1
|
Contreras JA, Valenzuela EI, Quijano G. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115671. [PMID: 35816965 DOI: 10.1016/j.jenvman.2022.115671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.
Collapse
Affiliation(s)
- José A Contreras
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
2
|
Zhang H, Wang Y, Huang T, Liu K, Huang X, Ma B, Li N, Sekar R. Mixed-culture aerobic anoxygenic photosynthetic bacterial consortia reduce nitrate: Core species dynamics, co-interactions and assessment in raw water of reservoirs. BIORESOURCE TECHNOLOGY 2020; 315:123817. [PMID: 32683291 DOI: 10.1016/j.biortech.2020.123817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Three consortia of mixed-culture Aerobic Anoxygenic Photosynthetic Bacteria (AAPB) with excellent aerobic denitrifying ability were isolated from drinking water source reservoirs. The results showed that the removal of dissolved organic carbon (DOC) and nitrate nitrogen (NO3--N) by mixed-culture AAPB were higher than 90% and 99%, respectively. The Illumina MiSeq sequencing of pufM gene revealed that the dominant genera and their relative abundance changed over the culture periods. Sphingomonas sanxanigenens was the most dominant species observed at 9 h, whereas at 48 h, the most abundant species was Rhodobacter blasticus. A network analysis demonstrated that the co-interactions among the different genera were complex and variable. Mixed-culture AAPB removed more than 30% of NO3--N and 25% of DOC from the source water and this study suggests that mixed-culture AAPB can be regarded as a latent denitrifying microbial inoculum in the reservoir raw water treatment.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yan Wang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Municipal and Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
3
|
Lu H, Yu Y, Xi H, Wang C, Zhou Y. Bacterial response to formaldehyde in an MFC toxicity sensor. Enzyme Microb Technol 2020; 140:109565. [DOI: 10.1016/j.enzmictec.2020.109565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
4
|
Mehrani MJ, Sobotka D, Kowal P, Ciesielski S, Makinia J. The occurrence and role of Nitrospira in nitrogen removal systems. BIORESOURCE TECHNOLOGY 2020; 303:122936. [PMID: 32059161 DOI: 10.1016/j.biortech.2020.122936] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/04/2023]
Abstract
Application of the modern microbial techniques changed the paradigm about the microorganisms performing nitrification. Numerous investigations recognized representatives of the genus Nitrospira as a key and predominant nitrite-oxidizing bacteria in biological nutrient removal systems, especially under low dissolved oxygen and substrate conditions. The recent discovery of Nitrospira capable of performing complete ammonia oxidation (comammox) raised a fundamental question about the actual role of Nitrospira in both nitrification steps. This review summarizes the current knowledge about morphological, physiological and genetic characteristics of the canonical and comammox Nitrospira. Potential implications of comammox for the functional aspects of nitrogen removal have been highlighted. The complex meta-analysis of literature data was applied to identify specific individual variables and their combined interactions on the Nitrospira abundance. In addition to dissolved oxygen and influent nitrogen concentrations, temperature and pH may play an important role in enhancing or suppressing the Nitrospira activity.
Collapse
Affiliation(s)
- Mohamad-Javad Mehrani
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Przemyslaw Kowal
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Sloneczna 45G, 10-709 Olsztyn, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
5
|
Sui Q, Wang Y, Wang H, Yue W, Chen Y, Yu D, Chen M, Wei Y. Roles of hydroxylamine and hydrazine in the in-situ recovery of one-stage partial nitritation-anammox process: Characteristics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135648. [PMID: 31780172 DOI: 10.1016/j.scitotenv.2019.135648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Nitrate built-up is a serious operational difficulty in one-stage partial nitritation anammox (PN/A) process. To investigate an effective method for in-situ restoration, hydroxylamine (NH2OH) and hydrazine (N2H4) of 2 mgN/L were dosed in PN/A process with nitrate built-up in a comparative study. NH2OH treatment showed better performances on TN removal and nitrate reduction than N2H4 and blank control. Through 104 days' addition of NH2OH, MRNN (mole ratio of NO3--N production to NH4+-N removal) was decreased from 70% to 19.91%; TN removal was increased from 0.01 to 0.18 kgN/(m3 d). After stopping the chemical addition, nitrate rebounded for N2H4 treatment, but the restoration effect was stable and persistent for NH2OH. NH2OH addition resulted in a low reductive potential (-250 mV) and exerted strong inhibitions on nitrite oxidizing bacteria activities. Additionally, rapid enhancement of ammonia oxidizing bacteria activities, functional gene (hao) and Nitrosomonas gave rise to the restoration of PN/A with NH2OH addition.
Collapse
Affiliation(s)
- Qianwen Sui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meixue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
6
|
Gallardo-Altamirano MJ, Maza-Márquez P, Montemurro N, Rodelas B, Osorio F, Pozo C. Linking microbial diversity and population dynamics to the removal efficiency of pharmaceutically active compounds (PhACs) in an anaerobic/anoxic/aerobic (A 2O) system. CHEMOSPHERE 2019; 233:828-842. [PMID: 31200141 DOI: 10.1016/j.chemosphere.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
The removal efficiencies (REs) of nineteen pharmaceutically active compounds (PhACs) (six antibiotics-clarithromycin, ofloxacin, sulfadiazine, sulfamethazine, sulfamethoxazole and trimethoprim -, four β-blockers -atenolol, metoprolol, propranolol and sotalol-, two antihypertensives/diuretics -furosemide and hydrochlorothiazide-, three lipid regulators -bezafibrate, fenofibrate and gemfibrozil-, and four psychiatric medications -carbamazepine, diazepam, lorazepam and paroxetine) were ascertained in a pilot-scale anaerobic/anoxic/aerobic (A2O) system treating urban wastewater, long term operated during two experimental phases using different sets of environmental conditions and operating parameters. Illumina MiSeq sequencing was used to investigate the structure, diversity and population dynamics of bacteria, archaea and fungi communities in the activated sludge. The results showed that mixed liquor suspended solids (MLSS) and food-to-microorganisms ratio (F/M) were operational parameters significantly influencing the REs of five of the analyzed PhACs in the A2O system. Biota-environment (BIO-ENV) analysis revealed strong correlations between population shifts of the activated sludge community and the REs of PhACs of the different pharmaceutical families. Increased REs of clarithromycin, furosemide, bezafibrate and gemfibrozil were concomitant to higher relative abundances of bacterial phylotypes classified within the Rhodobacteraceae and Sphingomonadaceae (Alphaproteobacteria), while those of Betaproteobacteria, Chloroflexi and Methanomethylovorans (Euryarchaea) correlated positively with the REs of up to seven PhACs belonging to different therapeutic groups.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| | - N Montemurro
- Water, Environmental and Food Chemistry (ENFOCHEM), Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Honeker LK, Gullo CF, Neilson JW, Chorover J, Maier RM. Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Front Microbiol 2019; 10:1209. [PMID: 31214146 PMCID: PMC6554433 DOI: 10.3389/fmicb.2019.01209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/13/2019] [Indexed: 02/01/2023] Open
Abstract
Phytostabilized highly acidic, pyritic mine tailings are susceptible to re-acidification over time despite initial addition of neutralizing amendments. Studies examining plant-associated microbial dynamics during re-acidification of phytostabilized regions are sparse. To address this, we characterized the rhizosphere and bulk bacterial communities of buffalo grass used in the phytostabilization of metalliferous, pyritic mine tailings undergoing re-acidification at the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, AZ. Plant-associated substrates representing a broad pH range (2.35-7.76) were sampled to (1) compare the microbial diversity and community composition of rhizosphere and bulk compartments across a pH gradient, and (2) characterize how re-acidification affects the abundance and activity of the most abundant plant growth-promoting bacteria (PGPB; including N2-fixing) versus acid-generating bacteria (AGB; including Fe-cycling/S-oxidizing). Results indicated that a shift in microbial diversity and community composition occurred at around pH 4. At higher pH (>4) the species richness and community composition of the rhizosphere and bulk compartments were similar, and PGPB, such as Pseudomonas, Arthrobacter, Devosia, Phyllobacterium, Sinorhizobium, and Hyphomicrobium, were present and active in both compartments with minimal presence of AGB. In comparison, at lower pH (<4) the rhizosphere had a significantly higher number of species than the bulk (p < 0.05) and the compartments had significantly different community composition (unweighted UniFrac; PERMANOVA, p < 0.05). Whereas some PGPB persisted in the rhizosphere at lower pH, including Arthrobacter and Devosia, they were absent from the bulk. Meanwhile, AGB dominated in both compartments; the most abundant were the Fe-oxidizer Leptospirillum and Fe-reducers Acidibacter and Acidiphilium, and the most active was the Fe-reducer Aciditerrimonas. This predominance of AGB at lower pH, and even their minimal presence at higher pH, contributes to acidifying conditions and poses a significant threat to sustainable plant establishment. These findings have implications for phytostabilization field site management and suggest re-application of compost or an alternate buffering material may be required in regions susceptible to re-acidification to maintain a beneficial bacterial community conducive to long-term plant establishment.
Collapse
Affiliation(s)
| | | | - Julia W. Neilson
- Department of Soil, Water, and Environmental Science, The University of Arizona, Tucson, AZ, United States
| | | | | |
Collapse
|
8
|
Jiang Y, Khan A, Huang H, Tian Y, Yu X, Xu Q, Mou L, Lv J, Zhang P, Liu P, Deng L, Li X. Using nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as biofilm support enhances oil-refinery wastewater treatment in a biofilm membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:606-617. [PMID: 30059921 DOI: 10.1016/j.scitotenv.2018.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Petroleum refinery wastewater (PRW) treatments based on biofilm membrane bioreactor (BF-MBR) technology is an ideal approach and biofilm supporting material is a critical factor. In this study, BF-MBR with nano-attapulgite clay compounded hydrophilic urethane foams (AT/HUFs) as a biofilm support was used to treat PRW with a hydraulic retention time of 5 h. The removal rate of 500 mg/L chemical oxygen demand (COD), 15 mg/L NH4+ and 180 NTU of turbidity were 99.73%, 97.48% and 99.99%, which were 23%, 20%, and 6% higher than in the control bioreactor, respectively. These results were comparatively higher than that observed for the sequencing batch reactor (SBR). The death rate of the Spirodela polyrrhiza (L.) irrigated with BF-MBR-treated water was 4.44%, which was similar to that of the plants irrigated with tap water (3.33%) and SBR-treated water (5.56%), but significantly lower than that irrigated with raw water (84.44%). The counts demonstrated by qPCR for total bacteria, denitrifiers, nitrite oxidizing bacteria, ammonia oxidizing bacteria, and ammonia-oxidizing archaea were also higher in BF-MBR than those obtained by SBR. Moreover, the results of 16 s rRNA sequencing have demonstrated that the wastewater remediation microbes were enriched in AT/HUFs, e.g., Acidovorax can degrade polycyclic aromatic hydrocarbons, and Sulfuritalea is an efficient nitrite degrader. In summary, BF-MBR using AT/HUF as a biofilm support improves microbiome of the actived sludge and is reliable for oil-refinery wastewater treatment.
Collapse
Affiliation(s)
- Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China; Institute of Virology (VIRO), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Insitute of Virology, Technical University of Munich, Trogerstr. 30, 81675 München, Germany
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China; Institute of Virology (VIRO), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Insitute of Virology, Technical University of Munich, Trogerstr. 30, 81675 München, Germany
| | - Yanrong Tian
- Sewage Disposal Plant, Lanzhou Petrochemical Company, PetroChina, Huanxingdonglu #88, Lanzhou, Gansu 730060, PR China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Qiang Xu
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Lichao Mou
- Signal Processing in Earth Observation (SiPEO), Technische Universität München, 80333 Munich, Germany
| | - Jianguo Lv
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Pengyun Zhang
- Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu 730020, PR China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Li Deng
- Institute of Virology (VIRO), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Insitute of Virology, Technical University of Munich, Trogerstr. 30, 81675 München, Germany
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
9
|
Gallardo-Altamirano MJ, Maza-Márquez P, Peña-Herrera JM, Rodelas B, Osorio F, Pozo C. Removal of anti-inflammatory/analgesic pharmaceuticals from urban wastewater in a pilot-scale A 2O system: Linking performance and microbial population dynamics to operating variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1481-1492. [PMID: 30189564 DOI: 10.1016/j.scitotenv.2018.06.284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
In this study, the removal rates of eight anti-inflammatory and/or analgesic pharmaceuticals, AIAPs (acetaminophen, ibuprofen, naproxen, ketoprofen, diclofenac, codeine, indomethacin and propyphenazone) were assessed in a pilot-scale A2O system (including anaerobic/anoxic/aerobic zones), long term operated during two experimental phases using different sets of environmental conditions and operating parameters. qPCR was used to quantify the absolute abundances of total Bacteria, total Archaea, mycolic-acid containing filamentous Actinobacteria (Mycolata) and Fungi within the activated sludge microbial community developed in the system. Multivariate analyses and Spearman correlation coefficients were used in search of significant links among the removal rates of the AIAPs, the abundances of the targeted microbial groups in the activated sludge, and the changes of environmental/operating variables in the A2O system. Improved removal efficiencies of several of the AIAPs analyzed (acetaminophen, ibuprofen, naproxen, ketoprofen) were correlated to higher organic load in the influent water, higher concentration of mixed liquor suspended solids (MLSS), lower temperature and lower food-to-microorganisms ratio (F/M). Removal efficiencies of several pharmaceuticals correlated with increased abundances of Mycolata in the A2O system, pointing at this group of bacteria as candidate key players for AIAPs removal in activated sludge.
Collapse
Affiliation(s)
- M J Gallardo-Altamirano
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - P Maza-Márquez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - J M Peña-Herrera
- Water and Soil Quality Research Group, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - B Rodelas
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - F Osorio
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | - C Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, 18071 Granada, Spain; Department of Microbiology, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
10
|
Lakshminarasimman N, Quiñones O, Vanderford BJ, Campo-Moreno P, Dickenson EV, McAvoy DC. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:62-72. [PMID: 29857321 DOI: 10.1016/j.scitotenv.2018.05.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
This study determined biotransformation rates (kbio) and sorption-distribution coefficients (Kd) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems.
Collapse
Affiliation(s)
| | - Oscar Quiñones
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Brett J Vanderford
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Pablo Campo-Moreno
- Cranfield Water Science Institute, Cranfield University, Cranfield, Beds MK43 0AL, UK
| | - Eric V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Drew C McAvoy
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
11
|
Xu H, Lin C, Chen W, Shen Z, Liu Z, Chen T, Wang Y, Li Y, Lu C, Luo J. Effects of pipe material on nitrogen transformation, microbial communities and functional genes in raw water transportation. WATER RESEARCH 2018; 143:188-197. [PMID: 29957407 DOI: 10.1016/j.watres.2018.06.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Raw water transportation pipelines are vital in an urban water supply system for transporting raw water to drinking water treatment plants. This study investigated the effects of pipe material on nitrogen transformation, microbial communities and characteristics of related function genes in paint-lined steel pipe (PLSP) and cement-lined steel pipe (CLSP) raw water model systems. We established quantitative relationships between specific functional genes and change rates of nitrogen pollutants, which were verified by field investigation on nitrogen pollutant transformations in real raw water transportation systems. The results showed that the CLSP produced higher ammonia nitrogen (NH4+-N) transformation rates and higher effluent concentrations of nitrate nitrogen (NO3--N) and dissolved organic nitrogen (DON) than the PLSP. Both pipes achieved high and stable nitrite nitrogen (NO2--N) and low total nitrogen (TN) removal efficiency. Nitrification was found to be the dominant process in both model systems, especially in the CLSP. Characteristics of microbial communities and nitrogen functional genes, which were analysed by high-throughput pyrosequencing and quantitative polymerase chain reaction (qPCR), respectively, varied between the two pipe systems. Nitrogen transformation pathways, identified by path analysis, were also different between the PLSP and CLSP due to different microbial community characteristics and synergistic effects of nitrogen functional genes. In the CLSP, (NH4+-N→NO2--N) with part denitrification, was the primary transformation pathway of ammonia nitrogen (NH4+-N), while only ammonia oxidization contributed to NH4+-N transformation in the PLSP. (NO2--N→NO3--N) was the main pathway involved in NO2--N transformation and NO3--N accumulation. The TN removal showed complex relationships with nitrification, denitrification and nitrogen fixation processes. These findings provided molecular-level insights into nitrogen pollutant transformations during the transportation of raw water through different types of pipes and technical support for the selection of raw water pipe materials. In our study area, the Taihu basin, China, PLSP was better than CLSP for distributing raw water in a short transportation distance, due to the lower effluent concentrations of DON and NO3--N and less abundance of microorganisms.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhigang Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Ningbo Water Supply Co., Ltd, No.348 Xinhe Road, Ningbo, 315041, China
| | - Taoyuan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| |
Collapse
|
12
|
Maza-Márquez P, Vílchez-Vargas R, González-Martínez A, González-López J, Rodelas B. Assessing the abundance of fungal populations in a full-scale membrane bioreactor (MBR) treating urban wastewater by using quantitative PCR (qPCR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:1-8. [PMID: 29883777 DOI: 10.1016/j.jenvman.2018.05.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The abundance of fungi in a full-scale membrane bioreactor (MBR) treating urban wastewater and experiencing seasonal foaming was assessed by quantitative PCR (qPCR), comparing three different sets of widely used universal fungal primers targeting the gene encoding the small ribosomal subunit RNA, 18S-rDNA, (primers NS1-Fung and FungiQuant) or the internal transcribed spacer ITS2 (primers ITS3-ITS4). Fungi were a numerically important fraction of the MBR microbiota (≥106 18S-rDNA copies/L activated sludge), and occurred both in the aerated and anoxic bioreactors. The numbers of copies of fungal markers/L activated sludge calculated using the NS1-Fung or ITS3-ITS4 primer sets were up to 2 orders of magnitude higher than the quantifications based on the FungiQuant primers. Fungal 18S-rDNA counts derived from the FungiQuant primers decreased significantly during cold seasons, concurring with foaming episodes in the MBR. Redundancy analysis corroborated that temperature was the main factor driving fungi abundance, which was also favored by longer solid retention time (SRT), lower chemical oxygen demand/biochemical oxygen demand at 5 days (COD/BOD5) of influent water, and lower biomass accumulation in the MBR.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain.
| | - R Vílchez-Vargas
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - A González-Martínez
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Castellano-Hinojosa A, Maza-Márquez P, Melero-Rubio Y, González-López J, Rodelas B. Linking nitrous oxide emissions to population dynamics of nitrifying and denitrifying prokaryotes in four full-scale wastewater treatment plants. CHEMOSPHERE 2018; 200:57-66. [PMID: 29475029 DOI: 10.1016/j.chemosphere.2018.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/18/2018] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
Ammonia-oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and N2O-reducing denitrifiers were measured by quantitative real-time PCR (qPCR) in activated sludge samples from four full-scale wastewater treatment plants (WWTPs) in South Spain, and their abundances were linked to the generation of N2O in the samples using multivariate analysis (Non-metric multidimensional scaling, MDS, and BIO-ENV). The average abundances of AOA remained in similar orders of magnitude in all WWTPs (106 copies amoA/L activated sludge mixed liquor), while significant differences were detected for AOB (105-109copies amoA/L) and N2O-reducers (107-1010copies nosZ/L). Average N2O emissions measured in activated sludge samples ranged from 0.10 ± 0.05 to 6.49 ± 8.89 mg N2O-N/h/L activated sludge, and were strongly correlated with increased abundances of AOB and lower counts of N2O-reducers. A significant contribution of AOA to N2O generation was unlikely, since their abundance correlated negatively to N2O emissions. AOB abundance was favoured by higher NO3- and NO2-concentrations in the activated sludge.
Collapse
Affiliation(s)
- A Castellano-Hinojosa
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - Y Melero-Rubio
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
14
|
Gomez-Silvan C, Leung MHY, Grue KA, Kaur R, Tong X, Lee PKH, Andersen GL. A comparison of methods used to unveil the genetic and metabolic pool in the built environment. MICROBIOME 2018; 6:71. [PMID: 29661230 PMCID: PMC5902888 DOI: 10.1186/s40168-018-0453-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/28/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND A majority of indoor residential microbes originate from humans, pets, and outdoor air and are not adapted to the built environment (BE). Consequently, a large portion of the microbes identified by DNA-based methods are either dead or metabolically inactive. Although many exceptions have been noted, the ribosomal RNA fraction of the sample is more likely to represent either viable or metabolically active cells. We examined methodological variations in sample processing using a defined, mock BE microbial community to better understand the scope of technique-based vs. biological-based differences in both ribosomal transcript (rRNA) and gene (DNA) sequence community analysis. Based on in vitro tests, a protocol was adopted for the analysis of the genetic and metabolic pool (DNA vs. rRNA) of air and surface microbiomes within a residential setting. RESULTS We observed differences in DNA/RNA co-extraction efficiency for individual microbes, but overall, a greater recovery of rRNA using FastPrep (> 50%). Samples stored with various preservation methods at - 80°C experienced a rapid decline in nucleic acid recovery starting within the first week, although post-extraction rRNA had no significant degradation when treated with RNAStable. We recommend that co-extraction samples be processed as quickly as possible after collection. The in vivo analysis revealed significant differences in the two components (genetic and metabolic pool) in terms of taxonomy, community structure, and microbial association networks. Rare taxa present in the genetic pool showed higher metabolic potential (RNA:DNA ratio), whereas commonly detected taxa of outdoor origins based on DNA sequencing, especially taxa of the Sphingomonadales order, were present in lower relative abundances in the viable community. CONCLUSIONS Although methodological variations in sample preparations are high, large differences between the DNA and RNA fractions of the total microbial community demonstrate that direct examination of rRNA isolated from a residential BE microbiome has the potential to identify the more likely viable or active portion of the microbial community. In an environment that has primarily dead and metabolically inactive cells, we suggest that the rRNA fraction of BE samples is capable of providing a more ecologically relevant insight into the factors that drive indoor microbial community dynamics.
Collapse
Affiliation(s)
- Cinta Gomez-Silvan
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Katherine A. Grue
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Current affiliation: Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA USA
| | - Randeep Kaur
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Gary L. Andersen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
15
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
16
|
Hiegemann H, Herzer D, Nettmann E, Lübken M, Schulte P, Schmelz KG, Gredigk-Hoffmann S, Wichern M. An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. BIORESOURCE TECHNOLOGY 2016; 218:115-22. [PMID: 27351707 DOI: 10.1016/j.biortech.2016.06.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 05/21/2023]
Abstract
A 45-L pilot MFC system, consisting of four single-chamber membraneless MFCs, was integrated into a full-scale wastewater treatment plant (WWTP) and operated under practical conditions with the effluent of the primary clarifier for nine months to identify an optimal operational strategy for stable power output and maximum substrate based energy recovery (Normalized Energy Recovery, NER). Best results with the MFC were obtained at a hydraulic retention time of 22h with COD, TSS and nitrogen removal of 24%, 40% and 28%, respectively. Mean NER of 0.36kWhel/kgCOD,deg and coulombic efficiency of 24.8% were reached. Experimental results were used to set up the first described energy balance for a whole WWTP with an integrated MFC system. Energetic calculations of the model WWTP showed that energy savings due to reduced excess sludge production and energy gain of the MFC are significantly higher than the loss of energy due to reduced biogas production.
Collapse
Affiliation(s)
- Heinz Hiegemann
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Daniel Herzer
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Edith Nettmann
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Patrick Schulte
- Emschergenossenschaft (EG), Kronprinzenstr. 24, 45128 Essen, Germany
| | | | - Sylvia Gredigk-Hoffmann
- Research Institute for Water and Waste Management at RWTH Aachen (FiW) e.V., Kackertstr. 15-17, 52072 Aachen, Germany
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
17
|
Inyang M, Flowers R, McAvoy D, Dickenson E. Biotransformation of trace organic compounds by activated sludge from a biological nutrient removal treatment system. BIORESOURCE TECHNOLOGY 2016; 216:778-784. [PMID: 27309772 DOI: 10.1016/j.biortech.2016.05.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/26/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
The removal of trace organic compounds (TOrCs) and their biotransformation rates, kb (LgSS(-)(1)h(-)(1)) was investigated across different redox zones in a biological nutrient removal (BNR) system using an OECD batch test. Biodegradation kinetics of fourteen TOrCs with initial concentration of 1-36μgL(-)(1) in activated sludge were monitored over the course of 24h. Degradation kinetic behavior for the TOrCs fell into four groupings: Group 1 (atenolol) was biotransformed (0.018-0.22LgSS(-)(1)h(-)(1)) under anaerobic, anoxic, and aerobic conditions. Group 2 (meprobamate and trimethoprim) biotransformed (0.01-0.21LgSS(-)(1)h(-)(1)) under anoxic and aerobic conditions, Group 3 (DEET, gemfibrozil and triclosan) only biotransformed (0.034-0.26LgSS(-)(1)h(-)(1)) under aerobic conditions, and Group 4 (carbamazepine, primidone, sucralose and TCEP) exhibited little to no biotransformation (<0.001LgSS(-)(1)h(-)(1)) under any redox conditions. BNR treatment did not provide a barrier against Group 4 compounds.
Collapse
Affiliation(s)
- Mandu Inyang
- Applied Research and Development Center, Southern Nevada Water Authority, Henderson, NV 89015, United States.
| | - Riley Flowers
- Applied Research and Development Center, Southern Nevada Water Authority, Henderson, NV 89015, United States; Southern Company, Birmingham, AL 35292, United States
| | - Drew McAvoy
- Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, Henderson, NV 89015, United States.
| |
Collapse
|
18
|
Maza-Márquez P, Vílchez-Vargas R, Boon N, González-López J, Martínez-Toledo MV, Rodelas B. The ratio of metabolically active versus total Mycolata populations triggers foaming in a membrane bioreactor. WATER RESEARCH 2016; 92:208-217. [PMID: 26859516 DOI: 10.1016/j.watres.2015.12.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
The abundance of total and metabolically active populations of Mycolata was evaluated in a full-scale membrane bioreactor (MBR) experiencing seasonal foaming, using quantitative PCR (qPCR) and retrotranscribed qPCR (RT-qPCR) targeting the 16S rRNA gene sequence. While the abundance of total Mycolata remained stable (10(10) copies of 16S rRNA genes/L activated sludge) throughout four different experimental phases, significant variations (up to one order of magnitude) were observed when the 16S rRNA was targeted. The highest ratios of metabolically active versus total Mycolata populations were observed in samples of two experimental phases when foaming was experienced in the MBR. Non-metric multidimensional scaling and BIO-ENV analyses demonstrated that this ratio was positively correlated to the concentrations of substrates in the influent water, F/M ratio, and pH, and negatively correlated to temperature and solids retention time. It the first time that the ratio of metabolically active versus total Mycolata is found to be a key parameter triggering foaming in the MBR; thus, we propose it as a candidate predictive tool.
Collapse
Affiliation(s)
- P Maza-Márquez
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain.
| | - R Vílchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - N Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - J González-López
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - M V Martínez-Toledo
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| | - B Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Yang Q, Shen N, Lee ZMP, Xu G, Cao Y, Kwok B, Lay W, Liu Y, Zhou Y. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:448-456. [PMID: 27438250 DOI: 10.2166/wst.2016.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed.
Collapse
Affiliation(s)
- Qin Yang
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Nan Shen
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore E-mail: ; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zarraz M-P Lee
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore E-mail:
| | - Guangjing Xu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore E-mail:
| | - Yeshi Cao
- PUB, 40 Scotts Road # 15-01 Environment Building, Singapore 228231, Singapore
| | - Beehong Kwok
- PUB, 40 Scotts Road # 15-01 Environment Building, Singapore 228231, Singapore
| | - Winson Lay
- PUB, 40 Scotts Road # 15-01 Environment Building, Singapore 228231, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore E-mail: ; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore E-mail: ; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
20
|
He Z, Wang J, Zhang X, Cai C, Geng S, Zheng P, Xu X, Hu B. Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs. Appl Microbiol Biotechnol 2015; 99:10853-60. [PMID: 26342737 DOI: 10.1007/s00253-015-6939-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is a newly discovered bioprocess that reduces nitrite to dinitrogen with methane as electron donor, which has promising potential to remove nitrogen from wastewater. In this work, a lab-scale sequencing batch reactor (SBR) was operated for 609 days with methane as the sole external electron donor. In the SBR, nitrite in synthetic wastewater was removed continuously; the final volumetric nitrogen removal rate was 12.22±0.02 mg N L(-1) day(-1) and the percentage of nitrogen removal was 98.5 ± 0.2 %. Microbial community analysis indicated that denitrifying methanotrophs dominated (60-70 %) the population of the final sludge. Notably, activity testing and microbial analysis both suggested that heterotrophic denitrifiers existed in the reactor throughout the operation period. After 609 days, the activity testing indicated the nitrogen removal percentage of heterotrophic denitrification was 17 ± 2 % and that of n-damo was 83 ± 2 %. A possible mutualism may be developed between the dominated denitrifying methanotrophs and the associated heterotrophs through cross-feed. Heterotrophs may live on the microbial products excreted by denitrifying methanotrophs and provide growth factors that are required by denitrifying methanotrophs.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sha Geng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
D'Anteo S, Mannucci A, Meliani M, Verni F, Petroni G, Munz G, Lubello C, Mori G, Vannini C. Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor. ENVIRONMENTAL TECHNOLOGY 2015; 36:3159-3166. [PMID: 26017932 DOI: 10.1080/09593330.2015.1055818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
A membrane bioreactor (MBR), fed with domestic wastewater, was bioaugmented with nitrifying biomass selected in a side-stream MBR fed with a synthetic high nitrogen-loaded influent. Microbial communities evolution was monitored and comparatively analysed through an extensive bio-molecular investigation (16S rRNA gene library construction and terminal-restriction fragment length polymorphism techniques) followed by statistical analyses. As expected, a highly specialized nitrifying biomass was selected in the side-stream reactor fed with high-strength ammonia synthetic wastewater. The bioaugmentation process caused an increase of nitrifying bacteria of the genera Nitrosomonas (up to more than 30%) and Nitrobacter in the inoculated MBR reactor. The overall structure of the microbial community changed in the mainstream MBR as a result of bioaugmentation. The effect of bioaugmentation in the shift of the microbial community was also verified through statistical analysis.
Collapse
Affiliation(s)
- Sibilla D'Anteo
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Alberto Mannucci
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Matteo Meliani
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Franco Verni
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Giulio Petroni
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| | - Giulio Munz
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Claudio Lubello
- b Department of Civil and Environmental Engineering , University of Florence , Via S. Marta n.3, 50139 , Florence , Italy
| | - Gualtiero Mori
- c CER2CO (CEntro Ricerca Reflui Conciari) , Via Arginale Ovest 8, 56020 , San Romano,S. Miniato, Pisa , Italy
| | - Claudia Vannini
- a Protistology-Zoology Unit, Biology Department , University of Pisa , Via A. Volta 4, 56126 , Pisa , Italy
| |
Collapse
|
22
|
Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. BIORESOURCE TECHNOLOGY 2015; 179:436-443. [PMID: 25569032 DOI: 10.1016/j.biortech.2014.12.041] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
In this study, Illumina high-throughput sequencing was used to reveal the community structures of nine coking wastewater treatment plants (CWWTPs) in China for the first time. The sludge systems exhibited a similar community composition at each taxonomic level. Compared to previous studies, some of the core genera in municipal wastewater treatment plants such as Zoogloea, Prosthecobacter and Gp6 were detected as minor species. Thiobacillus (20.83%), Comamonas (6.58%), Thauera (4.02%), Azoarcus (7.78%) and Rhodoplanes (1.42%) were the dominant genera shared by at least six CWWTPs. The percentages of autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria were unexpectedly low, which were verified by both real-time PCR and fluorescence in situ hybridization analyses. Hierarchical clustering and canonical correspondence analysis indicated that operation mode, flow rate and temperature might be the key factors in community formation. This study provides new insights into our understanding of microbial community compositions and structures of CWWTPs.
Collapse
Affiliation(s)
- Qiao Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Wenli Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwei Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ziyan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Duanxing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huijie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|