1
|
Zhou P, Li D, Zhang C, Ping Q, Wang L, Li Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171175. [PMID: 38402967 DOI: 10.1016/j.scitotenv.2024.171175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane. WATER RESEARCH 2024; 248:120897. [PMID: 38007883 DOI: 10.1016/j.watres.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The recovery of renewable bioenergy from anaerobic digestion (AD) of sludge is a promising method to alleviate the energy problem. Although methane can be effectively recovered through sludge pretreatment by cation exchange resin (CER), the simultaneous enhancement of hydrogen and methane generation from AD using CER has not been extensively investigated. Herein, the effect of CER on the sequential recovery of hydrogen and methane and the corresponding mechanisms were investigated. When CER is introduced, the maximum increases for the hydrogen and methane production are 104.7 % and 35.3 %, respectively, confirming the sequential enhancement effects of CER on the hydrogen and methane production. Analyses of the variations in the main biochemical components with and without the effect of CER demonstrate that CER promotes sludge organic solubilisation, hydrolysis, and acidification in both hydrogen- and methane-production stages. Moreover, investigations of variations in the solid-liquid interfacial thermodynamics and removal rates of main multivalent metals of sludge reveal that the ion exchange reactions between the CER and sludge in the hydrogen-production stage provide the direct driving force of effective contact between bacteria and organic particulates. Additionally, the residual effect of the CER during methane production reduces the energy barrier for mass transfer and provides a driving force for this transfer. Further analyses of the microbial community structure and metagenomics indicate that CER directly drives the enrichment of hydrogen-producing bacteria (+ 15.1 %) and key genes encoding enzymes in the hydrogen-production stage. Moreover, CER indirectly induces the enrichment of methane-producing anaerobes (e.g. Methanosaeta: + 16.7 %, Methanosarcina: + 316.5 %); enhances the bioconversion of different substrates into methyl-coenzyme M; and promotes the metabolism pathway of acetoclastic process and CO2 reduction in the methane-production stage. This study can provide valuable insights for simultaneously enhancing the production of hydrogen and methane from AD through sequential recovery.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Zhang Y, Zhao W, Li S, Zhang X, Wang S. Unraveling the mechanism of increased synthesis of hydrogen from an anaerobic fermentation by zinc ferrate nanoparticles: Mesophilic and thermophilic situations comparison. BIORESOURCE TECHNOLOGY 2023; 387:129617. [PMID: 37573974 DOI: 10.1016/j.biortech.2023.129617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
In this work, ZnFe2O4 NPs were created using the pyrolysis process, and its effects on thermophilic (TF) and mesophilic (MF) fermentation were examined. In MF, the maximum hydrogen yield (MHY) occurred in the 50 mg/L ZnFe2O4 NPs group (228.01 mL/g glucose), which was 45.24% higher than that of the control group (157.01 mL/g glucose). While in TF, MHY appeared in 100 mg/L ZnFe2O4 NPs was 149.12 mL/g glucose, which was 38.83% higher than the control group (107.41 mL/g glucose). ZnFe2O4 NPs boosted the synthesis of ferredoxin, hydrogenase, and ethanol dehydrogenase by increasing the generation of butyrate in MF and acetate in TF. Moreover, Clostridium sensu stricto 5 and 10 in MF and TF rose by 9.20% and 9.40%, respectively, due to the increased abundance of predominant hydrogen-producing bacteria by ZnFe2O4 NPs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Wenqian Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shiqiang Li
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Tian K, Zhang J, Zhou C, Yang M, Zhang X, Yan X, Zang L. Magnetic nitrogen-doped activated carbon improved biohydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87215-87227. [PMID: 37420156 DOI: 10.1007/s11356-023-28584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Low biological hydrogen (bioH2) production due to non-optimal metabolic pathways occurs frequently. In this work, magnetic nitrogen-doped activated carbon (MNAC) was prepared and added into the inoculated sludge with glucose as substrate to enhance hydrogen (H2) yield by mesophilic dark fermentation (DF). The highest H2 yield appeared in 400 mg/L AC (252.8 mL/g glucose) and 600 mg/L MNAC group (304.8 mL/g glucose), which were 26.02% and 51.94% higher than that of 0 mg/L MNAC group (200.6 mL/g glucose). The addition of MNAC allowed for efficient enrichment of Firmicutes and Clostridium-sensu-stricto-1, accelerating the metabolic pathway shifted towards butyrate type. The Fe ions released by MNAC facilitated electron transfer and favored the reduction of ferredoxin (Fd), thereby obtaining more bioH2. Finally, the generation of [Fe-Fe] hydrogenase and cellular components of H2-producing microbes (HPM) during homeostasis was discussed to understand on the use of MNAC in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China.
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Mengchen Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| |
Collapse
|
5
|
Liu C, Usman M, Ji M, Sha J, Zhou L, Yan B. Response mechanisms of anaerobic fermentative sludge to zinc oxide nanoparticles during medium-chain carboxylates production from waste activated sludge. CHEMOSPHERE 2023; 317:137879. [PMID: 36657575 DOI: 10.1016/j.chemosphere.2023.137879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The conversion of waste activated sludge (WAS) into medium chain carboxylates (MCCs) has attracted much attention, while investigations of the impacts of ZnO nanoparticles (NPs) on this process are sparse. The present study showed that 8 mg/g-TSS of ZnO NPs have little effects on all key steps and the activity of anaerobes, and finally leading to unchanged MCCs production. Although 30 mg/g-TSS of ZnO NPs weakly inhibited the hydrolysis, acidogenesis, and chain elongation process, WAS solubilization was enhanced, thus, the improvement was enough to offset inhibition, also resulting in an insignificant impact on overall MCCs production. However, the improvement with ZnO NPs dosages above 100 mg/g-TSS was not sufficient to offset the biological inhibition, thus inducing negative impact on overall MCCs production. The decline of EPS induced by Zn2+ and generation of excessive reactive oxygen species (ROS) were the main factors responsible for the inhibitory effects of ZnO NPs on lower activity of anaerobes. For chain elongation process, the discriminative Clostridium IV (as MCCs-forming bacteria) with a strong adaptation to ZnO NPs (300 mg/g-TSS) was observed. The present study provided a deep understanding related to the effects of ZnO NPs on the production of MCCs production from WAS and identified a zinc resistance anaerobe, which would be significant for the evaluation of influence and alleviation of inhibition induced by ZnO NPs on the carbon cycle of organic wastes.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA
| | - Mengyuan Ji
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121, Padova, Italy
| | - Jun Sha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, PR China
| |
Collapse
|
6
|
Liu C, Wang H, Usman M, Ji M, Sha J, Liang Z, Zhu L, Zhou L, Yan B. Nonmonotonic effect of CuO nanoparticles on medium-chain carboxylates production from waste activated sludge. WATER RESEARCH 2023; 230:119545. [PMID: 36623384 DOI: 10.1016/j.watres.2022.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The growing applications of CuO nanoparticles (NPs) in industrial and agriculture has increased their concentrations in wastewater and subsequently accumulated in waste activated sludge (WAS), raising concerns about their impact on reutilization of WAS, especially on the medium-chain carboxylates (MCCs) production from anaerobic fermentation of WAS. Here we showed that CuO NPs at 10-50 mg/g-TS can significantly inhibit MCCs production, and reactive oxygen species generation was revealed to be the key factor linked to the phenomena. At lower CuO NPs concentrations (0.5-2.5 mg/g-TS), however, MCCs production was enhanced, with a maximum level of 37% compared to the control. The combination of molecular approaches and metaproteomic analysis revealed that although low dosage CuO NPs (2.5 mg/g-TS) weakly inhibited chain elongation process, they displayed contributive characteristics both in WAS solubilization and transport/metabolism of carbohydrate. These results demonstrated that the complex microbial processes for MCCs production in the anaerobic fermentation of WAS can be affected by CuO NPs in a dosage-dependent manner via regulating microbial protein expression level. Our findings can provide new insights into the influence of CuO NPs on anaerobic fermentation process and shed light on the treatment option for the resource utilization of CuO NPs polluted WAS.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Haiqing Wang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Muhammad Usman
- Bioproducts Science & Engineering Laboratory (BSEL), Department of Biological Systems Engineering, Washington State University (WSU), Richland, WA, USA
| | - Mengyuan Ji
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Jun Sha
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Zhenda Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Lishan Zhu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China
| | - Li Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P R China.
| |
Collapse
|
7
|
Srivastava N, Singh R, Kushwaha D, Mokhtar JA, Abujamel TS, Harakeh S, Haque S, Srivastava M, Mishra PK, Gupta VK. Improved biohydrogen production via graphene oxide supported granular system based on algal hydrolyzate, secondary sewage sludge and bacterial consortia. J Biotechnol 2022; 358:41-45. [PMID: 35970360 DOI: 10.1016/j.jbiotec.2022.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/18/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Biohydrogen production using renewable sources has been regarded as one of the most sustainable ways to develop low-cost and green production technology. In order to achieve this objective, herein biohydrogen production has been conducted using the combination of untreated secondary sewage sludge (Sss), algal biomass hydrolyzate (Abh), graphene oxide (GO) and bacterial consortia that forms a granular system. Thus, naturally formed granular system produced cumulative H2 of 1520mL/L in 168h with the maximum production rate of 13.4mL/L/h in 96h at initial pH 7.0, and optimum temperature of 37oC. It is noticed that the combination of Abh, Sss and GO governed medium showed 42.05% higher cumulative H2 production along with 22.71% higher production rate as compared to Abh and Sss based H2 production medium. The strategy presented herein may find potential applications for the low-cost biohydrogen production using waste biomasses including Sss and Abh.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Deepika Kushwaha
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jawahir A Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia; Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
8
|
Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas.
Collapse
|
9
|
Ma L, Wu G, Yang J, Huang L, Phurbu D, Li WJ, Jiang H. Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Front Microbiol 2021; 12:569020. [PMID: 34367076 PMCID: PMC8334365 DOI: 10.3389/fmicb.2021.569020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Investigating the distribution of hydrogen-producing bacteria (HPB) is of great significance to understanding the source of biological hydrogen production in geothermal environments. Here, we explored the compositions of HPB populations in the sediments of hot springs from the Daggyai, Quzhuomu, Quseyongba, and Moluojiang geothermal zones on the Tibetan Plateau, with the use of Illumina MiSeq high-throughput sequencing of 16S rRNA genes and hydA genes. In the present study, the hydA genes were successfully amplified from the hot springs with a temperature of 46–87°C. The hydA gene phylogenetic analysis showed that the top three phyla of the HPB populations were Bacteroidetes (14.48%), Spirochaetes (14.12%), and Thermotogae (10.45%), while Proteobacteria were absent in the top 10 of the HPB populations, although Proteobacteria were dominant in the 16S rRNA gene sequences. Canonical correspondence analysis results indicate that the HPB community structure in the studied Tibetan hot springs was correlated with various environmental factors, such as temperature, pH, and elevation. The HPB community structure also showed a spatial distribution pattern; samples from the same area showed similar community structures. Furthermore, one HPB isolate affiliated with Firmicutes was obtained and demonstrated the capacity of hydrogen production. These results are important for us to understand the distribution and function of HPB in hot springs.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Dorji Phurbu
- Tibet Plateau Institute of Biology, Lhasa, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
10
|
Gao P, Guo L, Sun J, Wang Y, She Z, Gao M, Zhao Y, Jin C. Effect of alkyl polyglycosides on the performance of thermophilic bacteria pretreatment for saline waste sludge hydrolysis. BIORESOURCE TECHNOLOGY 2020; 296:122307. [PMID: 31675649 DOI: 10.1016/j.biortech.2019.122307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, alkyl polyglycosides (APG) was used to further accelerate the hydrolysis of saline waste sludge with thermophilic bacteria (TB) pretreatment. In the presence of 0.4 g/g TSS APG, the concentrations of soluble chemical oxygen demand (SCOD), soluble carbohydrate and soluble protein in dissolved organic matters (DOM) were 0.4, 2.4 and 1.3 times of that without APG addition, respectively. Excitation emission matrix (EEM) fluorescence spectroscopy revealed that the addition of APG led to the increase of soluble microbial materials and the decrease of fulvic acid-like substances in DOM, which was beneficial for the subsequent process of anaerobic digestion. Using APG promoted the releasing of enzymes trapped in saline waste sludge and improved the activity of enzymes during hydrolysis. The activities of α-glucosidase and protease increased by 8.8% and 21.3% respectively in the presence of 0.4 g/g TSS APG comparing no APG addition.
Collapse
Affiliation(s)
- Pengtao Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jian Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
11
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
12
|
Sasaki K, Sasaki D, Tsuge Y, Morita M, Kondo A. Changes in the microbial consortium during dark hydrogen fermentation in a bioelectrochemical system increases methane production during a two-stage process. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:173. [PMID: 29977334 PMCID: PMC6013992 DOI: 10.1186/s13068-018-1175-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bioelectrochemical systems (BESs) are an innovative technology developed to influence conventional anaerobic digestion. We examined the feasibility of applying a BES to dark hydrogen fermentation and its effects on a two-stage fermentation process comprising hydrogen and methane production. The BES used low-cost, low-reactivity carbon sheets as the cathode and anode, and the cathodic potential was controlled at - 1.0 V (vs. Ag/AgCl) with a potentiostat. The operation used 10 g/L glucose as the major carbon source. RESULTS The electric current density was low throughout (0.30-0.88 A/m2 per electrode corresponding to 0.5-1.5 mM/day of hydrogen production) and water electrolysis was prevented. At a hydraulic retention time of 2 days with a substrate pH of 6.5, the BES decreased gas production (hydrogen and carbon dioxide contents: 52.1 and 47.1%, respectively), compared to the non-bioelectrochemical system (NBES), although they had similar gas compositions. In addition, a methane fermenter (MF) was applied after the BES, which increased gas production (methane and carbon dioxide contents: 85.1 and 14.9%, respectively) compared to the case when the MF was applied after the NBES. Meta 16S rRNA sequencing revealed that the BES accelerated the growth of Ruminococcus sp. and Veillonellaceae sp. and decreased Clostridium sp. and Thermoanaerobacterium sp., resulting in increased propionate and ethanol generation and decreased butyrate generation; however, unknowingly, acetate generation was increased in the BES. CONCLUSIONS The altered redox potential in the BES likely transformed the structure of the microbial consortium and metabolic pattern to increase methane production and decrease carbon dioxide production in the two-stage process. This study showed the utility of the BES to act on the microbial consortium, resulting in improved gas production from carbohydrate compounds.
Collapse
Affiliation(s)
- Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
| | - Yota Tsuge
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Masahiko Morita
- Environmental Chemistry Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba-ken 270-1194 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
13
|
Liu X, Han Z, Yang J, Ye T, Yang F, Wu N, Bao Z. Review of enhanced processes for anaerobic digestion treatment of sewage sludge. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1755-1315/113/1/012039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Yang G, Wang J. Kinetics and microbial community analysis for hydrogen production using raw grass inoculated with different pretreated mixed culture. BIORESOURCE TECHNOLOGY 2018; 247:954-962. [PMID: 30060435 DOI: 10.1016/j.biortech.2017.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/08/2023]
Abstract
In this study, five pretreatment methods (heat shock, acid, base, aeration and gamma radiation) were applied for enriching hydrogen producers from anaerobically digested sludge, aiming to compare their hydrogen fermentation performance using raw ryegrass as substrate. Results showed that various pretreatment methods caused great variations on grass hydrogen fermentation performance. Acid pretreatment was most efficient compared with other tested pretreatment methods, with relevant hydrogen yield of 64.4mL/g dry grass and organics removal of 31.4%. Kinetics results showed that the first-order kinetic model fitted hydrogen evolution better than the modified Gompertz model. Microbiological analysis showed that various pretreatment methods caused great variations on microbial activity and microbial community composition. Clostridium and Enterococcus were two dominant genera, while relative abundances of these two genera varied greatly for different pretreated samples. Difference in microbial activity and microbial community distribution induced by the pretreatment methods might directly cause different ryegrass fermentation performance.
Collapse
Affiliation(s)
- Guang Yang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
15
|
Fuess LT, Ferraz ADN, Machado CB, Zaiat M. Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: The key role of lactate. BIORESOURCE TECHNOLOGY 2018; 247:426-433. [PMID: 28965073 DOI: 10.1016/j.biortech.2017.09.121] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 05/15/2023]
Abstract
This study aimed to better understand the role of different microbial groups and the determining fermentation pathways in a biohydrogen (bioH2)-producing reactor fed with sugarcane vinasse by using next-generation sequencing and principal component analysis (PCA). Both microbial structure and dynamics were characterized. The highest bioH2 production levels were associated with the Thermoanaerobacterium genus, whilst lactate-producing bacteria comprised the dominant genera (e.g. Lactobacillus and Leuconostoc) within the reactor at both stable and unstable bioH2-producing periods. PCA further revealed that the fermentation of lactate played a dual role in the reactor, as both bioH2-producing (acetate+lactate→butyrate+bioH2) and non-bioH2-producing (lactate→propionate+acetate) routes could be observed. Overall, the results suggested that lactate is the primary alternative carbon source in vinasse-fed systems subjected to carbohydrate-shortage conditions.
Collapse
Affiliation(s)
- Lucas Tadeu Fuess
- Laboratório de Processos Biológicos (LPB), Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo 13563-120, Brazil.
| | - Antônio Djalma Nunes Ferraz
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, 10000, Polo II de Alta Tecnologia, P.O. Box 6170, Campinas, São Paulo 13083-970, Brazil
| | - Carla Botelho Machado
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Rua Giuseppe Máximo Scolfaro, 10000, Polo II de Alta Tecnologia, P.O. Box 6170, Campinas, São Paulo 13083-970, Brazil
| | - Marcelo Zaiat
- Laboratório de Processos Biológicos (LPB), Escola de Engenharia de São Carlos (EESC), Universidade de São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| |
Collapse
|
16
|
The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor. Sci Rep 2017; 7:39289. [PMID: 28091530 PMCID: PMC5238401 DOI: 10.1038/srep39289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 11/12/2022] Open
Abstract
Anammox is a cost-effective process to treat nitrogenous wastewater. In this work, excitation–emission matrix (EEM) fluorescence spectroscopy was used to characterize the intracellular and extracellular substances of anammox sludge during reactor operation of 276 days. Four main fluorophores were identified from the intracellular substances. Two main protein-like fluorophores were identified from the extracellular substances. Correlation analysis revealed that intracellular 420 peak and humic-like peak had strong correlation with nitrogen removal rate. The two intracellular protein-like peaks had high correlation with MLVSS and MLVSS growth rate. Correlation analysis between different fluorophores discovered that the two peaks in each of these three groups—two intracellular protein-like peaks, two humic acid-like peaks and the two extracellular protein-like peaks had strong intercorrelation, which gave evidence of their homology. A specific method for fluorescence monitoring of anammox reactor were put forward, which included typical fluorescence indexes and their possible values for different operation phases.
Collapse
|
17
|
Wan J, Jing Y, Zhang S, Angelidaki I, Luo G. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis. WATER RESEARCH 2016; 102:524-532. [PMID: 27420808 DOI: 10.1016/j.watres.2016.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/06/2016] [Accepted: 07/02/2016] [Indexed: 05/25/2023]
Abstract
The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased from 19.2 mL H2/gVSS at 37 °C and pH 10-80.1 mL H2/gVSS at 55 °C and pH 10. However, the production of volatile fatty acids (mainly acetate) was higher at 37 °C and pH 10 by comparison with 55 °C and pH 10. Hydrogen consumption due to homoacetogenesis was observed at 37 °C and pH 10 but not 55 °C and pH 10. Higher expression levels of genes relating with homoacetogenesis and lower expression levels of genes relating with hydrogen production were found at 37 °C and pH 10 compared to 55 °C and pH 10. The continuous experiment demonstrated the steady-state hydrogen yield of WAS was comparable to that obtained from batch experiments at 55 °C and pH 10, and homoacetogenesis was still inhibited. However, the steady-state hydrogen yield of WAS (6.5 mL H2/gVSS) was much lower than that (19.2 mL H2/gVSS) obtained from batch experiments at 37 °C and pH 10 due to the gradual enrichment of homoacetogens as demonstrated by qPCR analysis. The high-throughput sequencing analysis of 16S rRNA genes showed that the abundance of genus Clostridium, containing several homoacetogens, was 5 times higher at 37 °C and pH 10 than 55 °C and pH 10.
Collapse
Affiliation(s)
- Jingjing Wan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
| | - Yuhang Jing
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
18
|
Su C, Li W, Lu Y, Chen M, Huang Z. Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:51-58. [PMID: 27107235 DOI: 10.1016/j.jhazmat.2016.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/28/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
The effect of a heterogeneous Fenton-like pre-treatment on the anaerobic processes, characteristics and microbial community of sludge was investigated for traditional Chinese medicine (TCM) wastewater containing rhein. When the concentrations of rhein were 50mg/L and 100mg/L, the toxic effect was physiological toxicity for anaerobic granular sludge. Using a single double circle (DC) reactor for the treatment of TCM wastewater containing rhein at concentrations of 15-20mg/L, the chemical oxygen demand (COD) removal rate was 69%, and coenzyme F420 was nearly undetectable in the 3D-excitation-emission matrix (EEM) spectra of soluble microbial products (SMP). The abundances of Methanoregula, Methanobacterium, Methanosphaerula were only 5.57%, 2.39% and 1.08% in the DC reactor, respectively. TCM wastewater containing rhein could be successfully treated by the combination of the heterogeneous Fenton-like pre-treatment and the DC reactor processes, and the COD removal rate reached 95%. Meanwhile, the abundances of Methanoregula, Methanobacterium, Methanosphaerula increased to 22.5%, 18.5%, and 13.87%, respectively. For the bacterial community, the abundance of Acidobacteria_Gp6 decreased from 6.99% to 1.07%, while the abundances of Acidobacteria_Gp1 and Acidobacteria_Gp2 increased from 1.61% to 6.55% and from 1.28% to 5.87%, respectively.
Collapse
Affiliation(s)
- Chengyuan Su
- School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Weiguang Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Yuxiang Lu
- School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Zhi Huang
- School of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
19
|
Guo WQ, Zheng HS, Li S, Ho SH, Yang SS, Feng XC, Chang JS, Wang XJ, Ren NQ. Promotion effects of ultrasound on sludge biodegradation by thermophilic bacteria Geobacillus stearothermophilus TP-12. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. BIORESOURCE TECHNOLOGY 2015; 192:60-67. [PMID: 26011692 DOI: 10.1016/j.biortech.2015.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
A mesophilic hydrogen-producing strain, Clostridium sartagoforme FZ11, had been newly isolated from cow dung compost acclimated using microcrystalline cellulose (MCC) for at least 30 rounds in an anaerobic bioreactor, and identified by the 16S rDNA gene sequencing, which could directly utilized various carbon sources, especially cellulosic biomass, to produce hydrogen. The maximum hydrogen yields from MCC (10 g/l) and carboxymethyl cellulose (CMC, 10 g/l) were 77.2 and 64.6 ml/g, separately. Furthermore, some key parameters of affecting hydrogen production from raw corn stalk were also optimized. The maximal hydrogen yield and substrate degradation rate from raw corn stalk were 87.2 ml/g and 41.2% under the optimized conditions with substrate concentration of 15 g/l, phosphate buffer of 0.15 M, urea of 6 g/l and initial pH of 6.47 at 35 °C. The result showed that the strain FZ11 would be an ideal candidate to directly convert cellulosic biomass into bio-hydrogen without substrate pretreatment.
Collapse
Affiliation(s)
- Jing-Nan Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yan-Hong Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| | - Hui-Qin Zheng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China; College of Chemistry and Environment, Henan Institute of Education, Zhengzhou 450046, PR China
| | - Yao-Ting Fan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Hong-Wei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
21
|
Patel AK, Debroy A, Sharma S, Saini R, Mathur A, Gupta R, Tuli DK. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3. BIORESOURCE TECHNOLOGY 2015; 175:291-297. [PMID: 25459835 DOI: 10.1016/j.biortech.2014.10.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Hydrogen producing bacteria IODB-O3 was isolated from sludge and identified as Clostridium sp. by 16S rDNA gene analysis. In this study, biohydrogen production process was developed using low-cost agro-waste. Maximum H2 was produced at 37°C and pH 8.5. Maximum H2 yield was obtained 2.54±0.2mol-H2/mol-reducing sugar from wheat straw pre-hydrolysate (WSPH) and 2.61±0.1mol-H2/mol-reducing sugar from pre-treated wheat straw enzymatic-hydrolysate (WSEH). The cumulative H2 production (ml/L), 3680±105 and 3270±100, H2 production rate (ml/L/h), 153±5 and 136±5, and specific H2 production (ml/g/h), 511±5 and 681±10 with WSPH and WSEH were obtained, respectively. Biomass pre-treatment via steam-explosion generates ample amount of WSPH which remains unutilized for bioethanol production due to non-availability of efficient C5-fermenting microorganisms. This study shows that Clostridium sp. IODB-O3 is capable of utilizing WSPH efficiently for biohydrogen production. This would lead to reduced economic constrain on the overall cellulosic ethanol process and also establish a sustainable biohydrogen production process.
Collapse
Affiliation(s)
- Anil Kumar Patel
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India.
| | - Arundhati Debroy
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| | - Sandeep Sharma
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| | - Reetu Saini
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| | - Deepak Kumar Tuli
- DBT-IOC Centre for Advanced Bio-Energy Research, Indian Oil Corporation Ltd, R&D Centre, Sector-13, Faridabad 121007, India
| |
Collapse
|