1
|
Ghanaim AM, Mahdy OME, Mohamed HI. Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency. BMC Microbiol 2025; 25:7. [PMID: 39780060 PMCID: PMC11715232 DOI: 10.1186/s12866-024-03703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency. The recent attention to effectively utilizing microbes to convert toxic industrial azo dyes into non-hazardous compounds has garnered significant attention. In the present study, four fungal strains-Aspergillus flavus, Aspergillus terreus, Aspergillus niger, and Fusarium oxysporium-were employed to screen for the degradation and detoxification of azo dyes including congo red, crystal violet, bromophenol blue, and malachite green. After eight days, A. flavus had degraded azo dyes at the maximum proportion. The maximum decolorization (%) was achieved at 50 mg/L of dye concentration, 8 days of incubation, pH 6, 30 °C temperature, sucrose as a carbon source, NaNO3 as a nitrogen source, Ca+2 as minerals, and using static culture. The efficient production of laccases, lignin peroxidase, and manganese peroxidase enzymes by A. flavus proved that the enzyme played a crucial role in decolorizing the harmful azo dyes. The Fourier Transform Infrared spectrometer (FT-IR) data validated the decolorization and degradation process brought on by absorption and biodegradation. Compared to control plants, the results of the phytotoxicity assay showed that the degraded product was less harmful to maize and common bean plant's growth and germination rates. As a result, the findings indicate that A. flavus is a viable option for remediating azo dyes. This aids in the biodegradation of azo dyes found in wastewater.
Collapse
Affiliation(s)
- Amira M Ghanaim
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Omima M El Mahdy
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
2
|
Goswami D, Mukherjee J, Mondal C, Bhunia B. Bioremediation of azo dye: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176426. [PMID: 39326754 DOI: 10.1016/j.scitotenv.2024.176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The synthetic azo dyes are widely used in the textile industries for their excellent dyeing properties. They may be classified into many classes based on their structure and application, including direct, reactive, dispersive, acidic, basic, and others. The continuous discharge of wastewater from a large number of textile industries without prior treatment poses detrimental effects on the environment and human health. Azo dyes and their degradation products are extremely poisonous for their carcinogenic, teratogenic and mutagenic nature. Moreover, exposure to synthetic azo dyes can cause genetic changes, skin inflammation, hypersensitivity responses, and skin irritations in persons, which may ultimately result in other profound issues including the deterioration of water quality. This review discusses these dyes in details along with their detrimental effects on aquatic and terrestrial flora and fauna including human beings. Azo dyes degrade the water bodies by increasing biochemical and chemical oxygen demand. Therefore, dye-containing wastewater should be effectively treated using eco-friendly and cost-effective technologies to avoid negative impact on the environment. This article extensively reviews on physical, chemical and biological treatment with their benefits and challenges. Biological-based treatment with higher hydraulic retention time (HRT) is economical, consumes less energy, produces less sludge and environmentally friendly. Whereas the physical and chemical methods with less hydraulic retention time is costly, produces large sludge, requires high dissolved oxygen and ecologically inefficient. Since, biological treatment is more advantageous over physical and chemical methods, researchers are concentrating on bioremediation for eliminating harmful azo dye pollutants from nature. This article provides a thorough analysis of the state-of-the-art biological treatment technologies with their developments and effectiveness in the removal of azo dyes. The mechanism by which genes encoding azoreductase enzymes (azoG, and azoK) enable the natural degradation of azo dyes by bacteria and convert them into less harmful compounds is also extensively examined. Therefore, this review also focuses on the use of genetically modified microorganisms and nano-technological approaches for bioremediation of azo dyes.
Collapse
Affiliation(s)
- Deepa Goswami
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana 501401, India
| | - Chanchal Mondal
- Department of Chemical Engineering, Jadavpur University, Kolkata 700032, India
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
3
|
Mustafa G, Zahid MT, Kurade MB, Alvi A, Ullah F, Yadav N, Park HK, Khan MA, Jeon BH. Microalgal and activated sludge processing for biodegradation of textile dyes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123902. [PMID: 38580061 DOI: 10.1016/j.envpol.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The textile industry contributes substantially to water pollution. To investigate bioremediation of dye-containing wastewater, the decolorization and biotransformation of three textile azo dyes, Red HE8B, Reactive Green 27, and Acid Blue 29, were considered using an integrated remediation approach involving the microalga Chlamydomonas mexicana and activated sludge (ACS). At a 5 mg L-1 dye concentration, using C. mexicana and ACS alone, decolorization percentages of 39%-64% and 52%-54%, respectively, were obtained. In comparison, decolorization percentages of 75%-79% were obtained using a consortium of C. mexicana and ACS. The same trend was observed for the decolorization of dyes at higher concentrations, but the potential for decolorization was low. The toxic azo dyes adversely affect the growth of microalgae and at high concentration 50 mg L-1 the growth rate inhibited to 50-60% as compared to the control. The natural textile wastewater was also treated with the same pattern and got promising results of decolorization (90%). Moreover, the removal of BOD (82%), COD (72%), TN (64%), and TP (63%) was observed with the consortium. The HPLC and GC-MS confirm dye biotransformation, revealing the emergence of new peaks and the generation of multiple metabolites with more superficial structures, such as N-hydroxy-aniline, naphthalene-1-ol, and sodium hydroxy naphthalene. This analysis demonstrates the potential of the C. mexicana and ACS consortium for efficient, eco-friendly bioremediation of textile azo dyes.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Muhammad Tariq Zahid
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Mayur Bharat Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Aliya Alvi
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Faheem Ullah
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Nikita Yadav
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Vijay Pradhap Singh M, Ravi Shankar K. Next-generation hybrid technologies for the treatment of pharmaceutical industry effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120197. [PMID: 38301475 DOI: 10.1016/j.jenvman.2024.120197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Water and industries are intangible units of the globe that are always set to meet the population's demand. The global population depends on one-third of freshwater increasing the demand. The increase in population along with urbanization has polluted the fresh water resources. The pharmaceutical industry is marked as an emerging contaminant of water pollution. The most common type of pharmaceutical drugs that are detected in the environment includes antibiotics, analgesics, NSAIDs, and pain-relieving drugs. These drugs alter the food chain of the organisms causing chaos mainly in the marine ecosystem. Pharmaceutical drugs are found only in shallow amounts (ng/mg) they have a huge impact on the living system. The consumption of water contaminated with pharmaceutical ingredients can disrupt reproduction, hormonal imbalance, cancer, and respiratory problems. Various methods are used to remove these chemicals from the environment. In this review, we mainly focused on the emerging hybrid technologies and their significance in the effective treatment of pharmaceutical wastewater. This review paper primarily elaborates on the merits and demerits of existing conventional technologies helpful in developing integrated technologies for the modern era of pharmaceutical effluent treatment. This review paper further in detail discusses the various strategies of eco-friendly bioremediation techniques namely biostimulation, bioaugmentation, bacterial degradation, mycoremediation, phytoremediation, and others for the ultimate removal of pharmaceutical contaminants in wastewater. The review makes clear that targeted and hybrid solutions are what the world will require in the future to get rid of these pharmacological prints.
Collapse
Affiliation(s)
- M Vijay Pradhap Singh
- Department of Biotechnology, Vivekanandha College of Engineering for Women (Autonomous), Namakkal, Elayampalayam, Tiruchengode, Tamil Nadu, 637 205, India.
| | - K Ravi Shankar
- Department of Biotechnology, University College of Engineering, Anna University-BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
5
|
Dahiya M, Islam DT, Srivastava P, Sreekrishnan TR, Mishra S. Detoxification and decolorization of complex textile effluent in an enzyme membrane reactor: batch and continuous studies. Front Microbiol 2023; 14:1193875. [PMID: 37485538 PMCID: PMC10361525 DOI: 10.3389/fmicb.2023.1193875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
There is an urgent need to look for bio-based technologies to address the pollution related to textile dyes in waterbodies. The aim of this study was to evaluate an engineered laccase variant, LCC1-62 of Cyathus bulleri, expressed in recombinant Pichia pastoris, for the decolorization and detoxification of real textile effluent. The partially purified laccase effectively (~60-100%) decolorized combined effluent from different dyeing units at a laccase concentration of 500 U/L at a 50-mL level. Decolorization and detoxification of the combined effluents, from a local textile mill, were evaluated at 0.3 L volumetric level in a ray-flow membrane reactor in batch and continuous modes of operation. In batch studies, maximum decolorization of 97% and detoxification of 96% occurred at a hydraulic retention time (HRT) of 6 h without any additional laccase requirement. In continuous studies, the reactor was operated at an HRT of 6 h with a lower enzyme dosage (~120 U/L of the effluent). Decolorization was accompanied by a loss in laccase activity which was restored to ~120 U/L by the addition of laccase in two regimes. The addition of laccase, when the residual laccase activity decreased to 40% (~50 U/L), resulted in high decolorization (~5 ppm residual dye concentration) and low variance (σ2) of 2.77, while laccase addition, when the residual dye concentration decreased to ~8% (~10 U/L), resulted in an average dye concentration of 13 ppm with a high variance of 62.08. The first regime was implemented, and the continuous reactor was operated for over 80 h at an HRT of 3 and 6 h, with the latter resulting in ~95% decolorization and 96% reduction in the mutagenicity of the effluent. Less than 10% membrane fouling was observed over long operations of the reactor. The findings strongly suggest the feasibility of using LCC1-62 in an enzyme membrane reactor for large-scale treatment of textile effluents.
Collapse
|
6
|
Laothanachareon T, Kongtong K, Saeng-Kla K, Kanokratana P, Leetanasaksakul K, Champreda V. Evaluating the efficacy of wood decay fungi and synthetic fungal consortia for simultaneous decolorization of multiple textile dyes. World J Microbiol Biotechnol 2023; 39:226. [PMID: 37316623 DOI: 10.1007/s11274-023-03672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Wastewater from the textile industry dyeing process containing high loads of synthetic dyes leads to pollution of water with these toxic and genotoxic dyes. Much effort has been put towards developing biological systems to resolve this issue. Mycoremediation is a well-known approach using fungi to remove, degrade, or remediate pollutants and can be applied to decolorize textile dyes in industrial effluent. Fungal strains from four genera of Polyporales, namely Coriolopsis sp. TBRC 2756, Fomitopsis pinicola TBRC-BCC 30881, Rigidoporus vinctus TBRC 6770, and Trametes pocas TBRC-BCC 18705, were studied for decolorization efficiency, and R. vinctus was found to exhibit the greatest activity in removing all seven tested reactive dyes and one acid dye with a decolorization efficiency of 80% or more within 7 days under limited oxygen. This fungus simultaneously degraded multiple dyes in synthetic wastewater as well as industrial effluent from the dyeing process. To enhance the decolorization rate, various fungal consortia were formulated for testing. However, these consortia only trivially improved efficiency compared with using R. vinctus TBRC 6770 alone. Evaluation of R. vinctus TBRC 6770 decolorization ability was further performed in a 15-L bioreactor to test its ability to eliminate multiple dyes from industrial effluent. The fungus took 45 days to adapt to growth in the bioreactor and subsequently reduced dye concentration to less than 10% of the initial concentration. The following six cycles required only 4-7 days to reduce dye concentrations to less than 25%, demonstrating that the system can run efficiently for multiple cycles without the need for extra medium or other carbon sources.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Kittima Kongtong
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Kanphorn Saeng-Kla
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Kantinan Leetanasaksakul
- Functional Proteomics Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Research Team, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
7
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
8
|
Removal of the Pigment Congo Red from Synthetic Wastewater with a Novel and Inexpensive Adsorbent Generated from Powdered Foeniculum Vulgare Seeds. Processes (Basel) 2023. [DOI: 10.3390/pr11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this research, powdered Foeniculum vulgare seed (FVSP) was treated separately with H2C2O4, ZnCl2, and a mixture of ZnCl2-CuS. The characteristics of the treated and untreated FVSP samples, as well as their abilities to eliminate Congo red (CR) from solutions, were investigated. The influences of the empirical circumstances on CR adsorption by the ideal adsorbent were studied. The thermodynamic, isothermal, and dynamic constants of this adsorption were also inspected. The ideal adsorbent was found to be the FVSP sample treated with a ZnCl2-CuS mixture, which eliminated 96.80% of the CR dye. The empirical outcomes proved that this adsorption was significantly affected by the empirical circumstances, and the second-order dynamic model as well as the Langmuir isotherm model fit the empirical data better than the first-order model and the Freundlich model. The values of Ea (15.3 kJ/mol) and ∆Ho (32.767 kJ/mol ≤ ∆Ho ≤ 35.495 kJ/mol) evidence that CR anions were endothermally adsorbed on Zn/Cu-FVSP via the ionic exchange mechanism. The superior Qmax values (434.78, 625.00, 833.33 mg/g), along with the cheapness and stability of the adsorbent used in this work, are evidence to confirm that this adsorbent will receive special interest in the field of contaminated water purification.
Collapse
|
9
|
Evaluation of Congo red dye decolorization and degradation potential of an endophyte Colletotrichum gloeosporioides isolated from Thevetia peruviana (Pers.) K. Schum. Folia Microbiol (Praha) 2022; 68:381-393. [DOI: 10.1007/s12223-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
|
10
|
Synthesis, characterization, photocatalytic effect of CuS-ZnO nanocomposite on photodegradation of Congo red and phenol pollutant. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Mukherjee D, Das P, Prasad GN, Katha AR, Gumma S, Mandal B. Hierarchical graphite oxide decorated UiO-66 for ultrahigh adsorption of dye with synergistic effect of ultrasonication: Experimental and density functional theory study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Singh G, Dwivedi SK. Biosorptive and Biodegradative Mechanistic Approach for the Decolorization of Congo Red Dye by Aspergillus Species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:457-467. [PMID: 34625833 DOI: 10.1007/s00128-021-03380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In this work, Aspergillus terreus GS28 and Aspergillus flavus CR500 isolated from industrial waste sludge examined for the decolorization of Congo red (CR) dye. The rate of CR decolorization raised due to optimum pH, temperature, carbon, nitrogen, and heavy metals. In the comparative study, A. terreus has the maximum ability (95%) to decolorize CR (≈ 100 mg L-1) as compared with A. flavus (92.96%) under optimized condition after 120 h. GC-MS and FTIR analysis of the fungal-metabolite and fungal-biomass shows bio-degradation and biosorption processes respectively. The degraded products were benzenepropanic (Rt-26.147), 3, 4-diaminonapthelene-1-sulfonic acid, and benzenedicarboxylic acid (Rt-26.660) by A. terreus, and benzenedicarboxylic acid (Rt-41.467) by A. flavus. The phytotoxicity assay revealed that a decrease in toxicity of the degraded product towards the growth and germination rate of two plant seeds compared to CR. Thus, the finding suggests that both the fungi act promising CR remediation candidates, induces restoration of CR polluted wastewater and save soil-land.
Collapse
Affiliation(s)
- Garima Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - S K Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
13
|
Elimination of Congo Red Dye from Industrial Wastewater Using Teucrium polium L. as a Low-Cost Local Adsorbent. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/5728696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel adsorbent prepared from the leaf powder of Teucrium polium L. (TPLLP) was characterized and its ability for adsorption of Cong red (CR) was inspected. Influences of CR concentration, adsorbent dosage, time of agitation, pH of solution, and temperature on the performance of this adsorption were also examined. Three models of kinetic along with three different isotherm models were applied for analyzing the empirical data of this adsorption. Additionally, the thermodynamic constants of were decided. The surface area, pore volume, pore size, and pHZPC of Zn/Cu-TPLLP were found to be 2.6436 m2.g-1, 0.013317 cm3.g-1, 527.393 Å, and 8.8, respectively. The achieved outcomes indicate the positive influence of temperature, concentration of CR in the range of 20 to 900 mg/L, adsorbent mass in the range of 0.005 to 0.02 g, time of adsorption from 0 to 120 min, and pH from 5.5 to 8.5. Models of the 2nd order with
and Langmuir with
were the best among the other kinetic and isotherm models applied in this research. Moreover, superior capacities of 526.32, 666.67, and 909.09 (mg.g-1) were stemmed at 27, 42, and 57°C, respectively. The outcomes of the thermodynamic evidenced that this adsorption is spontaneous and a heat absorber.
Collapse
|
14
|
Salehi Z, Rasouli A, Doosthosseini H. p-nitrophenol Degradation Kinetics and Mass Transfer Study by Ralstonia eutropha as a Whole Cell Biocatalyst. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1578808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zeinab Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Rasouli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Doosthosseini
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Wang Y, Xu B, Ning S, Shi S, Tan L. Magnetically stimulated azo dye biodegradation by a newly isolated osmo-tolerant Candida tropicalis A1 and transcriptomic responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111791. [PMID: 33360211 DOI: 10.1016/j.ecoenv.2020.111791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
A recently isolated osmo-tolerant yeast Candida tropicalis A1, which could decolorize various azo dyes under high-salinity conditions, was systematically characterized in the present study. Stimulating dye-decolorization effectiveness and osmo-tolerance of the yeast by static magnetic field (SMF) was investigated and transcriptomic responses of the yeast to SMF was analyzed to propose possible mechanisms. The results demonstrated that the yeast A1 effectively decolorized (≥ 97.50% within 12 h) and detoxified (from high toxicity to low toxicity within 24 h) 70 mg/L Acid Red B (ARB) under the optimized conditions through a series of steps including naphthalene-amidine bond cleavage, reductive or oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene or benzene and TCA cycle. Moreover, dye decolorization performance and osmo-tolerance of the yeast A1 were further improved by 24.6 mT SMF. Genes encoding high-affinity hexose/glucose transporter proteins and NADH-ubiquinone oxidoreductase were up-regulated by 24.6 mT SMF, which might be responsible for the increase of dye decolorization. Significant up-regulation of glycerol-3-phosphate dehydrogenase and cell wall protein RHD3 suggested that osmo-tolerance was enhanced by 24.6 mT SMF through promoting production and intracellular accumulation of glycerol as compatible solute, as well as regulation of cell wall component. In conclusion, 24.6 mT SMF led to the up-regulation of related genes resulting in enhanced dye biodegradation efficiency and osmo-tolerance of the yeast A1.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Bingwen Xu
- Institute of Agricultural Products and Aquatic Products Inspection and Testing, Dalian Center for Certification and Food and Drug Control, Dalian 116037, PR China
| | - Shuxiang Ning
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Shengnan Shi
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China
| | - Liang Tan
- School of Life Sciences, Liaoning Normal University, Key Laboratory of Plant Biotechnology of Liaoning Province, Dalian, Liaoning 116081, PR China.
| |
Collapse
|
16
|
Liu Y, Zheng L, Cai Q, Xu Y, Xie Z, Liu J, Ning X. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111724. [PMID: 33396055 DOI: 10.1016/j.ecoenv.2020.111724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
In recent years, in order to promote animal growth and reduce the risk of disease, a variety of antibiotics are frequently added to the animal feed of livestock and poultry. However, these antibiotics can not be fully digested by animals and most of them are excreted with feces, consequently causing the enrichment of antibiotic resistance genes (ARGs) and huge environmental risks. Nowadays, composting is a better option to solve these problems. Accordingly, this study explored the effects of co-composting swine manure with different inoculants dominated by Phanerochaete chrysosporium (p), Aspergillus niger (a), and Bacillus licheniformis (b) on the simultaneous removal of multiple antibiotics and resistance genes and evolution of the bacterial community. The results showed that the highest removal extent of tetracycline and oxytetracycline occurred in pile D (p:b:a=1:5:5, biomass) reaching 89.2% and 87.8%, respectively, while the highest removal extent of doxycycline and enrofloxacin occurred in pile A (p:b:a=1:0:0, biomass) reaching 98.6% and 89%, respectively. Compared with the levels in pile B (control check), in pile D, ARGs, except those for sulfonamides, decreased by 1.059 × 10-3-6.68 × 10-2 gene copies/16S rRNA copies. Inoculation with p alone effectively reduced intI1 and intI2. Canonical correspondence analysis (CCA) that microbial community structure evolution had a greater influence on ARGs than environmental factors. In summary, this study provided a feasible way to efficiently remove the antibiotics and antibiotic resistance genes in pig manure.
Collapse
Affiliation(s)
- Yanting Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qiujie Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifan Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xunan Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Chatterjee S, Dey S, Sarma M, Chaudhuri P, Das S. Biodegradation of Congo Red by Manglicolous Filamentous Fungus Aspergillus flavus JKSC-7 Isolated from Indian Sundabaran Mangrove Ecosystem. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Novel bacterial biofilm consortia that degrade and detoxify the carcinogenic diazo dye Congo red. Arch Microbiol 2020; 203:643-654. [PMID: 33021681 DOI: 10.1007/s00203-020-02044-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
Free-living planktonic single bacterial strain can decolorize Congo red (CR) but often produces the carcinogenic, mutagenic and genotoxic aromatic amines. Planktonic single and bacterial consortia are more susceptible to toxic pollutants than their biofilm counterparts. In the present study, four biofilm consortia (C1 = Vitreoscilla sp. ENSG301, Acinetobacter lwoffii ENSG302, Klebsiella pneumoniae ENSG303 and Pseudomonas fluorescens ENSG304, C2 = Escherichia coli ENSD101, Enterobacter asburiae ENSD102 and E. ludwigii ENSH201, C3 = E. asburiae ENSD102, Vitreoscilla sp. ENSG301 and Bacillus thuringiensis ENSW401, and C4 = E. coli ENSD101, E. ludwigii ENSH201 and B. thuringiensis ENSW401) were prepared and assessed for bioremediation of CR. All these biofilm consortia remarkably decolorized (96.9 to 99.5%) the CR (100 mg/L) in static condition within 72 h incubation at 28 °C. These consortia also synthesized significantly more intracellular azoreductase and laccase enzyme than extracellular of these enzymes. UV-Vis spectral analysis revealed that the major peak at 478 nm wavelength of CR was completely disappeared. FTIR analysis showed several major peaks along with azo bonds are completely or partly disappeared, deformed or widened. Chemical oxygen demand was reduced by 86.4, 85.5, 87.0 and 86.2% by C1, C2, C3 and C4, respectively. Accordingly, biodegraded metabolites of CR by different biofilm consortia did not inhibit the germination of wheat seeds and bacterial growth. Thus, these biofilm consortia can be applied in bioremediation of wastewater containing CR for safe disposal into the environment. To our knowledge, this is the first report on degradation and detoxification of aqueous solution containing CR by bacterial biofilm consortia.
Collapse
|
19
|
Zhao J, Wu QX, Cheng XD, Su T, Wang XH, Zhang WN, Lu YM, Chen Y. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1952-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Deng C, Hu H, Yu H, Wang M, Ci M, Wang L, Zhu S, Wu Y, Le H. 1D hierarchical CdS NPs/NiO NFs heterostructures with enhanced photocatalytic activity under visible light irradiation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Removal of Synthetic Dye by Chlorella vulgaris Microalgae as Natural Adsorbent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04557-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Feng M, Li H, You S, Zhang J, Lin H, Wang M, Zhou J. Effect of hexavalent chromium on the biodegradation of tetrabromobisphenol A (TBBPA) by Pycnoporus sanguineus. CHEMOSPHERE 2019; 235:995-1006. [PMID: 31561316 DOI: 10.1016/j.chemosphere.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The influence of Cr(VI) on the degradation of tetrabromobisphenol A (TBBPA) by a typical species of white rot fungi, Pycnoporus sanguineus, was investigated in this study. The results showed that P. sanguineus together with its intracellular and extracellular enzyme could effectively degrade TBBPA. The degradation efficiency of TBBPA by both P. sanguineus and its enzymes decreased significantly when Cr(VI) concentration increased from 0 to 40 mg/L. The subsequent analysis about cellular distribution of TBBPA showed that the extracellular amount of TBBPA increased with the increment of Cr(VI) concentration, but the content of TBBPA inside fungal cells exhibited an opposite variation tendency. The inhibition of TBBPA degradation by P. sanguineus was partly attributed to the increase of cell membrane permeability and the decrease of cell membrane fluidity caused by Cr(VI). In addition, the decline of H+-ATPase and Mg2+-ATPase activities was also an important factor contributing to the suppression of TBBPA degradation in the system containing concomitant Cr(VI). Moreover, the activities of two typical extracellular lignin-degrading enzymes of P. sanguineus, MnP and Lac, were found to descend with ascended Cr(VI) level. Cr(VI) could also obviously suppress the gene expression of four intracellular enzymes implicated in TBBPA degradation, including two cytochrome P450s, glutathione S-transferases and pentachlorophenol 4-monooxygenase, which resulted in a decline of TBBPA degradation efficiency by fungal cells and intracellular enzyme in the presence of Cr(VI). Overall, this study provides new insights into the characteristics and mechanisms involved in TBBPA biodegradation by white rot fungi in an environment where heavy metals co-exist.
Collapse
Affiliation(s)
- Mi Feng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China.
| | - Haixiang Li
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Shaohong You
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Jun Zhang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Hua Lin
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| | - Meiqian Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jiahua Zhou
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, College of Environmental Science and Engineering, Guilin, 541004, Guangxi, China
| |
Collapse
|
23
|
Iark D, Buzzo AJDR, Garcia JAA, Côrrea VG, Helm CV, Corrêa RCG, Peralta RA, Peralta Muniz Moreira RDF, Bracht A, Peralta RM. Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. BIORESOURCE TECHNOLOGY 2019; 289:121655. [PMID: 31247524 DOI: 10.1016/j.biortech.2019.121655] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
A single laccase with molecular weight of 41 kDa was produced by the white-rot fungus Oudemansiella canarii cultured on solid state fermentation using a mixture of sugarcane bagasse-wheat bran as substrate. The enzyme (5 U) was able to decolourize 80% of 50 mg/L Congo red within 24 h at 30 °C and pH 5.5. The relationship between the decolorization rate and dye concentration obeyed Michaelis-Menten kinetics, with KM and Vmax values of 46.180 ± 6.245 µM and 1.840 ± 0.101 µmol/min, respectively. Fourier transform infrared spectroscopy (FTIR) and mass spectrometry allowed to conclude that the laccase acts not only on the dye chromophore group, but also that it cleaves different covalent bonds, causing an effective fragmentation of the molecule. The action of the laccase caused a significant reduction in toxicity, as indicated by the Microtox test. In conclusion, O. canarii laccase could be useful in future biological strategies aiming at degrading azo dyes.
Collapse
Affiliation(s)
- Daiane Iark
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil
| | | | | | | | | | | | - Rosely A Peralta
- Department of Chemistry, Universidade Federal de Santa Catarina, Brazil
| | | | - Adelar Bracht
- Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil
| | - Rosane Marina Peralta
- Graduate Program in Environmental Biotechnology, Universidade Estadual de Maringá, Brazil; Department of Biochemistry, Universidade Estadual de Maringá, Brazil; Graduate Program in Food Science, Universidade Estadual de Maringá, Brazil.
| |
Collapse
|
24
|
Qiao W, Zhang Y, Xie Z, Luo Y, Zhang X, Sang C, Xie S, Huang J. Toxicity of perfluorooctane sulfonate on Phanerochaete chrysosporium: Growth, pollutant degradation and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:66-74. [PMID: 30822669 DOI: 10.1016/j.ecoenv.2019.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
As a persistent organic pollutant listed in the Stockholm Convention, perfluorooctane sulfonate (PFOS) is extremely refractory to degradation under ambient conditions. Its potential ecotoxicity has aroused great concerns and research interests. However, little is known about the toxicity of PFOS on fungus. In this study, the white rot fungus Phanerochaete chrysosporium (P. chrysosporium) was adopted to assess the toxicity of PFOS in liquid culture. The addition of 100 mg/L PFOS potassium salt significantly decreased the fungal biomass by up to 76.4% comparing with un-amended control during the incubation period. The hyphostroma of P. chrysosporium was wizened and its cell membrane was thickened, while its vesicle structure was increased, based on the observation with scanning electron microscope (SEM) and transmission electron microscope (TEM). Nevertheless, the PFOS dosage of below 100 mg/L did not show a considerable damage to the growth of P. chrysosporium. The degradation of malachite green (MG) and 2,4-dichlorophenol (2,4-DCP) by P. chrysosporium was negatively affected by PFOS. At the initial dosage of 100 mg/L PFOS, the decolorization efficiency of MG and the degradation efficiency of 2,4-DCP decreased by 37% and 20%, respectively. This might be attributed to the inhibition of PFOS on MnP and LiP activities. The activities of MnP and LiP decreased by 20.6% and 43.4%, respectively. At a high dosage PFOS (100 mg/L), P. chrysosporium could show a high adsorption of MG but lose its pollutant degradation ability. Transcriptome analysis indicated that PFOS contamination could lead to the change of gene expression in the studied white rot fungus, and the genes regulating membrane structure, cell redox process, and cell transport, synthesis and metabolism were impacted. Membrane damage and oxidative damage were the two main mechanisms of PFOS' toxicity to P. chrysosporium.
Collapse
Affiliation(s)
- Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Xie
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Luo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xuansong Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Cunxing Sang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKJLESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jun Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control(BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Saha A, Basak BB, Ponnuchamy M. Performance of activated carbon derived from Cymbopogon winterianus distillation waste for scavenging of aqueous toxic anionic dye Congo red: Comparison with commercial activated carbon. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1620277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ajoy Saha
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| | - Biraj Bandhu Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| | - Manivel Ponnuchamy
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, India
| |
Collapse
|
26
|
Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top Curr Chem (Cham) 2019; 377:17. [DOI: 10.1007/s41061-019-0241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
|
27
|
Shen L, Jin Z, Xu W, Jiang X, Shen YX, Wang Y, Lu Y. Enhanced Treatment of Anionic and Cationic Dyes in Wastewater through Live Bacteria Encapsulation Using Graphene Hydrogel. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ziheng Jin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Wenhao Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-xiao Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Aziz EK, Abdelmajid R, Rachid LM, Mohammadine EH. Adsorptive removal of anionic dye from aqueous solutions using powdered and calcined vegetables wastes as low-cost adsorbent. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1080/25765299.2018.1517861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- El Kassimi Aziz
- Laboratoire de Chimie Analytique & Moléculaire, Faculté Poly-Disciplinaire, Université Cadi Ayyad, Safi, Morocco
| | - Regti Abdelmajid
- Laboratoire de Chimie Analytique & Moléculaire, Faculté Poly-Disciplinaire, Université Cadi Ayyad, Safi, Morocco
| | - Laamari My Rachid
- Laboratoire de Chimie Analytique & Moléculaire, Faculté Poly-Disciplinaire, Université Cadi Ayyad, Safi, Morocco
| | - El Haddad Mohammadine
- Laboratoire de Chimie Analytique & Moléculaire, Faculté Poly-Disciplinaire, Université Cadi Ayyad, Safi, Morocco
| |
Collapse
|
29
|
Yu P, Hu T, Chen HH, Wu F, Liu H. Effective Removal of Congo Red by Triarrhena Biochar Loading with TiO 2 Nanoparticles. SCANNING 2018; 2018:7670929. [PMID: 29967660 PMCID: PMC6008826 DOI: 10.1155/2018/7670929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A composite of pyrolytic Triarrhena biochar loading with TiO2 nanoparticles has been synthesized by the sol-gel method. The composite shows a well-developed hollow mesoporous and macropore structure as characterized by XRD, BET, and SEM. When used as an absorbent to remove Congo red from aqueous solution, it was found that as-prepared composite performed better absorption capacity than single biochar or TiO2. The results suggest that biochar loading with TiO2 could be promisingly implemented as an environmentally friendly and inexpensive adsorbent for Congo red removal from wastewater.
Collapse
Affiliation(s)
- Peng Yu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Tao Hu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Hong Hui Chen
- Changde Xinrui New Material Co. Ltd., Changde 415004, China
| | - Fangfang Wu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Hui Liu
- College of Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
30
|
Kulkarni AN, Watharkar AD, Rane NR, Jeon BH, Govindwar SP. Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:17-25. [PMID: 29031115 DOI: 10.1016/j.ecoenv.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Navy Blue HE22 (NBHE22), dye mixture and real textile effluent were decolorized and degraded by lichen Dermatocarpon vellereceum. Up-flow bioreactor showed about 80%, 70%, 80% and 65% removal of American dye manufacturer index (ADMI), biological oxygen demand (BOD), total suspended solids (TSS) and total dissolved solids (TDS), respectively of dye mixture at flow rate of 25mlh-1. The removal of ADMI, BOD, TSS and TDS of real textile effluent were 75%, 65%, 82% and 70%, respectively at flow rate of 30mlh-1. Significant induction of extracellular enzymes such as manganese peroxidase and lignin peroxidase was observed up to 46% and 36% during decolorization of dye mixture, while 43% and 24% during effluent treatment, respectively. Exponential enhancement in the activities of stress enzymes such as catalase (CAT) and guaiacol peroxidase (GPX) was observed after exposure to NBHE22 (116% and 125%, respectively), dye mixture (150% and 300%, respectively) and effluent (400% and 350%, respectively) endorsing the stress tolerance ability of model lichen. Phytotoxicity and genotoxicity studies demonstrated less toxic nature of metabolites resulted from biodegradation.
Collapse
Affiliation(s)
- Ashwini N Kulkarni
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra, India
| | | | - Niraj R Rane
- Department of Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sanjay P Govindwar
- Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra, India; Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
31
|
Hadibarata T, Syafiuddin A, Al-Dhabaan FA, Elshikh MS, Rubiyatno. Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess Biosyst Eng 2018; 41:621-632. [PMID: 29349549 DOI: 10.1007/s00449-018-1897-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
Herein, we systematically reported the capability of T. harzianum RY44 for decolorization of Mordant orange-1. The fungi strains were isolated from the Universiti Teknologi Malaysia tropical rain forest. For initial screening, the decolorization was conducted using 50 strains of the fungi for 20 days incubation time and the best performance was selected. Then, the decolorization capability and fungal biomass were evaluated using different dye concentrations, namely, 0, 50, 75 and 100 ppm. Effects of the carbon sources (fructose, glucose, and galactose), nitrogen sources (ammonium nitrate, ammonium sulfate and yeast extract), surfactant (tween 80), aromatic compounds (benzoic acid, catechol and salicylic acid), and pH on the decolorization efficiency were examined. This study has found that the employed carbon sources, nitrogen sources, and aromatic compounds strongly enhance the decolorization efficiency. In addition, increasing the surfactant volume and pH generally decreased the decolorization efficiencies from 19.5 to 9.0% and 81.7 to 60.5%, respectively. In the mechanism philosophy, the present work has found that Mordant orange-1 were initially degraded by T. harzianum RY44 to benzoic acid and finally transformed into salicylic acid.
Collapse
Affiliation(s)
- Tony Hadibarata
- Department of Environmental Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Achmad Syafiuddin
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| | - Fahad A Al-Dhabaan
- Department of Biology, Science and Humanities College Alquwayiyah, Sharqa University, Alquwayiyah, Kingdom of Saudi Arabia
| | - Mohamed Soliman Elshikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rubiyatno
- Department of Environmental Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
32
|
PAMAM grafted α-Fe 2 O 3 nanofiber: Preparation and dye removal ability from binary system. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Bouras HD, Yeddou AR, Bouras N, Hellel D, Holtz MD, Sabaou N, Chergui A, Nadjemi B. Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
|
35
|
Tahir U, Sohail S, Khan UH. Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22914-22931. [PMID: 28875431 DOI: 10.1007/s11356-017-0029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Manipulation of bio-technological processes in treatment of dyestuffs has attracted considerable attention, because a large proportion of these synthetic dyes enter into natural environment during synthesis and dyeing operations that contaminates different ecosystems. Moreover, these dyestuffs are toxic and difficult to degrade because of their synthetic origin, durability, and complex aromatic molecular structures. Hence, bio-assisted phytoremediation has recently emerged as an innovative cleanup approach in which microorganisms and plants work together to transform xenobiotic dyestuffs into nontoxic or less harmful products. This manuscript will focus on competence and potential of plant-microbe synergistic systems for treatment of dyestuffs, their mixtures and real textile effluents, and effects of symbiotic relationship on plant performances during remediation process and will highlight their metabolic activities during bio-assisted phytodegradation and detoxification.
Collapse
Affiliation(s)
- Uruj Tahir
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Sana Sohail
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Umair Hassan Khan
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus, Toba Tek Singh, Pakistan
| |
Collapse
|
36
|
Bosco F, Mollea C, Ruggeri B. Decolorization of Congo Red by Phanerochaete chrysosporium: the role of biosorption and biodegradation. ENVIRONMENTAL TECHNOLOGY 2017; 38:2581-2588. [PMID: 27931174 DOI: 10.1080/09593330.2016.1271019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The degradation of Congo Red by means of Phanerochaete chrysosporium BKM-F-1767 is reported in this work. Solid and liquid cultures have been prepared to evaluate in vivo biodegradation as well as the role of biosorption phenomena on mycelium. Moreover, in vitro tests have been performed to define the influence of MnP on dye decolorization. P. chrysosporium, cultivated on Malt Extract Agar in the presence of Congo Red 0.005% (w/v), has shown good growth and the ability to decolorize the dye in the 25-39°C temperature range. It has also been cultivated in a low NMM liquid medium with the aforementioned dye concentration in immobilized stationary cultures inducted for Lignin Peroxidase (LiP) and Manganese Peroxidase (MnP) production. Congo Red was absorbed on the biomass and then decolorized (93% and 85% for the LiP and MnP cultures, respectively). The cultures with added Congo Red have shown a higher MnP synthesis rate than a control without the dye. The enzymatic degradation of Congo Red has also been investigated by means of the extracellular fluid for different MnP activities (0-300 IU/l); the decolorization percentage has been found to be clearly related to the enzyme concentration up to a value of about 200 IU/l.
Collapse
Affiliation(s)
- Francesca Bosco
- a Department of Applied Science and Technology , Politecnico di Torino , Torino , Italy
| | - Chiara Mollea
- a Department of Applied Science and Technology , Politecnico di Torino , Torino , Italy
| | - Bernardo Ruggeri
- a Department of Applied Science and Technology , Politecnico di Torino , Torino , Italy
| |
Collapse
|
37
|
Naskar A, Majumder R. Understanding the adsorption behaviour of acid yellow 99 on Aspergillus niger biomass. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.155] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Feng M, Yin H, Peng H, Liu X, Yang P, Lu G, Dang Z. Influence of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium on the cellular characteristics of Pycnoporus sanguineus during their removal and reduction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:388-398. [PMID: 28441625 DOI: 10.1016/j.ecoenv.2017.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/20/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous TBBPA removal and Cr(VI) reduction by Pycnoporus sanguineus together with the effect of these co-existed pollutants on the fungal cellular characteristics were investigated in this study, aiming at illuminating the mechanism involved in the interactions between contaminants and microbial cells. The results revealed that Cr(VI) reduction and TBBPA removal declined from 92.5%, 75.4-30.6%, 44.8% when Cr(VI) concentration increased from 5 to 40mg/L, respectively. The removal efficiencies for Cr(VI) and TBBPA reached 61.4% and 94% separately under the optimum concentration of TBBPA at 10mg/L. Subsequent analyses indicated that the negative effect of Cr(VI) of high concentrations on Cr(VI) reduction and TBBPA removal was mainly attributed to the inhibition of fungal growth, intracellular proteins synthesis, cell viability and ATP enzyme activity. Compared with the moderate impact of TBBPA, the cell membrane of P. sanguineus was impaired severely and the surface morphology and intracellular structure changed dramatically in the presence of high concentration of Cr(VI) (above 10mg/L). This study also suggested that high level of TBBPA (15 and 20mg/L) promoted the synthesis of intracellular proteins and improved ATP enzyme activity within the first 48h of the reaction for enhancing the transportation and transformation of TBBPA.
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xintong Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Pingping Yang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
39
|
Khan R, Fulekar MH. Mineralization of a sulfonated textile dye Reactive Red 31 from simulated wastewater using pellets of Aspergillus bombycis. BIORESOUR BIOPROCESS 2017; 4:23. [PMID: 28580232 PMCID: PMC5435774 DOI: 10.1186/s40643-017-0153-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Reactive Red 31, applied extensively in the commercial textile industry, is a hazardous and persistent azo dye compound often present in dye manufacturing and textile industrial effluents. Aspergillus bombycis strain was isolated from dye contaminated zones of Gujarat Industrial Development Corporation, Vatva, Ahmedabad, India. The decolorization potential was monitored by the decrease in maximum absorption of the dye using UV-visible spectroscopy. Optimization of physicochemical conditions was carried out to achieve maximum decolorization of Reactive Red 31 by fungal pellets. RESULTS Pellets of A. bombycis strain were found to decolorize this dye (20 mg/L) under aerobic conditions within 12 h. The activity of azoreductase, laccase, phenol oxidase and Manganese peroxidase in fungal culture after decolorization was about 8, 7.5, 19 and 23.7 fold more than before decolorization suggesting that these enzymes might be induced by the addition of Reactive Red 31 dye, and thus results in a higher decolorization. The lab-scale reactor was developed and mineralization of Reactive Red 31 dye by fungal pellets was studied at 6, 12 and 24 h of HRT (hydraulic retention time). At 12 h of HRT, decolorization potential, chemical oxygen demand (COD) and total organic carbon reduction (TOC) was 99.02, 94.19, and 83.97%, respectively, for 20 mg/L of dye concentration. CONCLUSIONS Dye decolorization potential of A. bombycis culture was influenced by several factors such as initial dye concentration, biomass concentration, pH, temperature, and required aerated conditions. Induction of azoreductase, laccase, phenol oxidase, and Mn-peroxidase enzymes was observed during dye decolorization phase. A. bombycis pellets showed potential in mineralization of dye in the aerobic reactor system. Isolated fungal strain A. bombycis showed better dye decolorization performance in short duration of time (12 h) as compared to other reported fungal cultures.Graphical abstractDegradation of RR31 dye in developed aerobic fungal pelleted reactor.
Collapse
Affiliation(s)
- Razia Khan
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030 India
| | - M. H. Fulekar
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, Gujarat 382030 India
| |
Collapse
|
40
|
Sun J, Guo N, Niu LL, Wang QF, Zang YP, Zu YG, Fu YJ. Production of Laccase by a New Myrothecium verrucaria MD-R-16 Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.] and its Application on Dye Decolorization. Molecules 2017; 22:E673. [PMID: 28441744 PMCID: PMC6154323 DOI: 10.3390/molecules22040673] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to screen a laccase-producing fungal endophyte, optimize fermentation conditions, and evaluate the decolorization ability of the laccase. A new fungal endophyte capable of laccase-producing was firstly isolated from pigeon pea and identified as Myrothecium verrucaria based on a ITS-rRNA sequences analysis. Meanwhile, various fermentation parameters on the laccase production were optimized via response surface methodology (RSM). The optimal fermentation conditions were a fermentation time of five days, temperature 30 °C and pH 6.22. Laccase activity reached 16.52 ± 0.18 U/mL under the above conditions. Furthermore, the laccase showed effective decolorization capability toward synthetic dyes (Congo red, Methyl orange, Methyl red, and Crystal violet) in the presence of the redox mediator ABTS, with more than 70% of dyes decolorizing after 24 h of incubation. Additionally, the activity of laccase was relatively stable with pH (4.5-6.5) and a temperature range of 35-55 °C. Therefore, the high laccase production of the strain and the new fungal laccase could provide a promising alterative approach for industrial and environmental applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Qing-Fang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yuan-Gang Zu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
41
|
Manai I, Miladi B, El Mselmi A, Hamdi M, Bouallagui H. Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2017; 38:880-890. [PMID: 27456712 DOI: 10.1080/09593330.2016.1214623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
The effects of the additions of the fungal enzymatic extract were investigated in relation to the treatment of real textile wastewater (RTW) by the activated sludge process (ASP). The used enzyme cocktail was produced by a new isolated fungal Chaetomium globosum IMA1. The system that was operated with enzyme addition showed a better chemical oxygen demand (COD) removal efficiency (95%) compared to the control system (75%). In addition, the improvement of color removal (OD620) efficiencies was around 15%, when the newly consortium fungal enzymes was added. As the organic loading rate (OLR) increased from 0.33 g to 0.66 g COD L-1 d-1, a decrease in the performance of the two reactors was observed by monitoring the quality of treated effluents. However, the ASP working with enzyme addition showed a strong resistance to shock loadings and restored after few days compared to the control system, which was strongly inhibited. In fact, the enzyme addition improved the sludge volume index (SVI) and the activity of microorganisms. A high activity of laccase (300 U.L-1) enzyme was observed throughout the decolorization process in the improved system.
Collapse
Affiliation(s)
- Imène Manai
- a Lab Eco Tech Micro, INSAT , Université de Carthage , Tunis , Tunisia
| | - Baligh Miladi
- a Lab Eco Tech Micro, INSAT , Université de Carthage , Tunis , Tunisia
- b Laboratoire de Biologie Moléculaire, Ecole de Biologie Industrielle , Cergy , France
| | - Abdellatif El Mselmi
- b Laboratoire de Biologie Moléculaire, Ecole de Biologie Industrielle , Cergy , France
| | - Moktar Hamdi
- a Lab Eco Tech Micro, INSAT , Université de Carthage , Tunis , Tunisia
| | - Hassib Bouallagui
- a Lab Eco Tech Micro, INSAT , Université de Carthage , Tunis , Tunisia
| |
Collapse
|
42
|
Pal A, Pal S. Amphiphilic copolymer derived from tamarind gum and poly (methyl methacrylate) via ATRP towards selective removal of toxic dyes. Carbohydr Polym 2017; 160:1-8. [DOI: 10.1016/j.carbpol.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
|
43
|
El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A. Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Patel BP, Kumar A. Biodegradation of 4-chlorophenol in an airlift inner loop bioreactor with mixed consortium: effect of HRT, loading rate and biogenic substrate. 3 Biotech 2016; 6:117. [PMID: 28330191 PMCID: PMC4909021 DOI: 10.1007/s13205-016-0435-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/25/2016] [Indexed: 11/29/2022] Open
Abstract
In the present work, removal of 4-chlorophenol (4-CP) by the mixed microbial consortium was evaluated in an airlift inner loop bioreactor. During the study, the effect of various reactor parameters such as hydraulic retention time (HRT), biogenetic substrate concentration, loading rate, and initial substrate concentration on the removal efficiency of 4-CP was investigated. Bioreactor showed a maximum removal rate of 16.59 mg/L/h at the optimum conditions of 24 h HRT, 400 mg/L initial 4-CP, and 0.2 g/L peptone. The optimum HRT found was 24 h after that the washout occured, and the degradation efficiency almost dropped to 50 % at 18 h HRT. Effect of peptone showed that lower concentration of peptone improves 4-CP removal efficiency of the bioreactor. Also, the mixed consortium had utilized 4-CP as a carbon source, as evidenced by the increasing biomass concentration with 4-CP at constant peptone concentration. The presence of 5-chloro 2-hydroxymuconic semialdehyde in the reactor infers that the mixed consortium has followed the meta-cleavage pathway for 4-CP degradation.
Collapse
Affiliation(s)
- Bhishma P. Patel
- Environmental Pollution Abatement Lab, Chemical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arvind Kumar
- Environmental Pollution Abatement Lab, Chemical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
45
|
Raval NP, Shah PU, Shah NK. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14810-53. [PMID: 27255316 DOI: 10.1007/s11356-016-6970-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/24/2016] [Indexed: 05/27/2023]
Abstract
Increasing amount of dyes in an ecosystem has propelled the search of various methods for dye removal. Amongst all the methods, adsorption occupies a prominent place in dye removal. Keeping this in mind, many adsorbents used for the removal of hazardous anionic azo dye Congo red (CR) from aqueous medium were reviewed by the authors. The main objectives behind this review article are to assemble the information on scattered adsorbents and enlighten the wide range of potentially effective adsorbents for CR removal. Thus, CR sorption by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites are surveyed and critically reviewed as well as their sorption capacities are also compared. This review also explores the grey areas of the adsorption performance of various adsorbents with reference to the effects of pH, contact time, initial dye concentration and adsorbent dosage. The equilibrium adsorption isotherm, kinetic and thermodynamic data of different adsorbents used for CR removal were also analysed. It is evident from a literature survey of more than 290 published papers that nanoparticle and nanocomposite adsorbents have demonstrated outstanding adsorption capabilities for CR. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Nirav P Raval
- Department of Environmental Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Prapti U Shah
- Department of Environmental Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nisha K Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
46
|
Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Li R, Ning XA, Sun J, Wang Y, Liang J, Lin M, Zhang Y. Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential. BIORESOURCE TECHNOLOGY 2015; 194:233-239. [PMID: 26207869 DOI: 10.1016/j.biortech.2015.06.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 05/27/2023]
Abstract
The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge.
Collapse
Affiliation(s)
- Ruijing Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-an Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieying Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
48
|
Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, Noor ZZ. Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11669-11678. [PMID: 25850745 DOI: 10.1007/s11356-015-4436-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.
Collapse
Affiliation(s)
- Chin Hong Neoh
- Institute of Environmental and Water Resource Management, Water Research Alliance, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
49
|
Rong X, Qiu F, Qin J, Zhao H, Yan J, Yang D. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.12.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|