1
|
Yilmaz T, Demir EK, Aşık G, Başaran ST, Cokgor E, Sözen S, Sahinkaya E. Performance of a high-rate membrane bioreactor for energy-efficient treatment of textile wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120845. [PMID: 38599093 DOI: 10.1016/j.jenvman.2024.120845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
High-rate membrane bioreactors (MBR), where the wastewater undergoes partial oxidation due to the applied short sludge retention time (SRT) and hydraulic retention time (HRT) values, retain the majority of the organic substances in the sludge through growth and biological flocculation. Thus, a raw material source with a high biomethane production potential is created for the widespread use of circular economy or energy-neutral plants in wastewater treatment. While high-rate MBRs have been successfully employed for energy-efficient treatment of domestic wastewater, there is a lack of research specifically focused on textile wastewater. This study aimed to investigate the textile wastewater treatment and organic matter recovery performances of an aerobic MBR system containing a hollow fiber ultrafiltration membrane with a 0.04 μm pore diameter. The system was initially operated at short SRTs (5 and 3 d) and different SRT/HRT ratios (5, 10, and 20) and subsequently at high-rate conditions (SRT of 0.5-2 d and HRT of 1.2-9.6 h) which are believed to be the most limiting conditions tested for treatment of real textile wastewater. The results showed that chemical oxygen demand (COD) removal averaged 77% even at SRT of 0.5 d and HRT of 1.2 h. Slowly biodegradable substrates and soluble microbial products (SMP) accumulated within the MBR at SRT of 0.5 and 1 d, which resulted in decreased sludge filterability. The observed sludge yield (Yobs) exhibited a considerable increase when SRT was reduced from 5 to 1 d. On the other hand, the SRT/HRT ratio displayed a decisive effect on the energy requirement for aeration.
Collapse
Affiliation(s)
- Tülay Yilmaz
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey.
| | - Emir Kasım Demir
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Gulfem Aşık
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Senem Teksoy Başaran
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Emine Cokgor
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Seval Sözen
- Environmental Engineering Department, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Erkan Sahinkaya
- Science and Advanced Technologies Application and Research Center (BILTAM), Istanbul Medeniyet University, Istanbul, 34700, Turkey; Department of Bioengineering, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| |
Collapse
|
2
|
Homyok P, Rongsayamanont C, Wongkiew S, Limpiyakorn T. Sludge floc characteristics and microbial community in high-rate activated sludge and high-rate membrane bioreactor for organic recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167387. [PMID: 37777134 DOI: 10.1016/j.scitotenv.2023.167387] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
High-rate activated sludge (HRAS) and high-rate membrane bioreactor (HRMBR) are considered as potential processes for organic recovery through bioflocculation and biosorption of particulate COD and colloidal COD with sludge flocs. In this study, bioflocculation and biosorption, in terms of sludge floc characteristics and microbial community, in HRAS and HRMBR was investigated in relation to organic recovery performance for low strength wastewater treatment. HRAS and HRMBR were operated at two different solids retention times (SRTs) of 2 and 0.8 days. Reducing the SRT of HRAS from 2.0 to 0.8 days resulted in failure in total COD (tCOD) removal efficiency (from 79 ± 2 to 34 ± 13 %) and lowering organic recovery (from 40.8 to 15.7 %). This contrasted with HRMBR, which showed high tCOD removal efficiency (84 ± 2 and 84 ± 1 %) and organic recovery (43.4 and 46.3 %) at both SRTs of 2.0 and 0.8 days. Analysis of sludge floc characteristics showed that the lower organic recovery of the HRAS operated at an SRT of 0.8 days could be associated with poor bioflocculation and biosorption, as evidenced by relatively larger floc size, higher extracellular polymeric substance, higher protein/polysaccharide ratio, and higher zeta potential value of the sludge. These characteristics were in contrast to the HRMBR operated at an SRT of 0.8 days, that exhibited the highest organic recovery among the reactors studied. The microbial taxa Bdellovibrio, Clostridium sensu stricto 9, Hyphomicrobium, and Ideonella could play a role in the poor bioflocculation and biosorption in HRAS. Rhodanobacter, Enterobacter, Terrimonas, Nakamurella, and Mizugakiibacter may be associated with bioflocculation and biosorption and organic recovery in HRMBR. The results of this study enhanced our understanding on the relationships between the microbial community, sludge floc characteristics, and organic recovery performance of HRAS and HRMBR for future optimization of the systems.
Collapse
Affiliation(s)
- Pratamaporn Homyok
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Biotechnology for Wastewater Engineering Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
A novel process maximizing energy conservation potential of biological treatment: Super fast membrane bioreactor. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 2017; 19:2949-2963. [PMID: 28447371 PMCID: PMC5575505 DOI: 10.1111/1462-2920.13767] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutionary (eco-evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of 'cheating' cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications.
Collapse
Affiliation(s)
- Matteo Cavaliere
- School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research CentreUniversity of EdinburghEdinburghEH8 9ABUK
| | - Song Feng
- Center for Nonlinear StudiesTheoretical Division (T‐6), Los Alamos National LaboratoryLos AlamosNM 87545USA
| | - Orkun S. Soyer
- School of Life Sciences, BBSRC/EPSRC Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| |
Collapse
|
5
|
Sözen S, Teksoy Başaran S, Akarsubaşı A, Ergal I, Insel G, Karaca C, Orhon D. Toward a novel membrane process for organic carbon removal-fate of slowly biodegradable substrate in super fast membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16230-16240. [PMID: 27154840 DOI: 10.1007/s11356-016-6795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The study tested the performance of super fast membrane bioreactor (SFMBR) using starch as a slowly biodegradable substrate, exploring the fate of starch, and the response of the microbial community. SFMBR was operated at extremely low sludge ages of 0.5-2.0 days, with a hydraulic retention time of 1.0 h. Average values for permeate chemical oxygen demand (COD) always remained in the narrow range between 14 and 18 mg/L, regardless of the selected mode of MBR operation at different sludge ages. Soluble COD levels in the reactor were consistently higher than the corresponding permeate COD. Parameters defining process kinetics, determined by model calibration of oxygen uptake rate (OUR) profiles, varied as a function of sludge age. Model simulation of SFMBR performance indicated total removal of hydrolysis products so that permeate COD consisted of residual microbial products. PCR-DGGE experiments revealed significant shifts in the composition of the microbial community imposed by variations in the sludge age, reflecting on corresponding process kinetics.
Collapse
Affiliation(s)
- S Sözen
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - S Teksoy Başaran
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - A Akarsubaşı
- Faculty of Science and Letters, Molecular Biology and Genetics Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - I Ergal
- Faculty of Science and Letters, Molecular Biology and Genetics Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - G Insel
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - C Karaca
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - D Orhon
- Faculty of Civil Engineering, Environmental Engineering Department, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- The Science Academy, 34353, Beşiktaş, Istanbul, Turkey
| |
Collapse
|
6
|
Sato Y, Hori T, Navarro RR, Habe H, Yanagishita H, Ogata A. Fine-scale monitoring of shifts in microbial community composition after high organic loading in a pilot-scale membrane bioreactor. J Biosci Bioeng 2016; 121:550-6. [DOI: 10.1016/j.jbiosc.2015.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
|
7
|
Sato Y, Hori T, Navarro RR, Habe H, Ogata A. Functional maintenance and structural flexibility of microbial communities perturbed by simulated intense rainfall in a pilot-scale membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:6447-6456. [PMID: 27020291 DOI: 10.1007/s00253-016-7466-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
Abstract
Intense rainfall is one of the most serious and common natural events, causing the excessive inflow of rainwater into wastewater treatment plants. However, little is known about the impacts of rainwater dilution on the structure and function of the sludge microorganisms. Here, high-throughput sequencing of 16S ribosomal RNA (rRNA) genes was implemented to describe the microbial community dynamics during the simulated intense rainfall situation (event i) in which approximately 45 % of the sludge biomass was artificially overflowed by massive water supply in a pilot-scale membrane bioreactor. Thereafter, we investigated the functional and structural responses of the perturbed microbial communities to subsequent conditional changes, i.e., an increase in organic loading rate from 225 to 450 mg chemical oxygen demand (COD) l(-1) day(-1) (event ii) and an addition of a microbiota activator (event iii). Due to the event i, the COD removal declined to 78.2 %. This deterioration coincided with the decreased microbial diversity and the proliferation of the oligotrophic Aquabacterium sp. During the succeeding events ii and iii, the sludge biomass increased and the COD removal became higher (86.5-97.4 %). With the apparent recovery of the reactor performance, microbial communities became diversified and the compositions dynamically changed. Notably, various bacterial micropredators were highly enriched under the successive conditions, most likely being involved in the flexible reorganization of microbial communities. These results indicate that the activated sludge harbored functionally redundant microorganisms that were able to thrive and proliferate along with the conditional changes, thereby contributing to the functional maintenance of the membrane bioreactor.
Collapse
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Ronald R Navarro
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroshi Habe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
8
|
Güven D, Ubay Çokgör E, Sözen S, Orhon D. Kinetic evaluation of nitrification performance in an immobilized cell membrane bioreactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2904-2912. [PMID: 27332835 DOI: 10.2166/wst.2016.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification-denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration.
Collapse
Affiliation(s)
- D Güven
- Environmental Engineering Department, Fatih University, Buyukcekmece 34500, Istanbul, Turkey E-mail: ;
| | - E Ubay Çokgör
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - S Sözen
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - D Orhon
- ENVIS Energy and Environmental Systems Research & Development Ltd, Istanbul Technical University Technopark ARI 1, Maslak 34469, Istanbul, Turkey
| |
Collapse
|