1
|
Lim HR, Khoo KS, Show PL. Impact of nutrient deficiency and harvesting strategy on biomass and phycocyanin production in Spirulina cultures. Front Bioeng Biotechnol 2025; 13:1546801. [PMID: 40196157 PMCID: PMC11973517 DOI: 10.3389/fbioe.2025.1546801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/21/2025] [Indexed: 04/09/2025] Open
Abstract
Recent research has focused on issues related to contamination, nutrient availability, and strain selection, but there has been insufficient focus on harvesting research. This study employed an integrated continuous cultivation and harvesting strategy for a Spirulina microalgae biorefinery. The effects of nutrient-deficiency, harvesting ratio, and NaNO3 addition on biomass concentration and productivity and phycocyanin accumulation of Spirulina were investigated. The lowest biomass productivity of 0.015 g/L/day was observed in Spirulina cultivated in NaNO3 deficient medium. A harvesting ratio of 10% showed a consistent range of harvested dry biomass weight (0.20-0.22 g). Addition of 2.50 g/L NaNO3 resulted in a significant increase in C-phycocyanin (C-PC) and allophycocyanin (APC) concentration from 34.37 mg/g to 68.35 and 27.08 to 33.23 mg/g, respectively. Biomass productivity of 1-L and 10-L batch culture was found to be 0.23 g/L/d and 0.21 g/L/d, respectively. Both 1-L and 10-L batch cultures showed a significant increase in phycocyanin accumulation due to the addition of 2.50 g/L of NaNO3. These findings highlight the feasibility of continuous cultivation and optimized harvesting for scalable biomass and phycocyanin production, offering valuable insights for industrial biorefineries that seek to enhance microalgae-based bioactive compound extraction.
Collapse
Affiliation(s)
- Hooi Ren Lim
- Department of Chemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Liu P, Ai Y, Li M, Shi J, Xiao N, Zhang X, Yu H, Ma F, Sun S, Xie S. Discovery of mannose as an alternative non-nutrient-deficient regulator of lipid accumulation in microalgae. J Adv Res 2025:S2090-1232(25)00179-1. [PMID: 40112916 DOI: 10.1016/j.jare.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Microalgae are considered promising bioenergy producers, but their commercial potential is limited by low lipid yields. Nutrient deprivation, particularly nitrogen starvation, is a primary strategy to enhance lipid synthesis efficiency in microalgae. However, controlling this process flexibly, effectively, and accurately remains challenging. Moreover, nutrient deficiency triggers expression changes of numerous genes, complicating the identification of key lipid biosynthesis regulators. OBJECTIVES For the first time, we investigated mannose as a novel non-nutrient-deficient regulator of lipid accumulation in microalgae and explored its potential underlying mechanisms. METHODS We examined how mannose induction affectslipid accumulation in Chlorella sorokiniana W1 under various culture conditions and compared its effects with nitrogen-starvation. Transcriptome analysis and genome-scale metabolic modeling were used to elucidate the regulatory mechanisms underlying mannose-induced lipid synthesis. Additionally, potential transcription factors were identified using weighted gene co-expression network analysis. RESULTS Mannose drives rapid and sustained lipid accumulation in C. sorokiniana under various cultivation conditions, independent of nutrient deficiencies. Under autotrophic conditions, mannose increased lipid content of microalgae by 80.1 %. Notably, mannose was not consumed during cultivation, supporting its role as an inducer. Transcriptomic analysis revealed that mannose increased carbon flux by upregulating genes associated with the Calvin cycle, glycolysis, the TCA cycle, and starch degradation. It also redirected carbon towards lipid accumulation by upregulating lipid synthesis pathways and downregulating lipid degradation pathways. Additionally, two SBP1 transcription factors specifically responsive to mannose were identified and may regulate carbon metabolism in microalgae. CONCLUSION Our study introduces mannose as a novel non-nutrient-deficiency regulatory factor for lipid accumulation in C. sorokiniana W1, and explores its metabolic and regulatory mechanisms under various nutrient conditions. The research demonstrates that mannose induction has significant potential for improving microalgal lipid production in practical applications.
Collapse
Affiliation(s)
- Pengyang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuanhang Ai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Muzi Li
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara 93101, United States
| | - Jiacheng Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Xiao
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530000, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Su Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China; College of Urban Construction, Wuchang Shouyi University, Wuhan 430070, China.
| | - Shangxian Xie
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China; National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530000, China.
| |
Collapse
|
3
|
Kilic L, Liu J, Engel B, Jafvert CT, Bhatt P, Brunnquell J, Simsek H. Biological carbon capture from egg-washing wastewater using microalgae for sustainable biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178708. [PMID: 39919660 DOI: 10.1016/j.scitotenv.2025.178708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Carbon capture, storage, and utilization are essential strategies for mitigating climate change. Biological carbon capture, particularly algae-based systems, offers a low-energy alternative to traditional chemical processes, which are energy and water-intensive. This study explored the cultivation of Chlorella vulgaris using egg-washing wastewater, with the harvested biomass utilized for oil extraction and subsequent biofuel production. The harvested biomass was subjected to oil extraction using solvents after applying four different pretreatment methods, including UV light exposure, moist heat, microwave treatment, and electrocoagulation. Although UV-C treatment yielded the highest lipid content, oil yields for; UV, moist heat, electrocoagulation, and microwave pretreatments were 20.8, 28.9, 37.5, and 25.0 %, respectively. Electrocoagulation pretreatment not only delivered the highest oil yield but also improved the fatty acid profile, significantly increasing the levels of methyl heptadecanoate (C17:0) and methyl heptadecanoate (C17:1). Compared to conventional crop-based biodiesel, algae biodiesel exhibits lower energy density. Still, it offers advantages such as improved oxidation stability, a higher cetane number, and reduced nitrogen oxide emissions due to its lower polyunsaturated lipid content and shorter carbon chain lengths. However, its performance at low temperatures remains composition-dependent. Overall, these findings demonstrate the potential of C. vulgaris cultivated in egg-washing wastewater for biodiesel production while indicating that electrocoagulation stands out as a sustainable alternative for large-scale applications with energy efficiency, improved oil composition, and faster processing time.
Collapse
Affiliation(s)
- Levent Kilic
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Junli Liu
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Bernard Engel
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Chad T Jafvert
- School of Civil Engineering, Purdue University, West Lafayette, IN, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | | | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|
4
|
Nath P, Borah D, Paul P, Rout J. Integrated biorefinery approach for sustainable production of biodiesel, bioplastics and high value bioproducts from a bloom forming alga, Botryococcus braunii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178599. [PMID: 39855116 DOI: 10.1016/j.scitotenv.2025.178599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
The global shift towards sustainable energy and bioproducts has intensified research on algae. Renewable green biofuel can address and provide solutions to both energy crisis and climate change challenges. Botryococcus braunii, a bloom forming green microalga, known for its high lipid content and potential for biofuel production has been explored in the present study. The study envisages the utilisation of algal blooms in freshwater ecosystems for the production of biodiesel and high value bioproducts through an integrated biorefinery approach. During the peak bloom, the algal cell densities reached up to 3.3 × 106 colonies L-1 with significant shift in water quality due to high nutrient uptake. Gas chromatography-mass spectroscopic analysis revealed high concentration of saturated and monounsaturated fatty acids, particularly hexadecanoic acid (C16:0) and 9-octadecenoic acid (C18:1) which are essential for stable, energy-rich biodiesel production. Hydrocarbons including squalene, botryococcenes, and botryococcane, produced by this alga have significant industrial applications. The high polyhydroxybutyrate (PHB) content in the alga emphasises its potential for sustainable bioplastic production. Growth conditions, lipid content, and biochemical composition of B. braunii were investigated. Algal blooms can provide a sustainable and economically viable source of biofuel with high value co-products. This approach not only contributes to renewable energy solutions through valorising a waste bioresource but in combination with other mass cultivation strategies can also offer a means to sustainably manage the impact of algal blooms on aquatic ecosystems.
Collapse
Affiliation(s)
- Pushpita Nath
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Dharitri Borah
- Department of Environmental Science, Arunachal University of Studies, Namsai 792103, Arunachal Pradesh, India
| | - Puja Paul
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India
| | - Jayashree Rout
- Department of Ecology and Environmental Science, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
5
|
Abdel-Wahab MA, Elgorban AM, Bahkali AH. Valorization of Macroalgal Hydrolysate for the Production of Lipids and DHA by Marine Microbes. J Oleo Sci 2025; 74:187-201. [PMID: 39880639 DOI: 10.5650/jos.ess24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions. The macroalgal hydrolysate was used at three concentrations 20, 40 and 80 g/L as a sole carbon source or in combination with 10 g/L of either acetic acid, glycerol, glucose, or sugarcane molasses. Glucose was used as a positive control at four different concentrations: 10, 20, 40, and 80 g/L. Out of the 19 carbon sources tested for the three microbes, 80 g/L macroalgae + 10 g/L molasses was the best source for Aspergillus sp. SY-70 (27.4 g/L DW and 9.73 g/L lipid) and R. arrhizus SY-71 (49.76 g/L DW and 16.88 g/L lipid), whereas 20 g/L macroalgae + 10 g/L glucose afforded the best source for Aurantiochytrium sp. YB-05 (27.93 g/L DW and 11.07 g/L lipid). Among the 19 carbon sources used for the growth of Aurantiochytrium sp. YB-05, we determined the fatty acid profile of the best four carbon sources that gave the highest biomass and lipid percentage. Among the four sources, 20 g/L macroalgal hydrolysate + glucose gave the highest DHA percentage (2.31 g/L), followed by 80 g/L pure glucose (1.68), 80 g/L macroalgal hydrolysate + glycerol (1.64), and 40 g/L macroalgal hydrolysate + molasses (1.52). The three carbon sources can replace pure glucose for the lipid, DPA, and DHA production using Aurantiochytrium sp. YB-05. The results of the current study suggest that we could use macroalgal hydrolysate in combination with molasses or glucose for the production of single-cell oil.
Collapse
Affiliation(s)
- Mohamed A Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, King Saud University
- Department of Botany and Microbiology, Faculty of Science, Sohag University
| | - Abdallah M Elgorban
- Botany and Microbiology Department, Faculty of Science, King Saud University
- Agricultural Research Center, Plant Pathology Research Institute
- Center of Excellence in Biotechnology Research, King Saud University
| | - Ali H Bahkali
- Botany and Microbiology Department, Faculty of Science, King Saud University
| |
Collapse
|
6
|
Jongput B, Chiwpreecha P, Ruangsomboon S, Tongsri P. Enhancing biomass, hydrocarbon and biodiesel properties of green microalga Botryococcus braunii KMITL through gamma and UV radiation exposure. Sci Rep 2024; 14:24684. [PMID: 39433850 PMCID: PMC11494126 DOI: 10.1038/s41598-024-76576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
This study investigated the effects of gamma (137Cs, 0-250 Gy) and UV (UV-C, 0-12 h) radiation on growth and biodiesel properties of Botryococcus braunii KMITL. For gamma radiation, maximum biomass (1.37 ± 0.02 g L-1) was achieved with 50 Gy, while a dose of 200 Gy resulted in the highest hydrocarbon content (51.84 ± 0.20%) and yield (0.66 ± 0.01 g L-1). For UV radiation, a 9 h exposure produced the highest biomass (2.45 ± 0.05 g L-1), hydrocarbon content (55.01 ± 1.22%), and yield (1.35 ± 0.04 g L-1). Algae exposed to gamma radiation within the range of 0-150 Gy exhibited C16:0 as the dominant fatty acid methyl ester (FAME), similar to those exposed to UV radiation, while algae exposed to 200-250 Gy displayed C18:1n9t as the dominant FAME. High levels of gamma and UV radiation were observed to lengthen fatty acid chains and increase unsaturated fatty acids. The cetane values of biodiesel from algae exposed to gamma and UV radiation ranged from 64.55 ± 0.14-66.47 ± 0.20 and 59.43 ± 0.04-65.27 ± 0.22, respectively, all meeting standard criteria. Both gamma and UV radiation also improved the saponification value and cold flow properties of the biodiesel. These findings suggest that controlled levels of gamma and UV radiation effectively enhance hydrocarbon yields with significant implications for biofuel production.
Collapse
Affiliation(s)
- Buppha Jongput
- Public-Private Collaborative Research Center (PPCRC), School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pattanasak Chiwpreecha
- Program in Fisheries Science, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Suneerat Ruangsomboon
- Program in Fisheries Science, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Pajongjit Tongsri
- Program in Fisheries Science, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
7
|
Zhang F, Li Y, Miao X. Quantum dot-based light conversion strategy for customized cultivation of microalgae. BIORESOURCE TECHNOLOGY 2024; 397:130489. [PMID: 38403170 DOI: 10.1016/j.biortech.2024.130489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Microalgae are photosynthetic microorganisms with the potential to mitigate the atmospheric greenhouse effect by carbon fixation. However, their growth is typically limited by light availability. A wavelength converter utilizing red, blue, and green quantum dots (QDs) was developed to optimize light quality for enhancing microalgal production. The growth, lipid content, and eicosapentaenoic acid titer of Nannochloropsis increased by 11.2%, 9.5%, and 15.5% with red QDs, respectively. The biomass and triacylglycerol content of Phaeodactylum tricornutum increased by 8.6% and 35.0%, respectively. Simultaneously, biodiesel production was accelerated in Nannochloropsis (20.2%) and P. tricornutum (11.6%), and improved with increased cetane number and reduced iodine value. Furthermore, red QDs increased the growth and biomass accumulation of Nannochloropsis under low light, while green QDs shielded Nannochloropsis from photoinhibition under high light. This customizable QD-based methodology overcomes microalgal light limitations, demonstrating a universally applicable approach to improve microalgal cultivation and biochemical component production.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
9
|
Liu Y, Wei D. Enhancing carbon dioxide fixation and co-production of protein and lutein in oleaginous Coccomyxa subellipsoidea by a stepwise light intensity and nutrients feeding strategy. BIORESOURCE TECHNOLOGY 2023; 376:128885. [PMID: 36925078 DOI: 10.1016/j.biortech.2023.128885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
To achieve high-efficient CO2 fixation and co-production of protein and lutein, a stepwise light intensity and nutrients feeding strategy in two-phase cultivation was developed after optimization in one-phase culture of oleaginous C. subellipsoidea in this work. Results showed the incremental light intensity and CO2 feeding boosted biomass production in phase 1, then a decreased light intensity and CO2 feeding with nitrate addition enhanced protein and lutein synthesis in phase2. The highest biomass (9.40 g/L) and average CO2 fixation rate (1.4 g/L/d) were achieved with excellent content and productivity of protein (52.36% DW, 435.72 mg/L/d) and lutein (1.65 mg/g, 1.37 mg/L/d) with 40.27% of light-energy saved. While the highest contents of total amino acids (42.38% DW) and essential amino acids (17.65% DW) were obtained with an essential amino acid index (1.2) compared with FAO/WHO reference. This study provided a promising application scenario of oleaginous microalgae for carbon neutrality and multiple high-value compounds co-production.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
10
|
Optimization of a two-phase culture system of Chlamydomonas hedleyi using light-emitting diodes and potential as a biodiesel feedstock. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
11
|
Zhang L, Lin X, Yang Z, Jiang L, Hou Q, Xie Z, Li Y, Pei H. The role of microtubules in microalgae: promotion of lipid accumulation and extraction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:7. [PMID: 36635732 PMCID: PMC9837904 DOI: 10.1186/s13068-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Microtubules in cells are closely related to the growth and metabolism of microalgae. To date, the study of microalgal microtubules has mainly concentrated on revealing the relationship between microtubule depolymerization and synthesis of precursors for flagellar regeneration. While information on the link between microtubule depolymerization and biosynthesis of precursors for complex organic matter (such as lipid, carbohydrate and protein), is still lacking, a better understanding of this could help to achieve a breakthrough in lipid regulation. With the aim of testing the assumption that microtubule disruption could regulate carbon precursors and redirect carbon flow to promote lipid accumulation, Chlorella sorokiniana SDEC-18 was pretreated with different concentrations of oryzalin. RESULTS Strikingly, microalgae that were pretreated with 1.5 mM oryzalin accumulated lipid contents of 41.06%, which was attributed to carbon redistribution induced by microtubule destruction. To promote the growth of microalgae, two-stage cultivation involving microtubule destruction was employed, which resulted in the lipid productivity being 1.44 times higher than that for microalgae with routine single-stage cultivation, as well as yielding a desirable biodiesel quality following from increases in monounsaturated fatty acid (MUFA) content. Furthermore, full extraction of lipid was achieved after only a single extraction step, because microtubule destruction caused removal of cellulose synthase and thereby blocked cellulose biosynthesis. CONCLUSIONS This study provides an important advance towards observation of microtubules in microalgae through immunocolloidal gold techniques combined with TEM. Moreover, the observation of efficient lipid accumulation and increased cell fragility engendered by microtubule destruction has expanded our knowledge of metabolic regulation by microtubules. Finally, two-stage cultivation involving microtubule destruction has established ideal growth, coupling enhanced lipid accumulation and efficient oil extraction; thus gaining advances in both applied and fundamental research in algal biodiesel production.
Collapse
Affiliation(s)
- Lijie Zhang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Xiao Lin
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK
| | - Zhigang Yang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Liqun Jiang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Qingjie Hou
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Zhen Xie
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Yizhen Li
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Haiyan Pei
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China ,grid.8547.e0000 0001 0125 2443Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China ,Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061 China
| |
Collapse
|
12
|
Zhao M, Zhou W, Wang Y, Wang J, Zhang J, Gong Z. Combination of simultaneous saccharification and fermentation of corn stover with consolidated bioprocessing of cassava starch enhances lipid production by the amylolytic oleaginous yeast Lipomyces starkeyi. BIORESOURCE TECHNOLOGY 2022; 364:128096. [PMID: 36229008 DOI: 10.1016/j.biortech.2022.128096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Highly integrated processes are crucial for the commercial success of microbial lipid production from low-cost substrates. Here, combination of simultaneous saccharification and fermentation (SSF) of corn stover with consolidated bioprocessing (CBP) of cassava starch by Lipomyces starkeyi was firstly developed as a novel strategy for lipid production. Starch was quickly hydrolyzed within 24 h by the amylolytic enzymes secreted by L. starkeyi to provide adequate fermentable sugars at the initial stage of culture, which eliminated the pre-hydrolysis step. More interestingly, synergistic effect for achieving higher lipid production by combined utilization of corn stover and cassava starch at relatively low enzyme dosage was realized, in comparison with the separate utilization of these two substrates. The fatty acid profiles indicated that lipid prepared by the combination strategy was suitable precursor for biodiesel production. The combined SSF&CBP strategy offers a simplified, highly-efficient, and economical route for co-valorization of low-cost substrates into lipids.
Collapse
Affiliation(s)
- Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jian Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
13
|
Wang H, Hu C, Wang Y, Jin C, She Z, Guo L. Mixotrophic cultivation of Chlorella pyrenoidosa under sulfadiazine stress: High-value product recovery and toxicity tolerance evaluation. BIORESOURCE TECHNOLOGY 2022; 363:127987. [PMID: 36126847 DOI: 10.1016/j.biortech.2022.127987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Sulfadiazine (SDZ) as a common sulfonamide antibiotic is frequently detected in wastewater, but there is little information on the high-value product recovery and toxicity tolerance evaluation of mixotrophic microalgae under SDZ stress. In this study, effects of SDZ on growth, photosynthesis, cellular damage, antioxidant capacity and intracellular biochemical components of Chlorella pyrenoidosa were investigated. Results showed that the growth of C. pyrenoidosa was inhibited by about 20% under high SDZ stress, but there was little impact on photosynthesis. Cellular damage and antioxidant capacity were evaluated using malondialdehyde (MDA) content and superoxide dismutase (SOD) activity to further explain the toxicity tolerance of mixotrophic microalgae. The SDZ stress not only increased lipid and carbohydrate content, respectively attaining to the maximum of 390.0 and 65.4 mg/L, but also improved the biodiesel quality of C. pyrenoidosa. The findings show the potential of mixotrophic microalgae for biodiesel production and wastewater treatment.
Collapse
Affiliation(s)
- Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Caiye Hu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
14
|
Agbebi TV, Ojo EO, Watson IA. Towards optimal inorganic carbon delivery to microalgae culture. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Wei Q, Yao J, Chen R, Yang S, Tang Y, Ma X. Low-frequency ultrasound and nitrogen limitation induced enhancement in biomass production and lipid accumulation of Tetradesmus obliquus FACHB-12. BIORESOURCE TECHNOLOGY 2022; 358:127387. [PMID: 35636673 DOI: 10.1016/j.biortech.2022.127387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The two-stage cultivation strategy was optimized in this study to simultaneously promote the growth and lipid accumulation of Tetradesmus obliquus. Results showed that the optimal dual-stress conditions were nitrogen concentration at 25 mg N·L-1 and low-frequency ultrasound at 200 Watt, 1 min, and 8 h interval. The biomass and lipid content of Tetradesmus obliquus were increased by 32.1% and 44.5%, respectively, comparing to the control, and the lipid productivity reached 86.97 mg-1·L-1·d-1 at the end of the cultivation period. The protein and photosynthetic pigment contents of microalgae decreased by 22.4% and 14.0% under dual stress comparing to the control environment. In addition, dual stress cultivation of microalgae presented higher level of antioxidant capacity to balance to oxidation level in microalgal cells. This study provides a new insight for microalgae growth and lipid accumulation with dual stress stimulation.
Collapse
Affiliation(s)
- Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Jinjie Yao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Ruge Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Shangru Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China; MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, PR China; Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
16
|
Liu Y, Wei D, Chen W. Oleaginous Microalga Coccomyxa subellipsoidea as a Highly Effective Cell Factory for CO 2 Fixation and High-Protein Biomass Production by Optimal Supply of Inorganic Carbon and Nitrogen. Front Bioeng Biotechnol 2022; 10:921024. [PMID: 35733523 PMCID: PMC9207446 DOI: 10.3389/fbioe.2022.921024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
Microalgae used for CO2 biofixation can effectively relieve CO2 emissions and produce high-value biomass to achieve "waste-to-treasure" bioconversion. However, the low CO2 fixation efficiency and the restricted application of biomass are currently bottlenecks, limiting the economic viability of CO2 biofixation by microalgae. To achieve high-efficient CO2 fixation and high-protein biomass production, the oleaginous microalga Coccomyxa subellipsoidea (C. subellipsoidea) was cultivated autotrophically through optimizing inorganic carbon and nitrogen supply. 0.42 g L-1 NaHCO3 supplemented with 2% CO2 as a hybrid carbon source resulted in high biomass concentration (3.89 g L-1) and productivity (318.33) with CO2 fixation rate 544.21 mg L-1 d-1 in shake flasks. Then, used in a 5-L photo-fermenter, the maximal protein content (60.93% DW) in batch 1, and the highest CO2 fixation rate (1043.95 mg L-1 d-1) with protein content (58.48% DW) in batch 2 of repeated fed-batch cultures were achieved under 2.5 g L-1 nitrate. The relative expression of key genes involved in photosynthesis, glycolysis, and protein synthesis showed significant upregulation. This study developed a promising approach for enhancing carbon allocation to protein synthesis in oleaginous microalga, facilitating the bioconversion of the fixed carbon into algal protein instead of oil in green manufacturing.
Collapse
Affiliation(s)
- Yu Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Weining Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Li C, Hu Z, Gao Y, Ma Y, Pan X, Li X, Liu S, Chu B. Bioeffects of Static Magnetic Fields on the Growth and Metabolites of C. pyrenoidosa and T. obliquus. J Biotechnol 2022; 351:1-8. [DOI: 10.1016/j.jbiotec.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
18
|
Sivaramakrishnan R, Incharoensakdi A. Overexpression of fatty acid synthesis genes in Synechocystis sp. PCC 6803 with disrupted glycogen synthesis increases lipid production with further enhancement under copper induced oxidative stress. CHEMOSPHERE 2022; 291:132755. [PMID: 34736940 DOI: 10.1016/j.chemosphere.2021.132755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In the present study, fatty acid synthesis genes such as alpha and beta subunits of acetyl CoA carboxylase (accA and accD) were overexpressed in the glgC (Glucose-1-phosphate adenylyltransferase) knockout Synechocystis sp. PCC 6803. The biomass and lipid contents were evaluated in both the wild type and the engineered strains after copper treatment. The maximum lipid production of 0.981 g/L with the productivity of 81.75 mg/L/d was obtained from the copper treated ΔglgC + A-OX strain, which showed a 3.3-fold increase compared to the untreated wild type with satisfactory biodiesel properties. After copper treatment the knockout strain improved the unsaturated fatty acids level contributing to the increase of the saturated and mono-unsaturated ratio with improvement of the fuel quality. Copper induced oxidative stress also improved the photosynthetic pigments in engineered strains leading to increased tolerance against oxidative stress in the engineered strains. The copper treatment increased the antioxidant enzyme activities in the engineered strains especially in ΔglgC + A-OX strain. The carbon flux to lipid synthesis was enhanced by the engineered strains particularly with the knockout-overexpression strains. The Synechocystis sp. PCC 6803 engineered with ΔglgC + A-OX showed high potential for fuel production after the copper treatment.
Collapse
Affiliation(s)
- Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
19
|
Microwave-Assisted Extraction of Fatty Acids from Cultured and Commercial Phytoplankton Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: The extraction of fatty acids from microalgae and cyanobacteria is mostly performed with organic solvents and laborious procedures. Microwave-assisted extraction (MAE) can be a more effective and environmentally friendly process than traditional extraction (TE), which uses a large volume of solvent and conduction heating. Freshwater phytoplankton inhabits diverse aquatic environments and is a promising source of fatty acids and green precursors in the synthesis of biofuel, including cyanobacterial biomass. Therefore, the aim of this study was to investigate the potential of MAE to extract fatty acids from a Chlorella sp. microalga and two cyanobacteria, namely, Arthrospira sp. and Sphaerospermopsis torques-reginae, for biodiesel production. For this purpose, the lipid content and fatty acid profile of these strains were compared after treating biomass with the two extraction methods. (2) Methods: MAE and TE were used as extraction procedures; gas chromatography–mass spectrometry was used to assess the fatty acid profiles, and X-ray spectroscopy was used to analyze biomass. (3) Results: Although the fatty acid profile of the oil obtained by TE showed higher concentrations of fatty acids, the MAE method was able to extract more types of fatty acids. The variety of fatty acids extracted by the MAE, especially those with unsaturated chains, allowed for better quality biodiesel, presenting advantages over previous methods and studies. According to the analyses, essential fatty acids 16:0, 16:1, and 18:2 were found to be abundant in both cyanobacterial strains and in microalga, showing potential for biofuel production. Additionally, metal composition was determined as its content may indicate potential pro-oxidant influence in biofuel production. (4) Conclusions: MAE is a useful and green strategy to extract fatty acids from freshwater phytoplankton. Cyanobacteria can also be a beneficial source of fatty acids for biodiesel synthesis.
Collapse
|
20
|
Parkes R, Barone ME, Aranyos A, Fierli D, Koehler H, Gillespie E, Touzet N. Species-specific responses in pigments and fatty acids of five freshwater chlorophytes exposed to varying cultivation conditions. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Zarrinmehr MJ, Daneshvar E, Nigam S, Gopinath KP, Biswas JK, Kwon EE, Wang H, Farhadian O, Bhatnagar A. The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. BIORESOURCE TECHNOLOGY 2022; 344:126303. [PMID: 34752885 DOI: 10.1016/j.biortech.2021.126303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 05/28/2023]
Abstract
This study reports the effects of polar (acetone/methanol) and non-polar (chloroform/hexane) solvents on lipid yield, fatty acids methyl esters (FAMEs) composition, and biodiesel properties of microalgae. The lipids yield extracted by hexane and chloroform (100.01 and 94.33 mg/g) were higher than by methanol and acetone (40.12 and 86.91 mg/g). The polarity of solvents also affected FAMEs composition of microalgal lipids. Total saturated fatty acids and unsaturated fatty acids of extracted lipids were 61.53% and 38.47% by chloroform and 38.85% and 61.15% by methanol. Moreover, polar and non-polar solvents affected the biodiesel properties such as cetane number and oxidative stability. In addition, higher ratio of chloroform to methanol and higher temperature increased the lipid yield and saturation degree of lipids, through ultrasound-assisted lipid extraction method. Overall, the results revealed that the lipids yield, FAMEs composition, and biodiesel quality of microalgal biomass can be significantly affected by solvents polarity and extraction conditions.
Collapse
Affiliation(s)
- Mohammad Javad Zarrinmehr
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Ehsan Daneshvar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida Uttar Pradesh 201313, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110 Chennai, Tamil Nadu, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies, University of Kalyani, Nadia, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05005, Republic of Korea
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, PR China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Omidvar Farhadian
- Department of Natural Resources, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
22
|
Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. SUSTAINABILITY 2021. [DOI: 10.3390/su132212374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modern civilization is heavily reliant on petroleum-based fuels to meet the energy demand of the transportation sector. However, burning fossil fuels in engines emits greenhouse gas emissions that harm the environment. Biofuels are commonly regarded as an alternative for sustainable transportation and economic development. Algal-based fuels, solar fuels, e-fuels, and CO2-to-fuels are marketed as next-generation sources that address the shortcomings of first-generation and second-generation biofuels. This article investigates the benefits, limitations, and trends in different generations of biofuels through a review of the literature. The study also addresses the newer generation of biofuels highlighting the social, economic, and environmental aspects, providing the reader with information on long-term sustainability. The use of nanoparticles in the commercialization of biofuel is also highlighted. Finally, the paper discusses the recent advancements that potentially enable a sustainable energy transition, green economy, and carbon neutrality in the biofuel sector.
Collapse
|
23
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
24
|
Ferreira AS, Mendonça I, Póvoa I, Carvalho H, Correia A, Vilanova M, Silva TH, Coimbra MA, Nunes C. Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nutrient deficiency and an algicidal bacterium improved the lipid profiles of a novel promising oleaginous dinoflagellate, Prorocentrum donghaiense, for biodiesel production. Appl Environ Microbiol 2021; 87:e0115921. [PMID: 34319787 PMCID: PMC8436737 DOI: 10.1128/aem.01159-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipid production potential of 8 microalgae species was investigated. Among these eight species, the best strain was a dominant bloom-causing dinoflagellate, Prorocentrum donghaiense; this species had a lipid content of 49.32±1.99% and exhibited a lipid productivity of 95.47±0.99 mg L-1 d-1, which was 2-fold higher than the corresponding values obtained for the oleaginous microalgae Nannochloropsis gaditana and Phaeodactylum tricornutum. P. donghaiense, which is enriched in C16:0 and C22:6, is appropriate for commercial DHA production. Nitrogen or phosphorus stress markedly induced lipid accumulation to levels surpassing 75% of the dry weight, increased the C18:0 and C17:1 contents, and decreased the C18:5 and C22:6 contents, and these effects resulted in decreases in the unsaturated fatty-acid levels and changes in the lipid properties of P. donghaiense such that the species met the biodiesel specification standards. Compared with the results obtained under N-deficient conditions, the enhancement in the activity of alkaline phosphatase of P. donghaiense observed under P-deficient conditions could partly alleviate the adverse effects on the photosynthetic system exerted by P deficiency to induce the production of more carbohydrates for lipogenesis. The supernatant of the algicidal bacterium Paracoccus sp. Y42 culture lysed P. donghaiense without decreasing its lipid content, which resulted in facilitation of the downstream oil extraction process and energy savings through the lysis of algal cells. The Y42 supernatant treatment improved the lipid profiles of algal cells by increasing their C16:0, C18:0 and C18:1 contents and decreasing their C18:5 and C22:6 contents, which is favourable for biodiesel production. IMPORTANCE This study demonstrates the high potential of P. donghaiense, a dominant bloom-causing dinoflagellate, for lipid production. Compared with previously studied oleaginous microalgae, P. donghaiense exhibit greater potential for practical application due to its higher biomass and lipid contents. Nutrient deficiency and the algicidal bacterium Paracoccus sp. Y42 could improve the suitability of the lipid profile of P. donghaiense for biodiesel production. Furthermore, Paracoccus sp. Y42 effectively lyse algal cells, which facilitates the downstream oil extraction process for biodiesel production and results in energy savings through the lysing of algal cells. This study provides a more promising candidate for the production of DHA for human nutritional products and of microalgal biofuel, as well as a more cost-effective method for breaking algal cells. The high lipid productivity of P. donghaiense and algal cell lysis by algicidal bacteria contribute to reductions in the production cost of microalgal oil.
Collapse
|
26
|
Operation Regimes: A Comparison Based on Nannochloropsis oceanica Biomass and Lipid Productivity. ENERGIES 2021. [DOI: 10.3390/en14061542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgae are currently considered to be a promising feedstock for biodiesel production. However, significant research efforts are crucial to improve the current biomass and lipid productivities under real outdoor production conditions. In this context, batch, continuous and semi-continuous operation regimes were compared during the Spring/Summer seasons in 2.6 m3 tubular photobioreactors to select the most suitable one for the production of the oleaginous microalga Nannochloropsis oceanica. Results obtained revealed that N. oceanica grown using the semi-continuous and continuous operation regimes enabled a 1.5-fold increase in biomass volumetric productivity compared to that cultivated in batch. The lipid productivity was 1.7-fold higher under semi-continuous cultivation than that under a batch operation regime. On the other hand, the semi-continuous and continuous operation regimes spent nearly the double amount of water compared to that of the batch regime. Interestingly, the biochemical profile of produced biomass using the different operation regimes was not affected regarding the contents of proteins, lipids and fatty acids. Overall, these results show that the semi-continuous operation regime is more suitable for the outdoor production of N. oceanica, significantly improving the biomass and lipid productivities at large-scale, which is a crucial factor for biodiesel production.
Collapse
|
27
|
Qu D, Miao X. Carbon flow conversion induces alkali resistance and lipid accumulation under alkaline conditions based on transcriptome analysis in Chlorella sp. BLD. CHEMOSPHERE 2021; 265:129046. [PMID: 33261840 DOI: 10.1016/j.chemosphere.2020.129046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Alkaline environments are abundant globally and cause damage to most organisms, while some microalgae can grow well and accumulate lipids under those conditions. Here the mechanisms of alkali resistance and lipid accumulation in the alkaliphilic microalgae Chlorella sp. BLD were explored using physiological-biochemical and transcriptome analysis. When cultivated at alkaline pH, Chlorella sp. BLD exhibited good alkali-resistance ability and increased biomass (0.97 g L-1). The biochemical composition of Chlorella sp. BLD changed significantly (lipid content increased 39% and protein content decreased 19.5%) compared with pH 7.5. Through transcriptome analysis, we found that pathways related to carbon metabolism such as photosynthesis, glycolysis, and the TCA cycle were significantly regulated under alkaline conditions. Genes that encoding the key enzyme in carbon-related metabolism such as Rubisco, AMY, PK, ME, CS, ACAT, KAS, and DGAT were identified. Transcriptional regulation of these genes results in carbon flow switching from starch and protein to cell wall metabolism, organic acid synthetic and lipid accumulation in response to alkaline conditions. These results reveal the alkali resistance mechanism of Chlorella sp. BLD and provide a theoretical basis for microalgae oil production under alkaline conditions.
Collapse
Affiliation(s)
- Dehui Qu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Valdez-Ojeda R, Toledano-Thompson T, Tovar-Gálvez LR, López-Adrián S, Chairez I. Efficient production of fatty acid methyl esters by a wastewater-isolated microalgae-yeast co-culture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28490-28499. [PMID: 31845266 DOI: 10.1007/s11356-019-07286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Improving the competitiveness of biodiesel production by microalgae cultures requires the application of several strategies to obtain a high content of lipids, rapid biomass growth and a capacity to adapt to different kinds of environment, with the aim of using non-renewable nutrient sources. Therefore, the use of an individual indigenous microalgae strain or a consortium from natural or anthropogenic sites is now considered an alternative for biofuel production. This study examined the temporal behaviour of secondary metabolites produced by a native microalgae and yeast consortium isolated from wastewater, which was characterized by a genetic identification method based on the MiSeq system. The predominant species in the consortium was Scenedesmus obliquus, representing 68% of the organisms. In addition, the consortium contained a number of yeast species, including Candida pimensis (43%), Arthroderma vanbreuseghemii (23%), Diaporthe aspalathi/Diaporthe meridionalis (25%) and Hericium americanum (3%). This indigenous co-culture of microalgae and yeast showed biomass productivity of 0.06 g l-1 day-1, with a content of 30% (w/w) carbohydrates, 4% (w/w) proteins and 55% (w/w) lipids. Transesterification of the extracted lipids produced fatty acid methyl esters (FAMEs), which were analysed by gas chromatography (GC). The FAMEs included methyl pentadecanoate (1.90%), cis-10-pentanedecanoic acid methyl ester (1.36%), methyl palmitate (2.64%), methyl palmitoleate (21.36%), methyl oleate (64.95%), methyl linolenate (3.83%) and methyl linolelaidate (3.95%). This composition was relevant for biodiesel production based on the co-culture of indigenous microalgae and yeast consortia.
Collapse
Affiliation(s)
- Jessica K Suastes-Rivas
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Raúl Hernández-Altamirano
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico.
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico.
| | - Violeta Y Mena-Cervantes
- Centro Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
- Laboratorio Nacional de Desarrollo y Aseguramiento de la Calidad de Biocombustibles (LaNDACBio), Instituto Politécnico Nacional, 07340, Mexico City, Mexico
| | - Ruby Valdez-Ojeda
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Tanit Toledano-Thompson
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán A.C, Merida, Yucatán, Mexico
| | - Luis R Tovar-Gálvez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), 30 de junio de 1520 s/n, La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Silvia López-Adrián
- Facultad de Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Merida, Yucatán, Mexico
| | - Isaac Chairez
- Departamento de Bioprocesos, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Col. La Laguna Ticomán, 07340, Mexico City, Mexico
| |
Collapse
|
29
|
Glyceroglycolipid Metabolism Regulations under Phosphate Starvation Revealed by Transcriptome Analysis in Synechococcus elongatus PCC 7942. Mar Drugs 2020; 18:md18070360. [PMID: 32668657 PMCID: PMC7401256 DOI: 10.3390/md18070360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Glyceroglycolipids, abundant in cyanobacteria's photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the transcriptome in Synechococcus elongatus PCC 7942 were analyzed under phosphate starvation. Under phosphate starvation, the decrease of monogalactosyl diacylglycerol (MGDG) and increases of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) led to a decrease in the MGDG/DGDG ratio, from 4:1 to 5:3, after 12 days of cultivation. However, UDP-sulfoquinovose synthase gene sqdB, and the SQDG synthase gene sqdX, were down-regulated, and the decreased MGDG/DGDG ratio was later increased back to 2:1 after 15 days of cultivation, suggesting the regulation of glyceroglycolipids on day 12 was based on the MGDG/DGDG ratio maintaining glyceroglycolipid homeostasis. There are 12 differentially expressed transcriptional regulators that could be potential candidates related to glyceroglycolipid regulation, according to the transcriptome analysis. The transcriptome analysis also suggested post-transcriptional or post-translational regulations in glyceroglycolipid synthesis. This study provides further insights into glyceroglycolipid metabolism, as well as the scientific basis for glyceroglycolipid synthesis optimization and cyanobacteria glyceroglycolipids utilization via metabolic engineering.
Collapse
|
30
|
B J, D A, P V, S K. Nitrogen repletion favors cellular metabolism and improves eicosapentaenoic acid production in the marine microalga Isochrysis sp. CASA CC 101. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Enwereuzoh U, Harding K, Low M. Characterization of biodiesel produced from microalgae grown on fish farm wastewater. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2770-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Ruangsomboon S, Dimak J, Jongput B, Wiwatanaratanabutr I, Kanyawongha P. Outdoor open pond batch production of green microalga Botryococcus braunii for high hydrocarbon production: enhanced production with salinity. Sci Rep 2020; 10:2731. [PMID: 32066792 PMCID: PMC7026153 DOI: 10.1038/s41598-020-59645-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of this work was to enhance the biodiesel quality and hydrocarbon content of green microalga B. braunii strain KMITL 2 cultivated outdoor under several salinity conditions in a batch production. The enhancement would be such that the microalgal biodiesel qualities met or exceeded the current standard so that it would be a good raw material for biodiesel production. The microalga production was in 300 L open oval ponds, among various salinity levels tested (0–20 ppt), 5 ppt was the best for hydrocarbon production, yielding 54.2 ± 0.9% hydrocarbon content and 5.1 ± 0.4 g L−1 biomass. As the microalga production was scaled up by cultivation in 3,675 L open raceway pond under the 5 ppt condition, the microalga yielded a bit higher hydrocarbon content (58.8 ± 2.9%) but much lower biomass (2.5 ± 0.5 g L−1). The production in both oval and raceway ponds yielded a nearly identical biodiesel property (61.06–67.42 cetane number) which exceeded the value specified in international standards. Therefore, it was concluded that B. braunii strain KMITL 2 can be batch cultivated in an open pond at optimum salinity to yield sufficient hydrocarbon and biomass for biodiesel production.
Collapse
Affiliation(s)
- Suneerat Ruangsomboon
- Program in Fisheries Science, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. .,Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Jantra Dimak
- Industrial/University Collaborative Research Center (IUCRC), Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Buppha Jongput
- Industrial/University Collaborative Research Center (IUCRC), Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Itsanun Wiwatanaratanabutr
- Center of Excellence in Applied Biosciences, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.,Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pornthiwa Kanyawongha
- Department of Plant Production Technology, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
33
|
Dixit R, Singh S, Singh A. Effect of nitrogen deficiency on the physiology and biochemical composition of microalga Scenedesmus rotundus-MG910488. J Basic Microbiol 2019; 60:158-172. [PMID: 31692003 DOI: 10.1002/jobm.201900383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 11/06/2022]
Abstract
The present investigation ascertains the impact of gradient concentrations of sodium nitrate on the physiology and biochemical composition of isolated microalga Scenedesmus rotundus-MG910488. The concentrations of nitrate were selected as 0, 3.5, 7.0, 10.5, 14.0, and 17.6 mM/L in BG11 medium. The lower concentrations of nitrogen were found to be significantly decreasing the cell count and photosynthetic activity in the microalga as well as changing cell morphology. The amount of biomass, its productivity and lipid yield were significantly affected. The highest biomass of 689.15 ± 14.27 mg/L was achieved in the concentration of 17.6 mM/L with the biomass productivity of 38.28 ± 0.78 mg/L. The highest lipid accumulation of 41.46 ± 1.94% dry-cell weight was obtained at a concentration of 3.5 mM/L, whereas the lowest lipid accumulation of 29.22 ± 1.65% at the concentration of 17.6 mM/L sodium nitrate. The fatty acid composition determines the quality of the fuel, so the characterization of fatty acid methyl esters (FAMEs) was performed by GC, and the assessment of methyl esters of fatty acid confirmed the existence of palmitic acid, oleic acid, and linoleic acid, which are essential components suitable for biodiesel production. FTIR confirms the presence of FAME components by estimating the bending and stretching of functional groups.
Collapse
Affiliation(s)
- Rishibha Dixit
- Algal Biotechnology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, India
| | - Surendra Singh
- Algal Biotechnology Laboratory, Department of P.G. Studies and Research in Biological Science, Rani Durgavati University, Jabalpur, India
| | - Ajeet Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
34
|
A Feasibility Study of Wastewater Treatment Using Domestic Microalgae and Analysis of Biomass for Potential Applications. WATER 2019. [DOI: 10.3390/w11112294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water scarcity and emerging demands for renewable energy have increased concerns about energy security and advanced wastewater treatment, and microalgae have emerged as promising candidates to solve these problems. This study assesses the feasibility of microalgal wastewater treatment, and the utilization of the resulting microalgal biomass, as a renewable energy source. We cultured four selected microalgal species in filtered wastewater collected from the municipal treatment facility in Daegu, Republic of Korea. We measured nutrient consumption, growth rate, and physicochemical properties during cultivation, then analyzed the biomass for biochemical composition, ultimate analysis, proximate analysis, and biodiesel and lubricant properties, to estimate its potential applications. Desmodesmus sp. KNUA024 emerged as the most promising strain, removing 99.10% of ammonia nitrogen, 91.31% of total nitrogen, and 95.67% of total phosphate. Its biomass had a calorific value of 19.5 MJ kg−1, similar to terrestrial plants. α-linolenic acid was the most abundant polyunsaturated fatty acid (PUFA; 54.83%). Due to its PUFA content, Desmodesmus sp. KNUA024 also had a high iodine value, indicating its potential for use as a bio-lubricant. Therefore, Desmodesmus sp. KNUA024 shows promise for wastewater treatment, energy, and industrial applications.
Collapse
|
35
|
Harvesting Scenedesmus obliquus via Flocculation of Moringa oleifera Seed Extract from Urban Wastewater: Proposal for the Integrated Use of Oil and Flocculant. ENERGIES 2019. [DOI: 10.3390/en12203996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objectives this study were to examine the integrated use of oil–coagulant for the direct extraction of coagulant from Moringa oleifera (MO) with 5% and 10% (NH4)2SO4 extractor solution to harvest Scenedesmus obliquus cultivated in urban wastewater and to analyze the oil extracted from MO and S. obliquus. An average content of 0.47 g of coagulant and 0.5 g of oil per gram of MO was obtained. Highly efficient algal harvest, 80.33% and 72.13%, was achieved at a dose of 0.38 g L−1 and pH 8–9 for 5% and 10% extractor solutions, respectively. For values above pH 9, the harvest efficiency decreases, producing a whitish water with 10% (NH4)2SO4 solution. The oil profile (MO and S. obliquus) showed contents of SFA of 36.24–36.54%, monounsaturated fatty acids of 32.78–36.13%, and polyunsaturated fatty acids of 27.63–30.67%. The biodiesel obtained by S. obliquus and MO has poor cold flow properties, indicating possible applications limited to warm climates. For both biodiesels, good fuel ignition was observed according to the high cetane number and positive correlation with SFA and negative correlation with the degree of saturation. This supports the use of MO as a potentially harmless bioflocculant for microalgal harvest in wastewater, contributing to its treatment, and a possible source of low-cost biodiesel.
Collapse
|
36
|
Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16952-16973. [PMID: 31030399 DOI: 10.1007/s11356-019-05138-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Oleaginous microalgae and yeast are the two major propitious factories which are sustainable sources for biodiesel production, as they can accumulate high quantities of lipids inside their bodies. To date, various microalgal and yeast species have been exploited singly for biodiesel production. However, despite the ongoing efforts, their low lipid productivity and the high cost of cultivation are still the major bottlenecks hindering their large-scale deployment. Co-culturing of microalgae and yeast has the potential to increase the overall lipid productivity by minimizing its production cost as both these organisms can utilize each other's by-products. Microalgae act as an O2 generator for yeast while consuming the CO2 and organic acids released by the yeast cells. Further, yeast can break complex sugars in the medium, which can then be utilized by microalgae thereby opening new options for copious and low-cost feedstocks such as agricultural residues. The current review provides a historical and technical overview of the existing studies on co-culturing of yeast and microalgae and elucidates the crucial factors that affect the symbiotic relationship between these two organisms. Furthermore, the review also highlighted the advantages and the future perspectives for paving a path towards a sustainable biodiesel product.
Collapse
Affiliation(s)
- Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Juhi Mehtani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Parul A Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Transportation Systems (CTRANS), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
37
|
Cho K, Cho DH, Heo J, Kim U, Lee YJ, Choi DY, Kim HS. Nitrogen modulation under chemostat cultivation mode induces biomass and lipid production by Chlorella vulgaris and reduces antenna pigment accumulation. BIORESOURCE TECHNOLOGY 2019; 281:118-125. [PMID: 30811998 DOI: 10.1016/j.biortech.2019.02.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Algal growth limitation in large-scale cultivation mostly results from high level synthesis of photosynthetic pigments, owing to self-shading effects and attenuation of light distribution. To overcome this problem, here we investigated the influence of nitrogen modulation on changes in antenna pigments as well as biomass and lipid production by Chlorella vulgaris under a chemostat continuous cultivation mode. The production of algal antenna pigments, including chlorophylls and carotenoids, was promoted in a total nitrogen (TN) concentration-dependent manner. Maximum algal biomass and lipid production were obtained from 70 mg/L of TN concentration along with a significant increase in light transmittance and reduction in antenna pigments. Furthermore, the composition of polyunsaturated fatty acids remarkably augmented at low TN concentrations. These results suggest that the reduction in algal antenna pigment synthesis via modulation of nitrogen concentration may serve as an effective strategy to enhance algal biomass and lipid production.
Collapse
Affiliation(s)
- Kichul Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jina Heo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Urim Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Yun Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
38
|
Katiyar R, Gurjar BR, Kumar A, Bharti RK, Biswas S, Pruthi V. A novel approach using low-cost Citrus limetta waste for mixotrophic cultivation of oleaginous microalgae to augment automotive quality biodiesel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16115-16124. [PMID: 30972671 DOI: 10.1007/s11356-019-04946-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The present study reports the use of Citrus limetta (CL) residue for cultivating Chlorella sp. mixotrophically to augment production of biodiesel. The cultivation of Chlorella sp. using CL as media was carried out by employing a fed-batch technique in open tray (open tray+CL) and in software (BioXpert V2)-attached automated photobioreactor (PBR+CL) systems. Data showed the limit of nitrogen substituent and satisfactory organic source of carbon (OSC) in CL, causing > 2-fold higher lipid content in cells, cultivated in both the systems than in control. For the cells grown in both the systems, ≥ 3-fold enhancement in lipid productivity was observed than in control. The total fatty acid methyl ester (FAME) concentrations from lipids extracted from cells grew in PBR+CL and in open tray+CL techniques were calculated as 50.59% and 38.31%, respectively. The PBR+CL system showed improved outcomes for lipid content, lipid and biomass productivity, FAME characteristics and physical property parameters of biodiesel than those obtained from the open tray+CL system. The physical property parameters of biodiesel produced from algal cells grown in PBR+CL were comparable to existing fuel standards. The results have shown lower cold filter plugging point (- 6.57 °C), higher cetane number (58.04) and average oxidative stability (3.60 h). Collectively, this investigation unveils the novel deployment of CL as a cost-effective feedstock for commercialisation of biodiesel production.
Collapse
Affiliation(s)
- Richa Katiyar
- Centre for Technology Alternatives for Rural Areas (CTARA), Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| | - Bhola Ram Gurjar
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Amit Kumar
- Department of Civil Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan, 302017, India
| | - Randhir Kumar Bharti
- Center for Rural Development and Technology, IIT Delhi, New Delhi, 110016, India
| | - Shalini Biswas
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vikas Pruthi
- Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
39
|
Bessadok B, Santulli A, Breuck T, Sadok S. Species disparity response to mutagenesis of marine yeasts for the potential production of biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:129. [PMID: 31139259 PMCID: PMC6530083 DOI: 10.1186/s13068-019-1459-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Among the third-generation biodiesel feed stock, oleaginous marine yeasts are the least studied microorganisms for such purpose. RESULTS Wild strains yeasts were isolated from various Tunisian marine sources including fish waste (Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015, Trichosporon asahii TaTun15 and Yarrowia lipolytica YlTun15) and seawater (Rhodotorula mucilaginosa RmTun15). Following incubation with ethyl methanesulfonate (EMS: 75 mM) for various periods of time (T15, T30, T45, T60 min), the cell viability of these strains responded differentially according to yeast species. For instance, mutated CtTun15 did not survive after 30 min of EMS treatment; higher resistances were observed in DhTun2015 (45 min), in YlTun15, RmTun15 and in TaTun15 (60 min) but with significant decreased cell viabilities (survival rate: 6.02, 3.16, 11.22, 11.58, 7.70%, respectively). For all surviving mutated strains, the optima of biomass and lipid yields were detected after 96 h in YPD culture; but derived from strains submitted to different period of EMS incubation. In most mutated strains, the maximum biomass (BP) and lipid (LP) productivities coincided and were observed after 30 min of EMS incubation. Only CtTun15 showed different optima of BP and LP (after 30 min and 15 min, respectively). The fatty acids (FA) compositions considered essential in the prediction of biodiesel criteria; were highly affected by EMS mutagenesis. Essentially, 30- and 45-min EMS incubation induced the highest levels of PUFA and MUFA in YlTun15, RmTun15 and TaTun15 with non-significant differences in the different times. However, CtTun15 and DhTun2015 mutant strains responded differently, with the highest levels of MUFA observed following 15 and 45 min; and that of PUFA after 30 and 45 min, respectively. CONCLUSION The methyl-esterification of FA from the three mutated yeast strains (30 min-YlTun15, RmTun15 and TaTun15) yielded biodiesel with physical proprieties consistent with the International Standard System. However, investigations are needed for up-scaling biodiesel production.
Collapse
Affiliation(s)
- Boutheina Bessadok
- Blue Biotechnology and Aquatics Bioproducts Laboratory (B3Aqua), Institut National des Sciences et Technologies de la Mer – INSTM-Annexe La Goulette, 60 Port de Pêche, 2060 La Goulette, Tunisia
- Institut National Agronomique de Tunisie (INAT), 43 Avenue Charles Nicolle, 1082 Tunis, Tunisia
| | - Andrea Santulli
- Consorzio Universitario della Provincia di Trapani (CUPT), Lungomare Dante Alighieri, 91016 Casa Santa, TP Italy
| | - Thomas Breuck
- Fachgebiet Industrielle Biokatalyse, IBK Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Saloua Sadok
- Blue Biotechnology and Aquatics Bioproducts Laboratory (B3Aqua), Institut National des Sciences et Technologies de la Mer – INSTM-Annexe La Goulette, 60 Port de Pêche, 2060 La Goulette, Tunisia
| |
Collapse
|
40
|
Palacios OA, Lopez BR, Bashan Y, de-Bashan LE. Early Changes in Nutritional Conditions Affect Formation of Synthetic Mutualism Between Chlorella sorokiniana and the Bacterium Azospirillum brasilense. MICROBIAL ECOLOGY 2019; 77:980-992. [PMID: 30397795 DOI: 10.1007/s00248-018-1282-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/25/2018] [Indexed: 05/20/2023]
Abstract
The effect of three different nutritional conditions during the initial 12 h of interaction between the microalgae Chlorella sorokiniana UTEX 2714 and the plant growth-promoting bacterium Azospirillum brasilense Cd on formation of synthetic mutualism was assessed by changes in population growth, production of signal molecules tryptophan and indole-3-acetic acid, starch accumulation, and patterns of cell aggregation. When the interaction was supported by a nutrient-rich medium, production of both signal molecules was detected, but not when this interaction began with nitrogen-free (N-free) or carbon-free (C-free) media. Overall, populations of bacteria and microalgae were larger when co-immobilized. However, the highest starch production was measured in C. sorokiniana immobilized alone and growing continuously in a C-free mineral medium. In this interaction, the initial nutritional condition influenced the time at which the highest accumulation of starch occurred in Chlorella, where the N-free medium induced faster starch production and the richer medium delayed its accumulation. Formation of aggregates made of microalgae and bacteria occurred in all nutritional conditions, with maximum at 83 h in mineral medium, and coincided with declining starch content. This study demonstrates that synthetic mutualism between C. sorokiniana and A. brasilense can be modulated by the initial nutritional condition, mainly by the presence or absence of nitrogen and carbon in the medium in which they are interacting.
Collapse
Affiliation(s)
- Oskar A Palacios
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Blanca R Lopez
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, 23096, La Paz, BCS, Mexico.
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA.
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
41
|
Alalwan HA, Alminshid AH, Aljaafari HA. Promising evolution of biofuel generations. Subject review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ref.2018.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Jebali A, Acién FG, Jiménez-Ruiz N, Gómez C, Fernández-Sevilla JM, Mhiri N, Karray F, Sayadi S, Molina-Grima E. Evaluation of native microalgae from Tunisia using the pulse-amplitude-modulation measurement of chlorophyll fluorescence and a performance study in semi-continuous mode for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:119. [PMID: 31110560 PMCID: PMC6511200 DOI: 10.1186/s13068-019-1461-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/02/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microalgae are attracting much attention as a promising feedstock for renewable energy production, while simultaneously providing environmental benefits. So far, comparison studies for microalgae selection for this purpose were mainly based on data obtained from batch cultures, where the lipid content and the growth rate were the main selection parameters. The present study evaluates the performance of native microalgae strains in semi-continuous mode, considering the suitability of the algal-derived fatty acid composition and the saponifiable lipid productivity as selection criteria for microalgal fuel production. Evaluation of the photosynthetic performance and the robustness of the selected strain under outdoor conditions was conducted to assess its capability to grow and tolerate harsh environmental growth conditions. RESULTS In this study, five native microalgae strains from Tunisia (one freshwater and four marine strains) were isolated and evaluated as potential raw material to produce biofuel. Firstly, molecular identification of the strains was performed. Then, experiments in semi-continuous mode at different dilution rates were carried out. The local microalgae strains were characterized in terms of biomass and lipid productivity, in addition to protein content, and fatty acid profile, content and productivity. The marine strain Chlorella sp. showed, at 0.20 1/day dilution rate, lipid and biomass productivities of 35.10 mg/L day and 0.2 g/L day, respectively. Moreover, data from chlorophyll fluorescence measurements demonstrated the robustness of this strain as it tolerated extreme outdoor conditions including high (38 °C) and low (10 °C) temperature, and high irradiance (1600 µmol/m2 s). CONCLUSIONS Selection of native microalgae allows identifying potential strains suitable for use in the production of biofuels. The selected strain Chlorella sp. demonstrated adequate performance to be scaled up to outdoor conditions. Although experiments were performed at laboratory conditions, the methodology used in this paper allows a robust evaluation of microalgae strains for potential market applications.
Collapse
Affiliation(s)
- A. Jebali
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - F. G. Acién
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - N. Jiménez-Ruiz
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - C. Gómez
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - J. M. Fernández-Sevilla
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| | - N. Mhiri
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - F. Karray
- Laboratory of Environmental Bioprocesses, Sfax Centre of Biotechnology, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - S. Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - E. Molina-Grima
- Department of Chemical Engineering, University of Almería, Carretera Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
43
|
Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J Biosci Bioeng 2018; 126:723-729. [DOI: 10.1016/j.jbiosc.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/19/2022]
|
44
|
Zhang Q, You Z, Miao X. Variation of fatty acid desaturation in response to different nitrate levels in Auxenochlorella pyrenoidosa. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181236. [PMID: 30564413 PMCID: PMC6281909 DOI: 10.1098/rsos.181236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Microalgae are promising feedstocks for biodiesel, where the high proportion of monounsaturated fatty acid such as oleic acid (C18:1) is preferred. To regulate fatty acid desaturation in microalgae, the relationship among nitrate concentration, fatty acid composition and the expression levels of desaturase genes was explored. Dynamic variations of fatty acid profiles suggested nitrate could induce desaturation of C18 fatty acids. The content of C18:1 in Auxenochlorella pyrenoidosa was 30.88% at 0 g l-1 nitrate concentration compared with 0.48% at 1.5 g l-1. The expressions of relative delta-9, 12 and 15 fatty acid desaturase genes (Δ9, Δ12 and Δ15FADs) were further investigated. The 330% upregulated expression of Δ9FAD in logarithmic phase at 0 g l-1 resulted in C18:1 accumulation. Moreover, nitrate replenishment caused a sharp reduction of C18:1 from 34.79% to 0.22% and downregulation of Δ9FAD expression to 1% of the nitrate absence level, indicating the pivotal role of Δ9FAD in C18:1 accumulation. Finally, overexpression of Δ9FAD in Escherichia coli and Saccharomyces cerevisiae resulted in an increase of C18:1, confirming its ability of desaturating C18:0. The results could provide a new approach and scientific guidance for the improvement of biodiesel quality and industrialization of high-valued chemicals by means of metabolic engineering.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zaizhi You
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Initial population density plays a vital role to enhance biodiesel productivity of Tetraselmis sp. under reciprocal nitrogen concentration. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Liu L, Zeng Z, Bee M, Gibson V, Wei L, Huang X, Liu C. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:135-142. [PMID: 29414745 DOI: 10.1016/j.jhazmat.2018.01.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315000, China.
| | - Zhichao Zeng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Mingyang Bee
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Valerie Gibson
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lili Wei
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xu Huang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chaoxiang Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315000, China.
| |
Collapse
|
47
|
Zhang L, Wang YZ, Wang S, Ding K. Effect of carbon dioxide on biomass and lipid production of Chlorella pyrenoidosa in a membrane bioreactor with gas-liquid separation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Ma X, Gao M, Gao Z, Wang J, Zhang M, Ma Y, Wang Q. Past, current, and future research on microalga-derived biodiesel: a critical review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10596-10610. [PMID: 29502258 DOI: 10.1007/s11356-018-1453-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Microalga-derived biodiesel plays a crucial role in the sustainable development of biodiesel in recent years. Literature related to microalga-derived biodiesel had an increasing trend with the expanding research outputs. Based on the Science Citation Index Expanded (SCI-Expanded) of the Web of Science, a bibliometric analysis was conducted to characterize the body of knowledge on microalga-derived biodiesel between 1993 and 2016. From the 30 most frequently used author keywords, the following research hotspots are extracted: lipid preparation from different microalga species, microalga-derived lipid and environmental applications, lipid-producing microalgae cultivation, microalgae growth reactor, and microalga harvest and lipid extraction. Other keywords, i.e., microalga mixotrophic cultivation, symbiotic system between microalga and other oleaginous yeast, microalga genetic engineering, and other applications of lipid-producing microalga are future focal points of research. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Gao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Juan Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Zhang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Qunhui Wang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, China.
| |
Collapse
|
49
|
Ruangsomboon S, Sornchai P, Prachom N. Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Gayathri M, Shunmugam S, Mugasundari AV, Rahman PKSM, Muralitharan G. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains. BIORESOURCE TECHNOLOGY 2018; 247:453-462. [PMID: 28965076 DOI: 10.1016/j.biortech.2017.09.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis.
Collapse
Affiliation(s)
- Manickam Gayathri
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | - Sumathy Shunmugam
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | - Arumugam Vanmathi Mugasundari
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India
| | | | - Gangatharan Muralitharan
- Department of Microbiology, Centre of Excellence in Life Sciences, Bharathidasan University, Palkalaiperur, Tiruchirappalli 620 024, Tamilnadu, India.
| |
Collapse
|