, DE reduced to 69.9% and 44.9%, respectively. An additional electrode assembly improved DE to 96.4% (HRT of 8 h) and 80% (HRT of 4 h), while energy consumption (HRT of 4 h) was lower than that of HRT of 12 h with single electrode assembly under comparable DE. The PFB-BER with higher removal capacity, lower internal resistance and energy consumption provides a new solution to treat the high loading azo dye-containing wastewaters.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Youzhao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dan Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Sangeetha Thangavel
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jong Shik Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea; Division of Environmental Catalysis, Research Institute of Industrial Science and Technology, P.O. Box 135, Pohang 790-600, South Korea
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
9
|
Kong F, Wang A, Ren HY. Optimized matching modes of bioelectrochemical module and anaerobic sludge in the integrated system for azo dye treatment. BIORESOURCE TECHNOLOGY 2015; 192:486-493. [PMID: 26080106 DOI: 10.1016/j.biortech.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
In this work, three matching modes (relative positions, catholyte flow sequences, and flow regimes) of bioelectrochemical module and anaerobic sludge were evaluated and optimized for azo dye treatment in the integrated system with embedding modular bioelectrochemical system into anaerobic sludge reactor. Results showed that it was favorable to operate this integrated system under the condition of 1/4 cathode soaking into sludge with spiral distributor in down-flow direction. Current, electrochemical impedance spectroscopy and pH clearly demonstrated the important role of 1/4 soaking in electron/proton transfer. The down-flow direction flowed through electrode zone and then sludge zone could benefit to the efficient use of cathode and improve AO7 treatment. Furthermore, the positive effect of spiral catholyte distributor might be due to its promoting role in mixing and creating a spiral flow channel around the cathode electrode-microbes-solution interface. These results exhibited great potential for matching modular bioelectrochemical system with anaerobic treatment process.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Yuan Y, You SJ, Zhang JN, Gong XB, Wang XH, Ren NQ. Pilot-scale bioelectrochemical system for efficient conversion of 4-chloronitrobenzene. ENVIRONMENTAL TECHNOLOGY 2015; 36:1847-1854. [PMID: 25650667 DOI: 10.1080/09593330.2015.1013572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
4-Chloronitrobenzene (4-CNB) is one of the highly toxic contaminants that may lead to acute, chronic or persistent physiological toxicity to ecology and environment. Conventional methods for removing 4-CNB from aquatic environment may be problematic due to inefficiency, high cost and low sustainability. This study develops a pilot-scale bioelectrochemical system (BES, effective volume of 18 L) and examines its performance of bioelectrochemical transformation of 4-CNB to 4-chloroaniline (4-CAN) under continuous operation. The results demonstrate that the initial 4-CNB concentration in the influent and hydraulic retention time (HRT) has a significant impact on 4-CNB reduction and 4-CAN formation. Compared with the conventional anaerobic process in the absence of external power supplied, the 4-CNB conversion efficiency can be enhanced with power supplied due to microbial-mediated electron transfer at the negative cathode potential. At a voltage of 0.4 V and HRT of 48 h, the 4-CNB reduction and 4-CAN formation efficiency reached 99% and 94.1%, respectively. Based on a small external voltage applied, the pilot-scale BES is effective in the conversion of 4-CNB to 4-CAN, an intermediate that is of less toxicity and higher bioavailability for subsequent treatment. This study provides a new strategy and methods for eliminating 4-CNB, making wastewater treatment more economical and more sustainable.
Collapse
Affiliation(s)
- Yuan Yuan
- a State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology (HIT) , P.O. Box 2603#, No. 73, Huanghe Road, Nangang District, Harbin 150090 , Nangang District , People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Chen BY, Xu B, Yueh PL, Han K, Qin LJ, Hsueh CC. Deciphering electron-shuttling characteristics of thionine-based textile dyes in microbial fuel cells. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Wang H, Luo H, Fallgren PH, Jin S, Ren ZJ. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 2015; 33:317-34. [DOI: 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
13
|
Kong F, Wang A, Ren HY. Improved azo dye decolorization in an advanced integrated system of bioelectrochemical module with surrounding electrode deployment and anaerobic sludge reactor. BIORESOURCE TECHNOLOGY 2015; 175:624-8. [PMID: 25466999 DOI: 10.1016/j.biortech.2014.10.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 05/15/2023]
Abstract
A new integrated system, embedding a modular bioelectrochemical system (BES) with surrounding electrode deployment into an anaerobic sludge reactor (ASR), was developed to improve azo dye decolorization. Results demonstrated that the AO7 decolorization and COD removal can be improved without co-substrate in such system. The kinetic rate of decolorization (0.54h(-1)) in integrated system was 1.4-fold and 54.0-fold higher than that in biocathode BES (0.39h(-1)) and ASR (0.01h(-1)), respectively. COD can be removed after cleavage of azo bond, different from biocathode BES. The combined advantages of this integrated system were achieved by the cooperation of biocathode in modular BES and sludge in ASR. Biocathode was a predominant factor in AO7 decolorization, and anaerobic sludge contributed negligibly to AO7 reduction decolorization but mostly in the COD removal. These results demonstrated the great potential of integrating a BES module with anaerobic treatment process for azo dye treatment.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
14
|
Kong D, Liang B, Lee DJ, Wang A, Ren N. Effect of temperature switchover on the degradation of antibiotic chloramphenicol by biocathode bioelectrochemical system. J Environ Sci (China) 2014; 26:1689-97. [PMID: 25108725 DOI: 10.1016/j.jes.2014.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/25/2013] [Accepted: 03/07/2014] [Indexed: 05/12/2023]
Abstract
Exposure to chloramphenicol (CAP), a chlorinated nitroaromatic antibiotic, can induce CAP-resistant bacteria/genes in diverse environments. A biocathode bioelectrochemical system (BES) was applied to reduce CAP under switched operational temperatures. When switching from 25 to 10°C, the CAP reduction rate (kCAP) and the maximum amount of the dechlorinated reduced amine product (AMCl, with no antibacterial activity) by the biocathode communities were both markedly decreased. The acetate and ethanol yield from cathodophilic microbial glucose fermentation (with release of electrons) was also reduced. Formation of the product AMCl was enhanced by the biocathode dechloridation reaction compared with that produced from pure electrochemical or microbial dechloridation processes. The electrochemical and morphological analyses of cathode biofilms demonstrated that some cathodophilic microbes could adapt to low temperature and play a key role in CAP degradation. The resilient biocathode BES has a potential for the treatment of CAP-containing wastewater in temperature fluctuating environments.
Collapse
Affiliation(s)
- Deyong Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Key laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Kong F, Wang A, Ren HY. Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials. BIORESOURCE TECHNOLOGY 2014; 166:252-258. [PMID: 24926596 DOI: 10.1016/j.biortech.2014.05.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
This study developed and optimized a modular biocathode materials design in bioelectrochemical system (BES) using composite metal and carbon-based materials. The 4-chlorophenol (4-CP) dechlorination could be improved with such composite materials. Results showed that stainless steel basket (SSB) filled with graphite granules (GG) and carbon brush (CB) (SSB/GG/CB) was optimum for dechlorination, followed by SSB/CB and SSB/GG, with rate constant k of 0.0418 ± 0.0002, 0.0374 ± 0.0004, and 0.0239 ± 0.0002 h(-1), respectively. Electrochemical impedance spectroscopy (EIS) demonstrated that the composite materials with metal can benefit the electron transfer and decrease the charge transfer resistance to be 80.4 Ω in BES-SSB/GG/CB, much lower than that in BES-SSB (1674.3 Ω), BES-GG (387.3 Ω), and BES-CB (193.8 Ω). This modular cathode design would be scalable with successive modules for BES scale-up, and may offer useful information to guide the selection and design of BES materials towards dechlorination improvement in wastewater treatment.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
Fernando E, Keshavarz T, Kyazze G. Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. BIORESOURCE TECHNOLOGY 2014; 156:155-62. [PMID: 24495541 DOI: 10.1016/j.biortech.2014.01.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 05/12/2023]
Abstract
In this study, the commercially used model azo dye Acid Orange-7 (AO-7) was fully degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) and aerobic bioreactor system. The integrated bioreactor system was operated at ambient temperature and continuous-flow mode. AO-7 loading rate was varied during experiments from 70gm(-3)day(-1) to 210gm(-3)day(-1). Colour and soluble COD removal rates reached>90% under all AO-7 loading rates. The MFC treatment stage prompted AO-7 to undergo reductive degradation into its constituent aromatic amines. HPLC-MS analysis of metabolite extracts from the aerobic stage of the bioreactor system indicated further oxidative degradation of the resulting aromatic amines into simpler compounds. Bioluminescence based Vibrio fischeri ecotoxicity testing demonstrated that aerobic stage effluent exhibited toxicity reductions of approximately fivefold and ten-fold respectively compared to the dye wastewater influent and MFC-stage effluent.
Collapse
Affiliation(s)
- Eustace Fernando
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Taj Keshavarz
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Godfrey Kyazze
- Faculty of Science and Technology, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
17
|
Kong F, Wang A, Cheng H, Liang B. Accelerated decolorization of azo dye Congo red in a combined bioanode-biocathode bioelectrochemical system with modified electrodes deployment. BIORESOURCE TECHNOLOGY 2014; 151:332-339. [PMID: 24262842 DOI: 10.1016/j.biortech.2013.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
In this study, BES with bioanode and biocathode was applied to decolorize an azo dye Congo red (CR). Results showed that the Congo red decolorization efficiency (CR-DE) within 23 h in a combined bioanode-biocathode single chamber BES was 98.3±1.3%, significantly higher than that of mixed solution in a dual chamber BES (67.2±3.5%) (P<0.005). Various electrodes deployments (horizontal, vertical and surrounding) in the combined bioanode-biocathode BES were further compared based on the decolorization performance and electrochemical characterization. Results indicated that CR-DE within 11h improved from 87.4±1.3% to 97.5±2.3%, meanwhile the internal resistance decreased from 236.6 to 42.2Ω as modifying the horizontal deployment to be a surrounding deployment. It proved that the combination of bioanode and biocathode with suitable electrodes deployment could accelerate the decolorization of azo dye Congo red, which would be great potential for the application of bioelectrochemical technology in azo dye wastewater treatment.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | |
Collapse
|