1
|
Qian C, He S, Li X, Wu S, Wang D, Yang C. Effects of salinity on anaerobic digestion: Performance, microbial physiology, and community dynamics. BIORESOURCE TECHNOLOGY 2025; 431:132619. [PMID: 40328355 DOI: 10.1016/j.biortech.2025.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
Anaerobic digestion (AD) is widely applied to treatment and energy recovery from organic wastewater/wastes, while the efficiency of AD can be limited by salinity stress. This paper reviews the effects of salinity on AD. First of all, the effects of salinity on AD performance were compared, revealing that methane production is more susceptible to salinity stress. Secondly, the influence of salinity on microbial physiology and intracellular molecules was examined, demonstrating that salinity stress reduces the activity of key enzymes and increases the concentration of extracellular polymeric substances during AD. Thirdly, variations in microbial community structure under salinity stress were discussed, with archaeal communities showing more significant restructuring, including reduced dominance of acetoclastic methanogens. At last, strategies to mitigate salinity inhibition were presented, along with prospects for future research directions. This review provides theoretical guidance for engineering applications and strategies for enhancing AD in treating saline substrates.
Collapse
Affiliation(s)
- Chongxin Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
2
|
Fan X, Peng C, Yang J, Zhang Y, Lin S, Lin C, Wang Y, Zhou J. The collaboration and competition between indigenous microorganisms and exogenous anaerobic digester sludge in anaerobic treatment of pickled mustard wastewater at different salinities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123188. [PMID: 39492134 DOI: 10.1016/j.jenvman.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The highly concentrated pickled mustard wastewater presents significant potential for energy recovery, but the stress effect of high osmotic pressure on cell integrity and activity seriously impedes the methane production by anaerobic microorganisms. The survival ability of indigenous microorganisms (IM) in pickled mustard wastewater supports the establishment of anaerobic treatment. Moreover, inoculation of anaerobic digester sludge is a common start-up strategy. However, the effects of exogenous anaerobic sludge on IM are unclear, especially in hypersaline environment. This research aimed to investigate the influence of exogenous anaerobic sludge on the construction, performance, and microbiota at 3% and 5% salinity. And the research focused on the collaboration and competition between exogenous anaerobic sludge and IM. The neutral community model (which explains the formation and evolution of biological communities) indicated that the interaction between exogenous digester sludge microorganisms and IM dominated community assembly. At 3%, the digester sludge collaborated with IM to increase daily COD reduction and biogas production compared with IM group. However, at 5%, the competitive relationship reduced daily COD reduction and biogas production compared with IM group. This study provides a new perspective for the selection of inoculation strategies for exogenous anaerobic digester sludge under different salinity, in order to realize energy conversion from salinity organic wastewater.
Collapse
Affiliation(s)
- Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ce Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jingyi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Chengbao Lin
- China Railway Eryuan Engineering Group Co., Ltd, Chengdu, Sichuan, 610031, PR China
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
3
|
Parsy A, Ficara E, Mezzanotte V, Guerreschi A, Guyoneaud R, Monlau F, Sambusiti C. Incorporating saline microalgae biomass in anaerobic digester treating sewage sludge: Impact on performance and microbial populations. BIORESOURCE TECHNOLOGY 2024; 397:130444. [PMID: 38360220 DOI: 10.1016/j.biortech.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to acclimate anaerobic prokaryotes to saline microalgae biomass. Semi-continuous experiments were conducted using two 1.5 L mesophilic reactors for 10 weeks, (hydraulic retention time of 21 days). The first reactor was solely fed with sewage sludge (control), while the second received a mixture of sewage sludge and microalgal biomass (80/20 %w/w) cultivated at 70 g·L-1 salinity. The in-reactor salinity reached after the acclimation phase was 14 g·L-1. Biomethane production was comparable between the control and acclimated reactors (205 ± 29 NmLMethane·gVolatileSolids-1). Salinity tolerance assessment of methanogenic archaea revealed that salinity causing 50% inhibition of methane production increased from 10 to 27 g·L-1 after acclimation. Microbial diversity analyses revealed notable changes in methanogenic archaea populations during co-digestion of saline microalgae biomass, particularly methylotrophic (+27%) and acetotrophic (-26%) methanogens. This study has highlighted the possibility of treating efficiently saline microalgae in co-digestion with sewage sludge in future industrial biogas plants.
Collapse
Affiliation(s)
- Aurélien Parsy
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France; TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Valeria Mezzanotte
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - Arianna Guerreschi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France
| | - Florian Monlau
- TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | | |
Collapse
|
4
|
Chen L, Wu D, Chen G. Elucidating the function and potential inhibitory impact of monovalent cations on assessing the biodegradability of organic substrates in biochemical sulfide potential (BSP) assay. BIORESOURCE TECHNOLOGY 2024; 393:129939. [PMID: 37951553 DOI: 10.1016/j.biortech.2023.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
The sulfate reagent plays a crucial role as an electron acceptor in the sulfidogenic biodegradation process of the BSP assay for assessing the anaerobic biodegradability of organic substrates. However, the specific role and influence of the monovalent cations (sodium or potassium) in the sulfate reagent remain unknown. To address this gap, a series of batch assays were conducted to investigate the mechanistic effects of Na+ and K+. The results demonstrated that sodium has inhibitory effects on BSP assay when the dosage exceeds 8500 mg/L, whereas no adverse effects were observed in the potassium tests (ranging from 1800 to 14400 mg/L). In fact, the presence of K+ even enhanced the anaerobic biodegradability of organic substrates, and the underlying mechanisms were explored. These findings confirm the influence of cations in the BSP assay for biodegradability assessment and also provide guidance on sulfate dosage strategies for BSP assay application in anaerobic biotechnologies.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Centre for Advance Process Technology for Urban REsource Recovery, Ghent University, Ghent, Belgium
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Technology Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
5
|
Fermentation Wastes from Chrypthecodinium cohnii Lipid Production for Energy Recovery by Anaerobic Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Wastes generated during the cultivation of marine microalga Crypthecodinium cohnii and after the lipid extraction process, were energetically valorized into biogas production through anaerobic digestion (AD). The tested wastes were extracted microalgae (Ae) with hexane (AeH) using supercritical extraction methods (AeS) and the supernatant obtained after culture medium centrifugation (M). The digestion of the algae biomass in the admixture with the supernatant medium (AeH+M+I and AeS+M+I) provided a higher methane content and a higher methane yield (582 and 440 L CH4/kg VS) than the substrates Ae and M, individually digested (155 and 96 L CH4/kg VS, respectively). Flow cytometry monitoring processes during AD indicated that the yield of the accumulated biogas was influenced by the operating conditions. The mixture of AeH+M+I was the only assay with a proportion of cells with less damaged membranes after AD, providing the highest methane yield and productivity (582 L CH4/kg VS and 31 L CH4/kg VS.d, respectively) and the highest energetic potential of 5.8 KWh/kg VS of all the substrates. From the results, AD integration to lipid production by C. cohnii to recover energy from the generated wastes enhanced the sustainability of the entire process and promoted the practice of zero waste.
Collapse
|
6
|
Gao M, Yang J, Liu Y, Zhang J, Li J, Liu Y, Wu B, Gu L. Deep insights into the anaerobic co-digestion of waste activated sludge with concentrated leachate under different salinity stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155922. [PMID: 35577084 DOI: 10.1016/j.scitotenv.2022.155922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Treatment of high-salinity organic wastewater (e.g., concentrated leachate) is a major challenge. Anaerobic co-digestion can effectively treat high-salinity organic wastewater and recover energy. In this study, the concentrated landfill leachate and waste activated sludge (WAS) were anaerobic co-digested in the lab-scale continuous stirred tank reactors (CSTR) to understand their co-digestion performance under different salinity stresses. As revealed by the results, when the salinity was low (<10 g/L), the removal ratio of organic matter in the digester was kept at a high level (>91.3%), and the concentration of total volatile fatty acids (TVFAs) was low (<100 mg COD/L), indicating that the digester could operate efficiently and stably. However, when the salinity level was elevated from 10 g/L to 30 g/L, the removal ratio of organic matter in the digester decreased from ~91.3% to ~64.5%, the TVFAs continued to accumulate, the yields of biogas and methane also dropped sharply, and the performance of the digester decreased gradually. The results of microbial community and diversity analysis showed that there is limited adaptability of microbial community to high salinity in such process. Salinity could cause significant changes in the microbial community and diversity, thereby affecting the digestive performance. Metagenomic analysis showed that under high salinity conditions, the content of genes encoding hydrolase and methanogenic enzyme decreased, whereas the pathway of acetotrophic methanogenesis was weakened. Mechanism study showed that with the increase of salinity, the activity of microbial cells decreased, the structure of sludge flocs was damaged more significantly, and the extracellular polymeric substances (EPS) secreted by microbe increased continuously, which was used to resist the toxic effects of salinity stresses on microorganisms. The results of this study could provide certain theoretical guidance for anaerobic digestion under salinity stresses.
Collapse
Affiliation(s)
- Meng Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jiahui Yang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Junjie Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jianhao Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| |
Collapse
|
7
|
Improving biomass growth of Nannochloropsis oceanica with electrical treatment. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Rincón-Pérez J, Celis LB, Morales M, Alatriste-Mondragón F, Tapia-Rodríguez A, Razo-Flores E. Improvement of methane production at alkaline and neutral pH from anaerobic co-digestion of microalgal biomass and cheese whey. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107972] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The importance of green technologies is steadily growing. Salt-tolerant plants have been proposed as energy crops for cultivation on saline lands. Halophytes such as Salicornia europaea, Tripolium pannonicum, Crithmum maritimum and Chenopodium quinoa, among many other species, can be cultivated in saline lands, in coastal areas or for treating saline wastewater, and the biomass might be used for biogas production as an integrated process of biorefining. However, halophytes have different salt tolerance mechanisms, including compartmentalization of salt in the vacuole, leading to an increase of sodium in the plant tissues. The sodium content of halophytes may have an adverse effect on the anaerobic digestion process, which needs adjustments to achieve stable and efficient conversion of the halophytes into biogas. This review gives an overview of the specificities of halophytes that needs to be accounted for using their biomass as feedstocks for biogas plants in order to expand renewable energy production. First, the different physiological mechanisms of halophytes to grow under saline conditions are described, which lead to the characteristic composition of the halophyte biomass, which may influence the biogas production. Next, possible mechanisms to avoid negative effects on the anaerobic digestion process are described, with an overview of full-scale applications. Taking all these aspects into account, halophyte plants have a great potential for biogas and methane production with yields similar to those produced by other energy crops and the simultaneous benefit of utilization of saline soils.
Collapse
|
10
|
Vinasse treatment using hybrid tannin-based Coagulation-Microfiltration-Nanofiltration processes: Potential energy recovery, technical and economic feasibility assessment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. BIORESOURCE TECHNOLOGY 2020; 307:123254. [PMID: 32247274 DOI: 10.1016/j.biortech.2020.123254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented for recovery. An anaerobic forward osmosis membrane bioreactor (AnOMBR) was developed for real municipal sewage treatment to investigate performance, biogas production, flux change and mixed liquor characteristics. The AnOMBR had a good treatment capacity with removal ratio of chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus more than 96%, 88%, 89% and almost 100%. Although high DS concentration increased the initial flux, it caused rapid decline and poor recoverability of FO membrane flux. Low DS concentration led to too long hydraulic retention time, thus resulting in a low reactor efficiency. Additionally, it was observed that salt, protein, polysaccharide and humic acid were all accumulated in the reactor, which was not conducive to stable long-term operation. Based on the characteristics of membrane fouling, salt accumulation and AnOMBR performance, the optimal DS of 1 M NaCl solution was selected.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xianzheng Zhu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
12
|
Kumar Biswal B, Huang H, Dai J, Chen GH, Wu D. Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 297:122423. [PMID: 31821954 DOI: 10.1016/j.biortech.2019.122423] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
This work studied the influence of low-thermal pretreatment (60-120 °C) on anaerobic digestion of saline waste activated sludge. The findings showed higher temperature and longer pretreatment time considerably improve organics hydrolysis (soluble chemical oxygen demand increased by 4.2-11.9 times) and volatile solid reduction (maximum 24.6%). Carbohydrate and proteins solubilization accelerated by 5.6-43.8 times and 8.9-35.9 times, respectively by temperature rose from 60 to 120 °C. Low temperature (60 °C) promotes faster release of ammonia and phosphate. Thermal treatment had positive effect on biogas production because methane yield was enhanced by 13.7, 27.0, 29.0 and 29.6% when pretreated at 60, 80, 100 and 120 °C, respectively. Significant positive relationships observed between pretreatment temperature/duration and sludge properties. Energy and economic assessment displayed anaerobic digestion of 80 °C pretreated sludge is more economically feasible. Thus, low-thermal pretreatment technology could be useful for improvement of methane yield in anaerobic digestion.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ji Dai
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and FYT Research Institute (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
13
|
Magdalena JA, González-Fernández C. Microalgae Biomass as a Potential Feedstock for the Carboxylate Platform. Molecules 2019; 24:molecules24234404. [PMID: 31810301 PMCID: PMC6930456 DOI: 10.3390/molecules24234404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are chemical building blocks for industries, and are mainly produced via the petrochemical pathway. However, the anaerobic fermentation (AF) process gives a potential alternative to produce these organic acids using renewable resources. For this purpose, waste streams, such as microalgae biomass, might constitute a cost-effective feedstock to obtain VFAs. The present review is intended to summarize the inherent potential of microalgae biomass for VFA production. Different strategies, such as the use of pretreatments to the inoculum and the manipulation of operational conditions (pH, temperature, organic loading rate or hydraulic retention time) to promote VFA production from different microalgae strains, are discussed. Microbial structure analysis using microalgae biomass as a substrate is pointed out in order to further comprehend the roles of bacteria and archaea in the AF process. Finally, VFA applications in different industry fields are reviewed.
Collapse
|
14
|
Roberts KP, Heaven S, Banks CJ. Semi-continuous anaerobic digestion of the marine micro-algal species I. galbana and D. salina grown under low and high sulphate conditions. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Reyes-Alvarado LC, Habouzit F, Rene ER, Santa-Catalina G, Escudie R, Bernet N, Lens PNL. Effect of ammonium, electron donor and sulphate transient feeding conditions on sulphidogenesis in sequencing batch bioreactors. BIORESOURCE TECHNOLOGY 2019; 276:288-299. [PMID: 30641327 DOI: 10.1016/j.biortech.2018.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
This work aimed to study the effect of transient feeding conditions on sulphidogenesis in 8 sequencing batch bioreactors (SBR). SBR L1 and H1, operated under steady-state conditions were used as the control reactors, while four SBR were tested under transient feeding conditions using moderate (L2 and L3, feast and famine: 2.5 and 0 g SO42-·L-1) and high (H2 and H3, feast and famine: 15 and 0 g SO42-·L-1) loads. The sulphate removal efficiency (RE) was ≥90% in SBR L2, L3 and H1. The NH4+ famine conditions resulted in a higher sulphate RE (≥40% H3) compared to feast conditions (≤20% H2). Besides, the sulphidogenic first-order kinetic constant was 4% larger and the use of electron donor was 16.6% more efficient under NH4+ famine conditions. Sulphidogenesis is robust to transient feeding conditions, but not when applying high loading rates (SBR H2 and H3).
Collapse
Affiliation(s)
- Luis C Reyes-Alvarado
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France; UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| | - Frédéric Habouzit
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Eldon R Rene
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands.
| | | | - Renaud Escudie
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, Univ Montpellier, INRA, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands
| |
Collapse
|
16
|
Gao Y, Fang Z, Liang P, Zhang X, Qiu Y, Kimura K, Huang X. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: Focus on the impact of salt and ammonia nitrogen. BIORESOURCE TECHNOLOGY 2019; 276:204-210. [PMID: 30634163 DOI: 10.1016/j.biortech.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented. Forward osmosis (FO) is an effective pre-treatment for concentrating solutions. A laboratory-scale anaerobic digestion (AD) bioreactor was setup for the treatment of concentrated real sewage by FO membrane to investigate the removal of chemical oxygen demand (COD) and biogas production. Inhibitory batch tests were carried out for the impact of NaCl and NH4+-N. Results showed that the concentrated sewage could be purified with 80% COD removal, and energy recovery could be achieved. But the process was inhibited. The results of inhibitory batch test showed that (i) when the NH4+-N concentration was lower (<200 mg/L), the biogas production was promoted, when it went high, the inhibition appeared; (ii) single existence of NaCl had negative influence on methane production; (iii) the inhibition was more severe with co-existence of NaCl and NH4+-N. The AD performance could be recovered via sludge acclimation.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Li J, Shi W, Jiang C, Bai L, Wang T, Yu J, Ruan W. Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater. BIORESOURCE TECHNOLOGY 2018; 266:68-74. [PMID: 29957292 DOI: 10.1016/j.biortech.2018.06.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
In this work, the effect of potassium on mesophilic anaerobic digestion (AD) of saline organic wastewater, which consisted of simulated effluents obtained from heparin sodium production, was studied. The results showed that the addition of potassium chloride (KCl) to saline organic wastewater enhanced the AD efficiency. The optimal dosage was found to be 0.174% when the salt (NaCl) content was 2.0%. Under this condition, the chemical oxygen demand (COD) removal efficiency, dehydrogenase activities, and the viability of microorganisms reached 62.7%, 55.7 TF μL-1, and 78.4%, respectively, which were 115.4%, 77.2%, and 20.3% higher than those without the addition of potassium chloride. The consumption of volatile fatty acids (VFAs) was enhanced during the AD process. Moreover, less humic-like and protein-like residues appeared in the wastewater after AD. Potassium could maintain the morphology of anaerobic microorganism under high salinity and showed a long-term effect.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Changwang Jiang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ling Bai
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiangnan Yu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China.
| |
Collapse
|
18
|
Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Rákhely G, Kovács KL. Anaerobic gaseous biofuel production using microalgal biomass – A review. Anaerobe 2018; 52:1-8. [DOI: 10.1016/j.anaerobe.2018.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
19
|
Wang W, Wu B, Pan S, Yang K, Hu Z, Yuan S. Performance robustness of the UASB reactors treating saline phenolic wastewater and analysis of microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:21-27. [PMID: 28242525 DOI: 10.1016/j.jhazmat.2017.02.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Anaerobic digestion was an important way to remove phenols from saline wastewater; however the anaerobic microorganisms were adversely affected by high concentration of salts. In order to clarify the performance robustness and microbial community structure for anaerobic digestion of saline phenolic wastewater, the UASB reactors were compared to treat phenolic wastewater under saline and non-saline conditions. The saline reactors were operated stably with phenols concentration increasing from 100 to 500mgL-1 at 10g Na+ L-1. The robustness of the saline reactors was weakened at 1000mg phenols L-1 and 10g Na+ L-1. However, the substrate utilization rates (SURs) for phenol, catechol, resorcinol, hydroquinone, and the specific methanogenic activity (SMA) of sludge were decreased by 95%, 85%, 97%, 78%, and 68%, respectively with phenols concentration enhancing from 1000 to 2000mgL-1. Moreover, the SURs for phenol, catechol, resorcinol, hydroquinone, and the SMA of sludge were reduced by 32%, 65%, 74%, 45%, and 59%, respectively with Na+ concentration increasing from 10 to 20gL-1, in comparison with the values obtained at 10g Na+ L-1 and 1000mg phenols L-1. Finally, the analysis of microbial community structure demonstrated that phenols degraders were less tolerant to high concentrations of Na+ and phenols than methanogens.
Collapse
Affiliation(s)
- Wei Wang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Benteng Wu
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shanglei Pan
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kai Yang
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Scoma A, Coma M, Kerckhof FM, Boon N, Rabaey K. Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:23. [PMID: 28163780 PMCID: PMC5282813 DOI: 10.1186/s13068-017-0701-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/05/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackled through dilution. In the present study, the performance of microbial communities derived from marine sediment was compared to that of communities from a terrestrial environment (anaerobic digester sludge). The aim was to test whether adaptation to salinity represented an advantage for fermenting molasses into renewable chemicals such as volatile fatty acids (VFAs) although high sugar concentrations are uncommon to marine sediment, contrary to anaerobic digesters. RESULTS Terrestrial and marine microbial communities were enriched in consecutive batches at different initial pH values (pHi; either 6 or 7) and molasses dilutions (equivalent to organic loading rates (OLRs) of 1 or 5 gCOD L-1 d-1) to determine the best VFA production conditions. Marine communities were supplied with NaCl to maintain their native salinity. Due to molasses inherent salinity, terrestrial communities experienced conditions comparable to brackish or saline waters (20-47 mS cm-1), while marine conditions resembled brine waters (>47 mS cm-1). Enrichments at optimal conditions of OLR 5 gCOD L-1 d-1 and pHi 7 were transferred into packed-bed biofilm reactors operated continuously. The reactors were first operated at 5 gCOD L-1 d-1, which was later increased to OLR 10 gCOD L-1 d-1. Terrestrial and marine reactors had different gas production and community structures but identical, remarkably high VFA bioconversion yields (above 85%) which were obtained with conductivities up to 90 mS cm-1. COD-to-VFA conversion rates were comparable to the highest reported in literature while processing other organic leftovers at much lower salinities. CONCLUSIONS Although salinity represents a major driver for microbial community structure, proper acclimation yielded highly efficient systems treating molasses, irrespective of the inoculum origin. Selection of equivalent pathways in communities derived from different environments suggests that culture conditions select for specific functionalities rather than microbial representatives. Mass balances, microbial community composition, and biochemical analysis indicate that biomass turnover rather than methanogenesis represents the main limitation to further increasing VFA production with molasses. This information is relevant to moving towards molasses fermentation to industrial application.
Collapse
Affiliation(s)
- Alberto Scoma
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
- Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Marta Coma
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Frederiek-Maarten Kerckhof
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico Boon
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Scoma A, Coma M, Kerckhof FM, Boon N, Rabaey K. Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. BIOTECHNOLOGY FOR BIOFUELS 2017. [PMID: 28163780 DOI: 10.1186/s13068-017-0701-8%3fsite%3dbiotechnologyforbiofuels.biomedcentral.com] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Molasses is a dense and saline by-product of the sugar agroindustry. Its high organic content potentially fuels a myriad of renewable products of industrial interest. However, the biotechnological exploitation of molasses is mainly hampered by the high concentration of salts, an issue that is nowadays tackled through dilution. In the present study, the performance of microbial communities derived from marine sediment was compared to that of communities from a terrestrial environment (anaerobic digester sludge). The aim was to test whether adaptation to salinity represented an advantage for fermenting molasses into renewable chemicals such as volatile fatty acids (VFAs) although high sugar concentrations are uncommon to marine sediment, contrary to anaerobic digesters. RESULTS Terrestrial and marine microbial communities were enriched in consecutive batches at different initial pH values (pHi; either 6 or 7) and molasses dilutions (equivalent to organic loading rates (OLRs) of 1 or 5 gCOD L-1 d-1) to determine the best VFA production conditions. Marine communities were supplied with NaCl to maintain their native salinity. Due to molasses inherent salinity, terrestrial communities experienced conditions comparable to brackish or saline waters (20-47 mS cm-1), while marine conditions resembled brine waters (>47 mS cm-1). Enrichments at optimal conditions of OLR 5 gCOD L-1 d-1 and pHi 7 were transferred into packed-bed biofilm reactors operated continuously. The reactors were first operated at 5 gCOD L-1 d-1, which was later increased to OLR 10 gCOD L-1 d-1. Terrestrial and marine reactors had different gas production and community structures but identical, remarkably high VFA bioconversion yields (above 85%) which were obtained with conductivities up to 90 mS cm-1. COD-to-VFA conversion rates were comparable to the highest reported in literature while processing other organic leftovers at much lower salinities. CONCLUSIONS Although salinity represents a major driver for microbial community structure, proper acclimation yielded highly efficient systems treating molasses, irrespective of the inoculum origin. Selection of equivalent pathways in communities derived from different environments suggests that culture conditions select for specific functionalities rather than microbial representatives. Mass balances, microbial community composition, and biochemical analysis indicate that biomass turnover rather than methanogenesis represents the main limitation to further increasing VFA production with molasses. This information is relevant to moving towards molasses fermentation to industrial application.
Collapse
Affiliation(s)
- Alberto Scoma
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
- Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Marta Coma
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
- Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Frederiek-Maarten Kerckhof
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico Boon
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- Center of Microbial Ecology and Technology (CMET), University of Gent, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Fermoso FG, Beltran C, Jimenez A, Fernández MJ, Rincón B, Borja R, Jeison D. Screening of biomethane production potential from dominant microalgae. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:1062-1067. [PMID: 27409043 DOI: 10.1080/10934529.2016.1198627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of microalgae for biomethane production has been considerably increasing during the recent years. In this study, four dominant species belonging to the genera Scenedesmus, Chlorella, Dunaliella and Nostoc were selected. The influence of different genera with several morphological, structural and physicochemical characteristics on methane production was assessed in biochemical methane potential (BMP) tests. The ultimate methane yield values were 332 ± 24, 211 ± 2, 63 ± 17 and 28 ± 10 mL CH4/g VSadded for Scenedesmus obliquus, Chlorella sorokiniana, Dunaliella salina and Nostoc sp., respectively. The highest methane production was achieved by microalga species that had no complex cell wall or wall basically composed by proteins and simple sugars such as in S. obliquus, whereas lower methane yields were found for D. salina and Nostoc sp., due to the salinity effects and cell wall composition in terms of complex polysaccharide and glycolipid layers, respectively. Kinetic constant values obtained in the BMP tests ranged between 1.00 ± 0.08 and 0.097 ± 0.005 days(-1) for D. salina and S. obliquus, respectively.
Collapse
Affiliation(s)
- Fernando G Fermoso
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - Carolina Beltran
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
- b Scientific and Technological Bioresource Nucleus, Universidad de La Frontera , Temuco , Chile
| | - Antonia Jimenez
- c Department of Physical, Chemical, and Natural Systems , Universidad Pablo de Olavide , Sevilla , Spain
| | - María José Fernández
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
- c Department of Physical, Chemical, and Natural Systems , Universidad Pablo de Olavide , Sevilla , Spain
| | - Bárbara Rincón
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - Rafael Borja
- a Food Biotechnology Department, Instituto de la Grasa (C.S.I.C.) , Sevilla , Spain
| | - David Jeison
- b Scientific and Technological Bioresource Nucleus, Universidad de La Frontera , Temuco , Chile
- d Department of Chemical Engineering , Universidad de La Frontera , Temuco , Chile
| |
Collapse
|
23
|
Herrmann C, Kalita N, Wall D, Xia A, Murphy JD. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. BIORESOURCE TECHNOLOGY 2016; 214:328-337. [PMID: 27152773 DOI: 10.1016/j.biortech.2016.04.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Microalgae can be used to upgrade biogas to biomethane and subsequently be digested for biogas production. However, the low C:N ratio of species such as Arthrospira platensis may cause ammonia inhibition and low process stability during anaerobic digestion. This study investigates co-fermentation of A. platensis with carbon-rich co-substrates (barley straw, beet silage and brown seaweed) at a C:N ratio of 25 to enhance biomass conversion. No synergistic effects on biomethane potential could be proven in batch fermentation tests. However continuous digestion trials showed significantly improved process stability. Mono-digestion of A. platensis was stable only at an organic loading of 1.0gVSL(-1)d(-1). The optimum process co-digested A. platensis with seaweed and achieved stable operation at an organic loading of 4.0gVSL(-1)d(-1). Co-digestion of microalgae and seaweed can be effectively applied to integrated coastal biomethane systems.
Collapse
Affiliation(s)
- Christiane Herrmann
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Department of Bioengineering, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Navajyoti Kalita
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland
| | - David Wall
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland
| | - Ao Xia
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | - Jerry D Murphy
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Engineering, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Miura T, Kita A, Okamura Y, Aki T, Matsumura Y, Tajima T, Kato J, Nakashimada Y. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community. BIORESOURCE TECHNOLOGY 2016; 200:616-23. [PMID: 26547811 DOI: 10.1016/j.biortech.2015.10.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation.
Collapse
Affiliation(s)
- Toyokazu Miura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan
| | - Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan
| | - Yukihiko Matsumura
- Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan; CREST, JST, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan; CREST, JST, Japan.
| |
Collapse
|
25
|
Gonzalez-Fernandez C, Sialve B, Molinuevo-Salces B. Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs. BIORESOURCE TECHNOLOGY 2015; 198:896-906. [PMID: 26454349 DOI: 10.1016/j.biortech.2015.09.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Integration of anaerobic digestion (AD) with microalgae processes has become a key topic to support economic and environmental development of this resource. Compared with other substrates, microalgae can be produced close to the plant without the need for arable lands and be fully integrated within a biorefinery. As a limiting step, anaerobic hydrolysis appears to be one of the most challenging steps to reach a positive economic balance and to completely exploit the potential of microalgae for biogas and fertilizers production. This review covers recent investigations dealing with microalgae AD and highlights research opportunities and needs to support the development of this resource. Novel approaches to increase hydrolysis rate, the importance of the reactor design and the noteworthiness of the microbial anaerobic community are addressed. Finally, the integration of AD with microalgae processes and the potential of the carboxylate platform for chemicals and biofuels production are reviewed.
Collapse
Affiliation(s)
| | - Bruno Sialve
- INRA, Laboratoire de Biotechnologie de l'Environnement, Avenue des Etangs, Narbonne F-11100, France
| | | |
Collapse
|
26
|
Miura T, Kita A, Okamura Y, Aki T, Matsumura Y, Tajima T, Kato J, Nakashimada Y. Effect of salinity on methanogenic propionate degradation by acclimated marine sediment-derived culture. Appl Biochem Biotechnol 2015; 177:1541-52. [PMID: 26364311 DOI: 10.1007/s12010-015-1834-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022]
Abstract
Degradation of propionate under high salinity is needed for biomethane production from salt-containing feedstocks. In this study, marine sediment-derived culture was evaluated to determine the effect of salinity on methanogenic propionate degradation. Microbes in marine sediments were subjected to fed-batch cultivation on propionate for developing acclimatized cultures. The rate of propionate degradation increased eightfold during 10 rounds of cultivation. Microbial community composition was determined through pyrosequencing of 16S rRNA gene amplicons after 10 rounds of cultivation. Taxa analysis was conducted for the reads obtained by pyrosequencing. Known propionate degraders were undetectable in the acclimated culture. Comparison of bacterial taxa in the original sediment with those in the acclimated culture revealed that the populations of four bacterial taxa were significantly increased during acclimation. Methanolobus was the predominant archaea genus in the acclimated culture. The propionate degradation rate of the acclimated culture was not affected by salinity of up to equivalent of 1.9 % NaCl. The rate decreased at higher salinity levels and was more than 50 % of the maximum rate even at equivalent of 4.3 % NaCl.
Collapse
Affiliation(s)
- Toyokazu Miura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yoshiko Okamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tsunehiro Aki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Matsumura
- Division of Energy and Environmental Engineering, Institute of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi, Hiroshima, 739-8527, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takahisa Tajima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8530, Japan.
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
27
|
Soto M, Vázquez MA, de Vega A, Vilariño JM, Fernández G, de Vicente MES. Methane potential and anaerobic treatment feasibility of Sargassum muticum. BIORESOURCE TECHNOLOGY 2015; 189:53-61. [PMID: 25864031 DOI: 10.1016/j.biortech.2015.03.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
The aim of this research was to study the feasibility of anaerobic digestion of the alga Sargassum muticum with special attention to its biodegradability, potential toxicity caused by its salt content, alga components and intermediate process compounds, and potential limitations to continuous treatment. Specific methane potential (SMP) for three samples of S. muticum collected from the Galician coast (Northwest Spain) at different seasons ranged from 166 to 208 mLCH4/gVS while accumulation of toxic compounds was not observed at alga concentrations of up to 100 gTS/L, except for one of the samples in which inhibition started at 80-100 gTS/L. Continuous digestion is feasible at alga concentration up to 100 gTS/L with methane production rates ranging from 0.14 to 0.26 LCH4/Ld at organic loading rates of 3.2 gTS/Ld, but SMP dropped to 113-159 mLCH4/gVS.
Collapse
Affiliation(s)
- M Soto
- Dept. of Physical Chemistry and Chemical Engineering I, University of A Coruña, Rúa da Fraga n° 10, 15008 A Coruña, Galiza, Spain.
| | - M A Vázquez
- Dept. of Physical Chemistry and Chemical Engineering I, University of A Coruña, Rúa da Fraga n° 10, 15008 A Coruña, Galiza, Spain
| | - A de Vega
- Dept. of Physical Chemistry and Chemical Engineering I, University of A Coruña, Rúa da Fraga n° 10, 15008 A Coruña, Galiza, Spain
| | - J M Vilariño
- INVESGA, S.L. Rúa Perseo n° 9, 15179 Oleiros, A Coruña, Spain
| | - G Fernández
- INVESGA, S.L. Rúa Perseo n° 9, 15179 Oleiros, A Coruña, Spain
| | - M E S de Vicente
- Dept. of Physical Chemistry and Chemical Engineering I, University of A Coruña, Rúa da Fraga n° 10, 15008 A Coruña, Galiza, Spain
| |
Collapse
|
28
|
|
29
|
Lee DJ, Wong BT. Denitrifying sulfide removal and nitrososulfide complex: Azoarcus sp. NSC3 and Pseudomonas sp. CRS1 mix. BIORESOURCE TECHNOLOGY 2014; 166:616-619. [PMID: 24929301 DOI: 10.1016/j.biortech.2014.05.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
Denitrifying sulfide removal (DSR) process simultaneously removes nitrate, sulfide and organic matters in the same reactor. This study applied Azoarcus sp. NSC3 and Pseudomonas sp. CRS1 mix for DSR tests in autotrophic, heterotrophic and mixotrophic growths. Negligible NO-compounds were noted in heterotrophic or mixotrophic growths, while most cells were damaged and bound with NO-compounds in autotrophic growth. Nitroprusside (SNP) ions were applied as model compound to reveal the formation of nitrososulfide complex (RSNO) by nitroso (NO(+)) and excess sulfide (S(2-)), rather than the previously proposed mechanism by direct reaction between nitric oxide (NO) and S(2-). We speculated that RSNO was then abiotically decomposed to NO and elemental sulfur in the presence of biological cells. A revised nitrogen cycle considering interactions with sulfur compounds was proposed. We also speculated that SNO and NO were inhibitory to the functional strains, whose efficient removals were essential to reach high-rate DSR performance.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Biing-Teo Wong
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|