1
|
Syguła E, Rasaq WA, Świechowski K. Effects of Iron, Lime, and Porous Ceramic Powder Additives on Methane Production from Brewer's Spent Grain in the Anaerobic Digestion Process. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5245. [PMID: 37569949 PMCID: PMC10420120 DOI: 10.3390/ma16155245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The process of anaerobic digestion used for methane production can be enhanced by dosing various additive materials. The effects of these materials are dependent on various factors, including the processed substrate, process conditions, and the type and amount of the additive material. As part of the study, three different materials-iron powder, lime, and milled porous ceramic-were added to the 30-day anaerobic digestion of the brewer's spent grain to improve its performance. Different doses ranging from 0.2 to 2.3 gTS × L-1 were tested, and methane production kinetics were determined using the first-order model. The results showed that the methane yield ranged from 281.4 ± 8.0 to 326.1 ± 9.3 mL × gVS-1, while substrate biodegradation ranged from 56.0 ± 1.6 to 68.1 ± 0.7%. The addition of lime reduced the methane yield at almost all doses by -6.7% to -3.3%, while the addition of iron powder increased the methane yield from 0.8% to 9.8%. The addition of ceramic powder resulted in a methane yield change ranging from -2.6% to 4.6%. These findings suggest that the use of additive materials should be approached with caution, as even slight changes in the amount used can impact methane production.
Collapse
Affiliation(s)
| | | | - Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland; (E.S.); (W.A.R.)
| |
Collapse
|
2
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
3
|
Abid N, Karray F, Kallel I, Slim M, Barakat A, Mhiri N, Chamkha M, Sayadi S. Role of biochar in anaerobic microbiome enrichment and methane production enhancement during olive mill wastewater biomethanization. Front Bioeng Biotechnol 2023; 10:1100533. [PMID: 36686251 PMCID: PMC9846136 DOI: 10.3389/fbioe.2022.1100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.
Collapse
Affiliation(s)
- Nozha Abid
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia,*Correspondence: Nozha Abid, ; Sami Sayadi,
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imen Kallel
- Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mariam Slim
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Abdellatif Barakat
- IATE, Montpellier University, INRAE, Agro Institut, Montpellier, France,Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Nozha Abid, ; Sami Sayadi,
| |
Collapse
|
4
|
Tsui TH, Zhang L, Lim EY, Lee JTE, Tong YW. Timing of biochar dosage for anaerobic digestion treating municipal leachate: Altered conversion pathways of volatile fatty acids. BIORESOURCE TECHNOLOGY 2021; 335:125283. [PMID: 34015564 DOI: 10.1016/j.biortech.2021.125283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, the anaerobic digestion (AD) applications of early & late biochar dosage were compared for municipal leachate treatment, with the objective of studying the flexible use of biochar as a mitigation measure for biomethane recovery. In two experimental phases, biochar was favourable for the immediate promotion of AD performances, as revealed by Gompertz's model of reduced lag phases, higher biomethane generation rates, and increased biomethane yields. Irrespective of late biochar dosage, it could still retrieve 89% of the ultimate biomethane potential. Comparing the residual VFAs (volatile fatty acids) compositions, it was found that the fraction of long-chain VFAs accounted for 81% of total VFAs in reactor set of early biochar dosage, while it was only 38% in the reactor of late one. Parallel evidence suggested that the schedule of biochar dosage not only could affect methanogenic responses but also the VFAs conversion pathways.
Collapse
Affiliation(s)
- To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jonathan T E Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE) 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
5
|
Wongfaed N, Kongjan P, Suksong W, Prasertsan P, O-Thong S. Strategies for recovery of imbalanced full-scale biogas reactor feeding with palm oil mill effluent. PeerJ 2021; 9:e10592. [PMID: 33505799 PMCID: PMC7797170 DOI: 10.7717/peerj.10592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Full-scale biogas production from palm oil mill effluent (POME) was inhibited by low pH and highly volatile fatty acid (VFA) accumulation. Three strategies were investigated for recovering the anaerobic digestion (AD) imbalance on biogas production, namely the dilution method (tap water vs. biogas effluent), pH adjustment method (NaOH, NaHCO3, Ca(OH)2, oil palm ash), and bioaugmentation (active methane-producing sludge) method. The highly economical and feasible method was selected and validated in a full-scale application. Results The inhibited sludge from a full-scale biogas reactor could be recovered within 30–36 days by employing various strategies. Dilution of the inhibited sludge with biogas effluent at a ratio of 8:2, pH adjustment with 0.14% w/v NaOH, and 8.0% w/v oil palm ash were considered to be more economically feasible than other strategies tested (dilution with tap water, or pH adjustment with 0.50% w/v Ca(OH)2, or 1.25% NaHCO3 and bioaugmentation) with a recovery time of 30–36 days. The recovered biogas reactor exhibited a 35–83% higher methane yield than self-recovery, with a significantly increased hydrolysis constant (kH) and specific methanogenic activity (SMA). The population of Clostridium sp., Bacillus sp., and Methanosarcina sp. increased in the recovered sludge. The imbalanced full-scale hybrid cover lagoon reactor was recovered within 15 days by dilution with biogas effluent at a ratio of 8:2 and a better result than the lab-scale test (36 days). Conclusion Dilution of the inhibited sludge with biogas effluent could recover the imbalance of the full-scale POME-biogas reactor with economically feasible and high biogas production performance.
Collapse
Affiliation(s)
- Nantharat Wongfaed
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Wantanasak Suksong
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Poonsuk Prasertsan
- Research and Development Office, Prince of Songkla University, Songkhla, Thailand
| | - Sompong O-Thong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand.,International College, Thaksin University, Songkhla, Thailand
| |
Collapse
|
6
|
Wang G, Li Y, Sheng L, Xing Y, Liu G, Yao G, Ngo HH, Li Q, Wang XC, Li YY, Chen R. A review on facilitating bio-wastes degradation and energy recovery efficiencies in anaerobic digestion systems with biochar amendment. BIORESOURCE TECHNOLOGY 2020; 314:123777. [PMID: 32665106 DOI: 10.1016/j.biortech.2020.123777] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
In this review, progress in the potential mechanisms of biochar amendment for AD performance promotion was summarized. As adsorbents, biochar was beneficial for alleviating microbial toxicity, accelerating refractory substances degradation, and upgrading biogas quality. The buffering capacity of biochar balanced pH decreasing caused by volatile fatty acids accumulation. Moreover, biochar regulated microbial metabolism by boosting activities, mediating electron transfer between syntrophic partners, and enriching functional microbes. Recent studies also suggested biochar as potential useful additives for membrane fouling alleviation in anaerobic membrane bioreactors (AnMBR). By analyzing the reported performances based on different operation models or substrate types, debatable issues and associated research gaps of understanding the real role of biochar in AD were critically discussed. Accordingly, Future perspectives of developing biochar-amended AD technology for real-world applications were elucidated. Lastly, with biochar-amended AD as a core process, a novel integrated scheme was proposed towards high-efficient energy-resource recovery from various bio-wastes.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Gaofei Yao
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Huu Hao Ngo
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
7
|
Zhang J, Qi Q, Mao L, He Y, Loh KC, Wah Tong Y. Mixing strategies - Activated carbon nexus: Rapid start-up of thermophilic anaerobic digestion with the mesophilic anaerobic sludge as inoculum. BIORESOURCE TECHNOLOGY 2020; 310:123401. [PMID: 32334361 DOI: 10.1016/j.biortech.2020.123401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the mixing - activate carbon nexus in anaerobic digestion with the aim of accelerating start-up of thermophilic anaerobic co-digestion of food waste and chicken manure using mesophilic anaerobic sludge as inoculum. Results showed that the methane yield in the continuous stirred reactor is 71.3% higher than that of intermittent agitated reactor, and the addition of activated carbon can further improve the yield of methane by 18.2%. Continuous mixing mode followed by intermittent mixing was proved to be an alternative strategy to accelerate start-up of thermophilic anaerobic digestion. The optimum mixing time of 120 s/hour were obtained using computational fluid dynamics modeling. Analysis of genomic annotation metabolism indicated that the addition of activated carbon enhanced the dominant metabolism pathways of amino acid, methane and energy. Results of enzymes gene expression suggested that carbohydrates esterases, glycoside hydrolases and glycosyl transferases were dominant, respectively.
Collapse
Affiliation(s)
- Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China.
| | - Qiuxian Qi
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Liwei Mao
- Environmental Research Institute, National University of Singapore, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, China
| | - Kai-Chee Loh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore; Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
8
|
Biochar for Wastewater Treatment—Conversion Technologies and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103492] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biochar as a stable carbon-rich material shows incredible potential to handle water/wastewater contaminants. Its application is gaining increasing interest due to the availability of feedstock, the simplicity of the preparation methods, and their enhanced physico-chemical properties. The efficacy of biochar to remove organic and inorganic pollutants depends on its surface area, pore size distribution, surface functional groups, and the size of the molecules to be removed, while the physical architecture and surface properties of biochar depend on the nature of feedstock and the preparation method/conditions. For instance, pyrolysis at high temperatures generally produces hydrophobic biochars with higher surface area and micropore volume, allowing it to be more suitable for organic contaminants sorption, whereas biochars produced at low temperatures own smaller pore size, lower surface area, and higher oxygen-containing functional groups and are more suitable to remove inorganic contaminants. In the field of water/wastewater treatment, biochar can have extensive application prospects. Biochar have been widely used as an additive/support media during anaerobic digestion and as filter media for the removal of suspended matter, heavy metals and pathogens. Biochar was also tested for its efficiency as a support-based catalyst for the degradation of dyes and recalcitrant contaminants. The current review discusses on the different methods for biochar production and provides an overview of current applications of biochar in wastewater treatment.
Collapse
|
9
|
Guo H, Zhang M, Dong Z, Wang Q, Xia D, Lv J, Yu H. The mechanisms of biogenic methane metabolism by synergistic biodegradation of coal and corn straw. BIORESOURCE TECHNOLOGY 2020; 298:122577. [PMID: 31846853 DOI: 10.1016/j.biortech.2019.122577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms associated with the biomethane metabolism through the synergistic biodegradation of both coal and corn straw were explored to improve the utilization rate of corn straw. This applies to the filling of the goaf with corn straw and the production of biomethane using indigenous bacteria in the mine water with coal. The results showed that new macromolecular substances (e.g., Tetracosane and Pentacosane) were produced on the third day. A lower coal rank leads to a lower biodegradation rate of low-molecular-weight substances (e.g., butyric acid and valeric acid). Under the addition of coal samples, the biodegradation rate of cellulose, hemicellulose and lignin in corn straw could reached up to 29.82%, 35.79% and 6.16%, respectively. The addition of corn straw promoted the complementary advantages of archaeal genera (such as Methanosarina and Methanospirillum) and decreased the adverse bacterial genera (such as Desulfovibrio and Pseudomonas) in the fermentation system of single coal.
Collapse
Affiliation(s)
- Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China
| | - Minglu Zhang
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhiwei Dong
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Qian Wang
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daping Xia
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jinghui Lv
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China
| | - Hongfei Yu
- Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454000, China
| |
Collapse
|
10
|
Nguyen VT, Beyer E, Neumann J, Awe D, Pfeiffer W, Tränckner J. Anaerobic treatment of residuals from tanks transporting food and fodder. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:32698-32707. [PMID: 30547341 PMCID: PMC6892768 DOI: 10.1007/s11356-018-3876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The anaerobic digestion of wastewater from the cleaning of tank cars transporting food and fodder was investigated in both bench and pilot scales with a single-stage, mesophilic (39 °C), completely mixed process. The promising results lead to the planning and building of a 1200-m3 full-scale biogas plant at TS-Clean cleaning station in Fahrbinde, Germany. Due to softened water used in the cleaning of the car tanks, the alkalinity in the digester decreased as predicted by the physicochemical model developed for this treatment process. The model showed that 2.4 kg NaHCO3/m3 of wastewater has to be added in order to control digester pH at 7.2 and to maintain the digester alkalinity at 3.1 g CaCO3/L. In a laboratory study, the decrease of alkalinity caused a volatile organic acids accumulation and pH drop below the optimal range. In this case, if chemical buffering was not added into the digester, the digester deteriorated. In a 3-year investigation, we confirmed that the strongly polluted WW from the cleaning of tank cars transporting food and fodder is suitable for an anaerobic treatment if the organic loading rate is controlled below 4 kg COD/m3/day, digester alkalinity is adjusted by NaHCO3, and micronutrients are added despite constant considerable variations in strength and composition of the wastewater. A biogas yield of 35-45 m3 CH4/m3 of wastewater and a COD elimination of 80-90% were achieved in bench- and pilot-scale experiments and are achieved in the full-scale biogas plant. The full-scale biogas plant is working stable with a biogas yield of 68 m3 biogas/m3 of wastewater.
Collapse
Affiliation(s)
- Van Than Nguyen
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
- Department of Mechanical/Process and Environmental Engineering, University of Wismar, Philipp-Müller-Straße 14, 23966, Wismar, Germany.
| | - Erik Beyer
- Department of Mechanical/Process and Environmental Engineering, University of Wismar, Philipp-Müller-Straße 14, 23966, Wismar, Germany
| | - Jan Neumann
- TS-Clean Tank- und Siloreinigung Neumann GmbH, Ahorn Straße 9, 19288, Fahrbinde, Germany
| | - Dirk Awe
- Rotaria Energie und Umwelttechnik GmbH, Kirchweg 21, 18230, Rerik, Germany
| | - Wolfgang Pfeiffer
- Department of Mechanical/Process and Environmental Engineering, University of Wismar, Philipp-Müller-Straße 14, 23966, Wismar, Germany
| | - Jens Tränckner
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| |
Collapse
|
11
|
Anaerobic Digestion of Food Waste with Unconventional Co-Substrates for Stable Biogas Production at High Organic Loading Rates. SUSTAINABILITY 2019. [DOI: 10.3390/su11143875] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Anaerobic digestion (AD) is widely considered a more sustainable food waste management method than conventional technologies, such as landfilling and incineration. To improve economic performance while maintaining AD system stability at commercial scale, food waste is often co-digested with animal manure, but there is increasing interest in food waste-only digestion. We investigated the stability of anaerobic digestion with mixed cafeteria food waste (CFW) as the main substrate, combined in a semi-continuous mode with acid whey, waste bread, waste energy drinks, and soiled paper napkins as co-substrates. During digestion of CFW without any co-substrates, the maximum specific methane yield (SMY) was 363 mL gVS−1d−1 at organic loading rate (OLR) of 2.8 gVSL−1d−1, and reactor failure occurred at OLR of 3.5 gVSL−1d−1. Co-substrates of acid whey, waste energy drinks, and waste bread resulted in maximum SMY of 455, 453, and 479 mL gVS−1d−1, respectively, and it was possible to achieve stable digestion at OLR as high as 4.4 gVSL−1d−1. These results offer a potential approach to high organic loading rate digestion of food waste without using animal manure. Process optimization for the use of unconventional co-substrates may help enable deployment of anaerobic digesters for food waste management in urban and institutional applications and enable increased diversion of food waste from landfills in heavily populated regions.
Collapse
|
12
|
Sun C, Liu F, Song Z, Wang J, Li Y, Pan Y, Sheng T, Li L. Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature. BIORESOURCE TECHNOLOGY 2019; 276:65-73. [PMID: 30611088 DOI: 10.1016/j.biortech.2018.12.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the feasibility of dry anaerobic digestion using beer lees as substrate and the effect of cow manure-derived biochar addition on dry anaerobic digestion performance at mesophilic and thermophilic temperature, respectively. With TS content of 25%, maximum cumulative methane production and yield were achieved to be 5230 ± 91 mL d-1 and 220.1 ± 7.7 mL g-1 VS at mesophilic condition and 7386 ± 134 mL d-1 and 310.4 ± 9.2 mL g-1 VS at thermophilic condition in the control cultures. The biochar addition has a positive effect in improving dry anaerobic digestion performance. The maximum cumulative methane production and yield in the cultures with 10 g L-1 biochar were substantially improved by 82.9% and 82.6% at mesophilic condition and 47.2% and 46.8% at mesophilic condition when compared to the control.
Collapse
Affiliation(s)
- Caiyu Sun
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Fang Liu
- College of Municipal and Environmental Engineering, Heilongjiang Institute of Construction Technology, Harbin 150025, China
| | - Zhiwei Song
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Jing Wang
- College of Municipal and Environmental Engineering, Heilongjiang Institute of Construction Technology, Harbin 150025, China
| | - Yongfeng Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yu Pan
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Tao Sheng
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Lixin Li
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China.
| |
Collapse
|
13
|
Investigation of an integrated treatment technique for anaerobically digested animal manure: Lime reaction and settling, ammonia stripping and neutralization by biogas scrubbing. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Zhang J, Zhao W, Zhang H, Wang Z, Fan C, Zang L. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials. BIORESOURCE TECHNOLOGY 2018; 266:555-567. [PMID: 30037522 DOI: 10.1016/j.biortech.2018.07.076] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 05/22/2023]
Abstract
Carbon-based materials such as graphite, graphene, biochar, activated carbon, carbon cloth and nano-tube, and maghemite and magnetite carbons are capable for adsorbing chemicals onto their surfaces. Currently, this review is to highlight the relevance of carbons in enhancing hydrogen or methane production. Some key roles of carbons in improving cell growth, enrichment and activity, and accelerating their co-metabolisms were elaborated with regard to their effects on syntrophic communities, interspecies electron transfer, buffering capacity, biogas upgrading, and fertilizer nutrient retention and land application. Carbons can serve as a habitation for microbial immobilization, and a provision for bioelectrical connections among cells, and provide some essential elements for anaerobes. Besides, an outlook on the possible options towards the large scale and improvement solutions has been provided. Further studies in this area could be encouraged to intend and operate continuous mode by designing carbon-amended bioreactor with stability and reliability.
Collapse
Affiliation(s)
- Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China.
| | - Wenqian Zhao
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Huiwen Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zejie Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Chuanfang Fan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
| |
Collapse
|
15
|
Xu F, Li Y, Ge X, Yang L, Li Y. Anaerobic digestion of food waste - Challenges and opportunities. BIORESOURCE TECHNOLOGY 2018; 247:1047-1058. [PMID: 28965912 DOI: 10.1016/j.biortech.2017.09.020] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
The disposal of large amounts of food waste has caused significant environmental pollution and financial costs globally. Compared with traditional disposal methods (i.e., landfilling, incineration, and composting), anaerobic digestion (AD) is a promising technology for food waste management, but has not yet been fully applied due to a few technical and social challenges. This paper summarizes the quantity, composition, and methane potential of various types of food waste. Recent research on different strategies to enhance AD of food waste, including co-digestion, addition of micronutrients, control of foaming, and process design, is discussed. It is envisaged that AD of food waste could be combined with an existing AD facility or be integrated with the production of value-added products to reduce costs and increase revenue. Further understanding of the fundamental biological and physicochemical processes in AD is required to improve the technology.
Collapse
Affiliation(s)
- Fuqing Xu
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Yangyang Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xumeng Ge
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Quasar Energy Group, 8600 E. Pleasant Valley Rd, Independence, OH 44131, USA
| | - Liangcheng Yang
- Department of Health Sciences, Illinois State University, USA
| | - Yebo Li
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA; Quasar Energy Group, 8600 E. Pleasant Valley Rd, Independence, OH 44131, USA.
| |
Collapse
|
16
|
Zhang J, Fan C, Zang L. Improvement of hydrogen production from glucose by ferrous iron and biochar. BIORESOURCE TECHNOLOGY 2017; 245:98-105. [PMID: 28892711 DOI: 10.1016/j.biortech.2017.08.198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Effects of biochar (BC) and ferrous iron (Fe2+) additions on hydrogen (H2) production from glucose were investigated using batch experiment. The glucose with both BC and Fe2+ additions were incubated at 37°C for H2 production. As compared with the control group (without BC and Fe2+ additions), the synergic effects of BC and Fe2+ make the lag phase time decease from 4.25 to 2.12h, and H2 yield increase from 158.0 to 234.4ml/g glucose. Moreover, suitable concentrations of BC and Fe2+ serve to enhance volatile fatty acid generation during H2 evolution. These results indicate that H2 production is improved by BC and Fe2+ regulations, where synergic mechanisms are described as follows: BC acts as support carriers of anaerobes and system pH buffers, which promotes the biofilm formation and maintains suitable pH environment; Appropriate Fe2+ concentration can improve hydrogenase activity in H2 production.
Collapse
Affiliation(s)
- Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China.
| | - Chuanfang Fan
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China
| | - Lihua Zang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China
| |
Collapse
|
17
|
Fagbohungbe MO, Herbert BMJ, Hurst L, Ibeto CN, Li H, Usmani SQ, Semple KT. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:236-249. [PMID: 27923546 DOI: 10.1016/j.wasman.2016.11.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/06/2016] [Accepted: 11/19/2016] [Indexed: 05/22/2023]
Abstract
Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges.
Collapse
Affiliation(s)
- Michael O Fagbohungbe
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - Ben M J Herbert
- Stopford Energy and Environment, Merseyton Road, Ellesmere Port, Chester CH65 3AD, United Kingdom
| | - Lois Hurst
- Stopford Energy and Environment, Merseyton Road, Ellesmere Port, Chester CH65 3AD, United Kingdom
| | - Cynthia N Ibeto
- National Centre for Energy Research and Development, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Hong Li
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Shams Q Usmani
- Ariva Technology, The Heath Business and Technical Park, Runcorn, Cheshire WA7 4EB, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
18
|
Pei H, Jiang L, Hou Q, Yu Z. Toward facilitating microalgae cope with effluent from anaerobic digestion of kitchen waste: the art of agricultural phytohormones. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:76. [PMID: 28352300 PMCID: PMC5366163 DOI: 10.1186/s13068-017-0759-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/14/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Although numerous studies have used wastewater as substitutes to cultivate microalgae, most of them obtained weaker algal viability than standard media. Some studies demonstrated a promotion of phytohormones on algal growth in standard media. For exploiting a strategy to improve algal biomass accumulation in effluent from anaerobic digestion of kitchen waste (ADE-KW), the agricultural phytohormones gibberellin, indole-3-acetic acid, and brassinolide (GIB) were applied to Chlorella SDEC-11 and Scenedesmus SDEC-13 at different stages of algal growth. Previous studies have demonstrated a promotion of phytohormones on algal growth in standard media, but attempts have been scarce, focusing on wastewater cultivation system. In addition, the effects of wastewater on algal morphology and ultrastructure have not been revealed so far, much less on the mechanism of the role of phytohormones on algae. RESULTS ADE-KW disrupted the membranes of nuclear and chloroplast in ultrastructural cell of SDEC-11, and reduced the room between chloroplast and cell membrane and increased the starch size of SDEC-13. This reduced algal growth and biocompound accumulation, but SDEC-13 had greater adaptation to ADE-KW than SDEC-11. Moreover, inoculation with an algal seed pretreated with GIB aided the adaptability and viability of algae in ADE-KW, which for SDEC-13 was even promoted to the level in BG11. GIB mitigated the inhibition of ADE-KW on algal cell division and photosynthetic pigments and apparatus, and increased lipid droplets, which might result from the change in the synthesis and the fate of nicotinamide adenine dinucleotide phosphate. GIB addition significantly promoted lipid productivity of the two algal species, following 13 mg L-1 d-1 of SDEC-11 in B+ADE-KW and especially 13 mg L-1 d-1 of SDEC-13 achieved during the priming of algal seed with the hormones, which is 139% higher than 5 mg L-1 d-1 achieved in ADE-KW control. CONCLUSIONS Agricultural phytohormones could be applied as a strategy for promoting biomass and biocompound accumulation of algae in ADE-KW, in which pretreatment of the algal inoculum with hormones is a unique way to help algae survive under stress. Considering our results and treatment technology for kitchen waste, a more feasible and economic plant can be built incorporating anaerobic digestion, algae cultivation with ADE-KW assisted with phytohormones, and biodiesel production.
Collapse
Affiliation(s)
- Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
- Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan, 250061 China
| | - Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan, 250100 China
| |
Collapse
|
19
|
Zhang J, Zang L. Enhancement of biohydrogen production from brewers' spent grain by calcined-red mud pretreatment. BIORESOURCE TECHNOLOGY 2016; 209:73-79. [PMID: 26950758 DOI: 10.1016/j.biortech.2016.02.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
This paper investigated the utilization of calcined-red mud (CRM) pretreatment to enhance fermentative hydrogen yields from brewers' spent grain (BSG). The BSG samples were treated with different concentrations (0.0-20g/L) of CRM at 55°C for 48h, before the biohydrogen process with heat-treated anaerobic sludge inoculum. The highest specific hydrogen production of 198.62ml/g-VS was obtained from the BSG treated with 10g/L CRM, with the corresponding lag time of 10.60h. Hydrogen yield increments increased by 67.74%, compared to the control tests without CRM. The results demonstrated that the CRM could hydrolyze more cellulose and further provided adequate broth and suitable pH value for efficient fermentative hydrogen. The model-based analysis showed that the modified Gompertz model presented a better fit for the experimental data than the first-order model.
Collapse
Affiliation(s)
- Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China.
| | - Lihua Zang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China
| |
Collapse
|
20
|
Zhang J, Zhang J, Zang L. Thermophilic bio-hydrogen production from corn-bran residue pretreated by calcined-lime mud from papermaking process. BIORESOURCE TECHNOLOGY 2015; 198:564-570. [PMID: 26433153 DOI: 10.1016/j.biortech.2015.09.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the use of calcined-lime mud from papermaking process (CLMP) pretreatment to improve fermentative hydrogen yields from corn-bran residue (CBR). CBR samples were pretreated with different concentrations (0-15 g/L) of CLMP at 55°C for 48 h, prior to the thermophilic fermentation with heat-treated anaerobic sludge inoculum. The maximum hydrogen yield (MHY) of 338.91 ml/g-VS was produced from the CBR pretreated with 10 g/L CLMP, with the corresponding lag-phase time of 8.24h. Hydrogen yield increments increased from 27.76% to 48.07%, compared to the control. The CLMP hydrolyzed more cellulose, which provided adequate substrates for hydrogen production.
Collapse
Affiliation(s)
- Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China.
| | - Junjie Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China
| | - Lihua Zang
- School of Environmental Science and Engineering, Qilu University of Technology, Jinan 250353, China; Key Laboratory of Cleaner Production and Industrial Wastes Recycling and Resourcization in Universities of Shandong, Jinan 250353, China
| |
Collapse
|
21
|
Chen S, Zhang J, Wang X. Effects of alkalinity sources on the stability of anaerobic digestion from food waste. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:1033-1040. [PMID: 26391806 DOI: 10.1177/0734242x15602965] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW.
Collapse
Affiliation(s)
- Shujun Chen
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| | - Jishi Zhang
- School of Environmental Science and Engineering, Qilu University of Technology, China
| | - Xikui Wang
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, China
| |
Collapse
|
22
|
Elsamadony M, Tawfik A. Dry anaerobic co-digestion of organic fraction of municipal waste with paperboard mill sludge and gelatin solid waste for enhancement of hydrogen production. BIORESOURCE TECHNOLOGY 2015; 191:157-165. [PMID: 25989091 DOI: 10.1016/j.biortech.2015.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study is to investigate the bio-H2 production via dry anaerobic co-fermentation of organic fraction of municipal solid waste (OFMSW) with protein and calcium-rich substrates such as gelatin solid waste (GSW) and paperboard mill sludge (PMS). Co-fermentation of OFMSW/GSW/PMS significantly enhanced the H2 production (HP) and H2 yield (HY). The maximum HP of 1082.5±91.4 mL and HY of 144.9±9.8 mL/gVSremoved were achieved at a volumetric ratio of 70% OFMSW:20% GSW:10% PMS. COD, carbohydrate, protein and lipids conversion efficiencies were 60.9±4.4%, 71.4±3.5%, 22.6±2.3% and 20.5±1.8% respectively. Co-fermentation process reduced the particle size distribution which is favorably utilized by hydrogen producing bacteria. The mean particle size diameters for feedstock and the digestate were 939.3 and 115.2μm, respectively with reduction value of 8.15-fold in the mixtures. The volumetric H2 production increased from 4.5±0.3 to 7.2±0.6 L(H2)/L(substrate) at increasing Ca(+2) concentrations from 1.8±0.1 to 6.3±0.5 g/L respectively.
Collapse
Affiliation(s)
- M Elsamadony
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-Just), New Borg El Arab City, 21934 Alexandria, Egypt.
| | - A Tawfik
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-Just), New Borg El Arab City, 21934 Alexandria, Egypt
| |
Collapse
|