1
|
Padhi D, Kashyap S, Mohapatra RK, Dineshkumar R, Nayak M. Microalgae-based flue gas CO 2 sequestration for cleaner environment and biofuel feedstock production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35958-8. [PMID: 39888525 DOI: 10.1007/s11356-025-35958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Anthropogenic CO2 emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO2 sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO2 sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO2 biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO2 concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NOx, SOx, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO2 biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO2 fixation rates range from 80 mg L-1 day-1 to over 578 mg L-1 day-1, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO2 sequestration and provides a comprehensive review based on international interest in this green technology.
Collapse
Affiliation(s)
- Diptymayee Padhi
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ramalingam Dineshkumar
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
2
|
Amirian V, Russel M, Yusof ZNB, Chen JE, Movafeghi A, Kosari-Nasab M, Zhang D, Szpyrka E. Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution. World J Microbiol Biotechnol 2025; 41:24. [PMID: 39762597 DOI: 10.1007/s11274-024-04243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms. Thus, environmentally friendly and sustainable solutions for their removal are urgently needed. In this context, both natural and engineered bacterial and algal communities have played a crucial role in the degradation of various phthalic acid esters present in water and soil. When algae-bacteria co-culture is compared to a singular algae or bacteria system, this symbiotic system shows superior performance in the removal of dibutyl phthalates and diethyl phthalates from synthetic wastewater. This review provides an optimistic outlook for co-culture systems by in-depth examining single microorganisms, namely bacteria and algae, as well as algae-bacterial consortiums for phthalates degradation, which will draw attention to species co-existence for the removal of various pollutants from the environment. In addition, further development and research, particularly on the mechanisms, genes involved in the degradation of phthalic acid esters, and interactions between bacterial and algal species, will lead to the discovery of more adaptable species as well as the production of targeted species to address the environmental pollution crisis and provide a green, efficient, and sustainable approach to environmental protection. Discrepancies in knowledge and potential avenues for exploration will enhance the existing body of literature, enabling researchers to investigate this field more comprehensively.
Collapse
Affiliation(s)
- Veghar Amirian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Mohammad Russel
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China.
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Putra University Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Jit Ern Chen
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Bandar Sunway, 47500, Malaysia
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Morteza Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Dayong Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland
| |
Collapse
|
3
|
Wu J, Peng H, Cheng P, Liu H, Zhang Y, Gong M. Microbial degradation mechanisms, degradation pathways, and genetic engineering for pyrethroids: current knowledge and future perspectives. Crit Rev Toxicol 2025; 55:80-104. [PMID: 39704721 DOI: 10.1080/10408444.2024.2433632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Pyrethroids are synthetic products derived from natural pyrethroids present in flowers and are extensively used as pesticides for agriculture, animal husbandry, and household pest control. However, excessive and prolonged usage of pyrethroid insecticides can result in adverse effects on both non-target and target species. Therefore, effective technologies need to be developed to remove pyrethroid contamination and ensure environmental safety. Microbial remediation of various pesticide contaminants is highly practicable, low cost, and eco-friendly compared to physical and chemical methods. Different microbiota are screened to eliminate or degrade the contaminants. Microbial remediation technology utilizes the natural ability of microbiota to treat contaminated areas. Previous studies have mostly focused on the isolation and screening of microorganisms for pyrethroid biodegradation, as well as on the kinetics and pathways of pyrethroid biodegradation. In order to develop effective bioremediation strategies, further research based on molecular biology and bioengineering is required for a comprehensive exploration of pyrethroid-degrading microorganisms. To date, the microbial degradation of pyrethroid pesticides and the underlying mechanisms have been rarely reviewed. Therefore, this critical review encompasses the latest knowledge on synthetic pyrethroids from structural properties, bio-toxicity, and characterization of microbial degradation strains to degradation characteristics, intrinsic mechanisms, and microbial degradation pathways. The future of microbial remediation depends on combining advanced gene technology with traditional bioremediation methods to sustainably degrade pesticide contaminants. It also summarizes the factors affecting degradation efficiency and concludes with prospects, along with current challenges and limitations.
Collapse
Affiliation(s)
- Jiahui Wu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Hui Peng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China, World Health Organization Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Ye Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| |
Collapse
|
4
|
Akca MS, Kinaci OK, Inanc B. Improving light availability and creating high-frequency light-dark cycles in raceway ponds through vortex-induced vibrations for microalgae cultivation: a fluid dynamic study. Bioprocess Biosyst Eng 2024; 47:1863-1874. [PMID: 39133298 PMCID: PMC11438835 DOI: 10.1007/s00449-024-03074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Limited light availability due to insufficient vertical mixing strongly reduces the applicability of raceway ponds (RWPs). To overcome this and create light-dark (L/D) cycles for enhanced biomass production through improved vertical mixing, vortex-induced vibration (VIV) system was implemented by the authors in a previous study to an existing pilot-scale RWP. In this study, experimental characterization of fluid dynamics for VIV-implemented RWP is carried out. Particle image velocimetry (PIV) technique is applied to visualize the flow. The extents of the vertical mixing due to VIV and the characteristics of L/D cycles were examined by tracking selected particles. Pond depth was hypothetically divided into three zones, namely dark, light Iimited and light saturated for detailed analysis of cell trajectories. It has been observed that VIV cylinder oscillation can efficiently facilitate the transfer of cells from light-limited to light-saturated zones. Among the cells that were tracked, 44% initially at dark zone entered the light-limited zone and 100% of initially at light-limited zone entered the light-saturated zone. 33% of all tracked cells experienced high-frequency L/D cycles with an average frequency of 35.69 s-1 and 0.49 light fraction. The impact of VIV was not discernible in the deeper sections of the pond, due to constrained oscillation amplitudes. Our findings suggest that the approximately 20% increase in biomass production reported in our previous study can be attributed to the synergistic effects of enhanced L/D cycle frequencies and improved light availability resulting from the transfer of cells from dark to light-limited zones. To further enhance the effectiveness of VIV, design improvements were developed. It was concluded that light availability could be significantly improved with the presented method for more effective use of RWPs.
Collapse
Affiliation(s)
- Mehmet Sadik Akca
- Department of Environmental Engineering Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Omer Kemal Kinaci
- Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Mechatronics Engineering, Istanbul Technical University, Istanbul, Turkey
- Marine Cybernetics Advanced Vehicle Technologies (MARNETICS), Istanbul, Turkey
| | - Bulent Inanc
- Department of Environmental Engineering Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
De R. Comparative dynamic optimization study of batch hydrothermal liquefaction of two microalgal strains for economic bio-oil production. BIORESOURCE TECHNOLOGY 2024; 398:130523. [PMID: 38437962 DOI: 10.1016/j.biortech.2024.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
This work presents dynamic optimization strategies of batch hydrothermal liquefaction of two microalgal species, Aurantiochytrium sp. KRS101 and Nannochloropsis sp. to optimize the reactor temperature profiles. Three dynamic optimization problems are solved to maximize the endpoint biocrude yield, minimize the final time, and minimize the reactor thermal energy. The biocrude maximization and time minimization problems demonstrated 11% and 6.18% increment in the optimal biocrude yields and reduction of 78.2% and 61.66% in batch times compared to the base cases for the microalgae with higher lipid and protein fractions, respectively. The energy minimization problem revealed a significant reduction in the reactor thermal energies to generate the targeted biocrude yields compared to the biocrude maximization. Therefore, the identified optimal temperature trajectories outperformed the conventional fixed temperature profiles and could improve the overall economics of the batch bio-oil production from the algal-based biorefineries by significantly enhancing the reactor performance.
Collapse
Affiliation(s)
- Riju De
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, K. K. Birla Goa campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
6
|
Thapa BS, Pandit S, Mishra RK, Joshi S, Idris AM, Tusher TR. Emergence of per- and poly-fluoroalkyl substances (PFAS) and advances in the remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170142. [PMID: 38242458 DOI: 10.1016/j.scitotenv.2024.170142] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
A group of fluorinated organic molecules known as per- and poly-fluoroalkyl substances (PFAS) have been commonly produced and circulated in the environment. PFAS, owing to multiple strong CF bonds, exhibit exceptional stability and possess a high level of resistance against biological or chemical degradation. Recently, PFAS have been identified to cause numerous hazardous effects on the biotic ecosystem. As a result, extensive efforts have been made in recent years to develop effective methods to remove PFAS. Adsorption, filtration, heat treatment, chemical oxidation/reduction, and soil washing are a few of the physicochemical techniques that have shown their ability to remove PFAS from contaminated matrixes. However these methods also carry significant drawbacks, including the fact that they are expensive, energy-intensive, unsuitable for in-situ treatment, and requirement to be carried under dormant conditions. The metabolic products released upon PFAS degradation are largely unknown, despite the fact that thermal disintegration methods are widely used. In contrast to physical and chemical methods, biological degradation of PFAS has been regarded as efficient method. However, PFAS are difficult to instantly and completely metabolize through biological methods due to the limitations of biocatalytic mechanisms. Nevertheless, cost, easy-to-operate and environmentally safe are some of the advantages over its counterpart. The present review comprehensively discusses the occurrence of PFAS, the state-of-the science of remediation technologies and approaches applied, and the remediation challenges. The article also focuses on the future research directions toward the development of effective methods for PFAS-contaminated site in-situ treatment.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Rahul Kumar Mishra
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201310, UP, India
| | - Sanket Joshi
- Amity Institute of Microbial Technology, Amity University Rajasthan, Kant Kalwar, NH 11C, Jaipur, Rajasthan 303002, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Tanmoy Roy Tusher
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
| |
Collapse
|
7
|
Nguyen VT, Le VA, Do QH, Le TNC, Vo TDH. Emerging revolving algae biofilm system for algal biomass production and nutrient recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168911. [PMID: 38016564 DOI: 10.1016/j.scitotenv.2023.168911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Toward the direction of zero‑carbon emission and green technologies for wastewater treatment, algae-based technologies are considered promising candidates to deal with the current situation of pollution and climate change. Recent developments of algae-based technologies have been introduced in previous studies in which their performances were optimized for wastewater treatment and biomass production. Among these, revolving algae biofilm (RAB) reactors have been proven to have a great potential in high biomass productivity, simple harvesting method, great CO2 transfer rate, high light-use efficiency, heavy metal capture, nutrient removal, and acid mine drainage treatment in previous studies. However, there were few articles detailing RAB performance, which concealed its enormous potential and diminished interest in the model. Hence, this review aims to reveal the major benefit of RAB reactors in simultaneous wastewater treatment and biomass cultivation. However, there is still a lack of research on aspects to upgrade this technology which requires further investigations to improve performance or fulfill the concept of circular economy.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam.
| | - Vu-Anh Le
- Department of Environmental Engineering, Zhongli District, Chung Yuan Christian University, No. 200, Zhongbei Road, Taoyuan City 32023, Taiwan
| | - Quoc-Hoang Do
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Ngoc-Chau Le
- Institute for Environment and Resources (IER), Ho Chi Minh City 700000, Viet Nam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
8
|
Sutherland DL, Burke J. Modifying filamentous algae nutrient scrubbers for improved wastewater treatment and harvestability - comparison with microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119339. [PMID: 37883837 DOI: 10.1016/j.jenvman.2023.119339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Algae have been well studied for their abilities to treat wastewater, and several types of treatment systems have been demonstrated at a range of scales. High Rate Algae Ponds (HRAP) are a microalgae-based system and Filamentous Algae Nutrient Scrubbers (FANS) a filamentous algae-based system. For FANS, nutrient removal rates are typically lower and more variable than HRAPs, while HRAPs have lower productivity and poor harvestability. This study investigated if modifying a FANS to mimic HRAPs (using high rate algae mesocosms HRAM), with respect to hydraulic retention time (HRT) and smaller footprint, overcomes FANS limitations, while increasing wastewater treatment and resource recovery compared to HRAPs. Biomass productivity on the FANS (10.5 ± 2.9 g m-2 d-1) and FANS with CO2 addition (19.0 ± 4.8 g m-2 d-1) were significantly higher (p < 0.01) compared to the HRAMs (6.7 ± 1.4 g m-2 d-1) and HRAMs with CO2 addition (8.1 ± 1.2 g m-2 d-1). Under phosphorus replete conditions, biomass production was significantly higher on FANS (44.8 ± 14.4 g m-2 d-1) than HRAMs (5.0 ± 0.6 g m-2 d-1). Effluent quality (nutrient removal) was significantly higher (p < 0.05) for FANS compared to HRAMS, regardless of treatment. For harvesting, FANS (2.9-41%) yielded significantly higher (p < 0.01) percentage solids with, and, without dewatering/gravity harvesting compared to the HRAM (0.04-0.11%). Modifying the operation of the FANS to mimic longer HRT of HRAMs resulted in higher areal biomass productivity and nutrient removal in the FANS than the HRAM, regardless of treatment. The use of filamentous algae on FANS greatly improved the percentage solids yield in the harvested biomass without the need for energy intensive harvesting techniques. Further investigations need to be undertaken to determine if benefits will be realised at fullscale.
Collapse
Affiliation(s)
| | - Joel Burke
- Global Algae Innovations, 4473 Pahee Street, 96766, Lihue, Hawaii, USA
| |
Collapse
|
9
|
Koley A, Mukhopadhyay P, Gupta N, Singh A, Ghosh A, Show BK, GhoshThakur R, Chaudhury S, Hazra AK, Balachandran S. Biogas production potential of aquatic weeds as the next-generation feedstock for bioenergy production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111802-111832. [PMID: 37840077 DOI: 10.1007/s11356-023-30191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
Aquatic weeds have exceptionally high reproduction rates, are rich in cellulose and hemicellulose, and contain a negligible amount of lignin, making them an ideal crop for the next generation of biofuels. Previously reported studies proposed that water hyacinth, water lettuce, common duckweeds, and water spinach can be managed or utilized using different advanced techniques; from them, anaerobic digestion is one of the feasible and cost-effective techniques to manage these biowastes. The present study was carried out to investigate the potential of utilizing four common aquatic weed species (water hyacinth, water lettuce, common duckweeds, and water spinach) as substrates for anaerobic digestion in order to produce biogas for use in biofuels. The high reproduction rates and high cellulose and hemicellulose content, coupled with low lignin content, of these aquatic weeds make them ideal candidates for this purpose. The study evaluated the feasibility of using anaerobic digestion as a management technique for these aquatic weeds, which are often considered invasive and difficult to control. The results from various studies indicate that these aquatic weeds are productive feedstock options for anaerobic digestion, yielding a high biogas output. Among the aquatic weeds studied, water hyacinth, water lettuce, and common duckweeds exhibit higher methane production compared to water spinach. The study provides an overview of the characteristics and management strategies of these aquatic weeds in relation to biogas production, with possible future developments in the field.
Collapse
Affiliation(s)
- Apurba Koley
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Purbali Mukhopadhyay
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Nitu Gupta
- Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam, India
| | - Ananya Singh
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Anudeb Ghosh
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Binoy Kumar Show
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Richik GhoshThakur
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Shibani Chaudhury
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India
| | - Amit Kumar Hazra
- Department of Lifelong Learning and Extension, Socio-Energy Lab, Visva-Bharati, Sriniketan, West-Bengal, India
| | - Srinivasan Balachandran
- Bio-Energy Laboratory, Department of Environmental Studies, Institute of Science (Siksha- Bhavana), Visva-Bharati, Santiniketan, West-Bengal, India.
| |
Collapse
|
10
|
Shen Y, Chen B, Wang S, Li A, Ji B. Necessity of stirring for outdoor microalgal-bacterial granular sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118816. [PMID: 37598492 DOI: 10.1016/j.jenvman.2023.118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
As a green process, microalgal-bacterial granular sludge (MBGS) process shows talents in achieving pollutant removal, resource recovery and carbon neutralization. However, when it comes to application, the adequate mixing of MBGS and substrate should be adopted theoretically. Therefore, this study devoted to address the necessity of stirring for MBGS in municipal wastewater treatment. Outdoor performances showed that stirring significantly enhanced both of the photosynthetic efficiency and biomass productivity of MBGS with almost 2-fold increase as compared to non-stirred MBGS, while the average pore size and microalgae-to-bacteria ratio also increased. Consequently, stirring acted as a pivotal role in accelerating pollutants removal, with removals of organics (89.89% COD) and nutrients (99.22% NH4+-N, 92.15% PO43--P) reaching peak levels at 2 h and 6 h, respectively, while removals of organics (87.50% COD) and nutrients (86.11% NH4+-N, 86.76% PO43--P) removal peaked at 8 h for non-stirred MBGS. The improved granule characteristics and microbial compositions due to the stirring were found to be favorable for MBGS to adapting to the changeable weather. Based on the above results, the possible underlying mechanisms of stirring for improving MBGS were illustrated. Overall, stirring positively impacted the photosynthetic efficiency, biomass productivity, pollutant removal and microbial structure for MBGS. This study gains knowledge on stirred MBGS process under outdoor conditions for its future practical application.
Collapse
Affiliation(s)
- Yao Shen
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingheng Chen
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
11
|
Koley A, Mukhopadhyay P, Gupta N, Singh A, Ghosh A, Show BK, Chaudhury S, Hazra AK, Balachandran S. Biogas production potential of aquatic weeds as the next-generation feedstock for Bioenergy production: A Review.. [DOI: 10.21203/rs.3.rs-2676987/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Abstract
Aquatic weeds have exceptionally high reproduction rates, are rich in cellulose and hemicellulose, and contain a negligible amount of lignin, making them an ideal crop for the next generation of biofuels. Previously reported studies proposed that water hyacinth, water lettuce, common duckweeds, and water spinach can be managed or utilized using different advanced techniques, while anaerobic digestion is one of the feasible and cost-effective techniques to manage these biowastes. The present study was carried out to investigate the potential of utilizing four common aquatic weed species (water hyacinth, water lettuce, common duckweeds, and water spinach) as substrates for anaerobic digestion in order to produce biogas. The high reproduction rates, high cellulose and hemicellulose content, coupled with low lignin content, of these aquatic weeds make them ideal candidates for this purpose. The study evaluated the feasibility of anaerobic digestion as a management method for these aquatic weeds, which are often considered invasive and difficult to control. The study provides an overview of the characteristics and management strategies of these aquatic weeds in relation to biogas production, with possible future developments in the field.
Collapse
|
12
|
Rezvani F, Rostami K. Photobioreactors for utility-scale applications: effect of gas-liquid mass transfer coefficient and other critical parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27644-4. [PMID: 37247144 DOI: 10.1007/s11356-023-27644-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Cultivation of microalgae and controlling its growth and performance in closed photobioreactors (PBRs) are easier than open pond systems for wastewater treatment. The performance of PBRs is influenced by geometry, hydrodynamic behavior, and mass transfer. Horizontal and vertical configurations as common designs of PBR are reviewed based on their features, advantages, and disadvantages. However, vertically operated PBRs like bubble columns are preferably used for utility-scale applications of microalgae-based processes. Moreover, an appropriate reactor design reduces the inhibitory effect of dissolved oxygen concentration produced by microalgae and consequently increases the level of available CO2 in the medium. Medium properties, superficial gas velocity, gas holdup, bubble sizes, shear stress, mixing time, sparger design, and the ratio of inner diameter to effective height are shown to influence the overall volumetric mass transfer coefficient (KLa) and PBR's performance. The vertical PBRs like bubble columns provide a high mass transfer, a short liquid circulation time, and a long frequency of light/dark cycle for utility application of microalgae. Different flow regimes are obtained in PBRs based on the gas flow rate, inner diameter, and medium properties. Hydraulic retention time as the main operational parameter is determined in a batch mode for continuous wastewater treatment.
Collapse
Affiliation(s)
- Fariba Rezvani
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
| | - Khosrow Rostami
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran
| |
Collapse
|
13
|
Li Q, Xu Y, Liang C, Peng L, Zhou Y. Nitrogen removal by algal-bacterial consortium during mainstream wastewater treatment: Transformation mechanisms and potential N 2O mitigation. WATER RESEARCH 2023; 235:119890. [PMID: 36958220 DOI: 10.1016/j.watres.2023.119890] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
This work investigated nitrogen transformation pathways of the algal-bacterial consortium as well as its potential in reducing nitrous oxide (N2O) emission in enclosed, open and aerated reactors. The results confirmed the superior ammonium removal performance of the algal-bacterial consortium relative to the single algae (Chlorella vulgaris) or the activated sludge, achieving the highest efficiency at 100% and the highest rate of 7.34 mg N g MLSS-1 h-1 in the open reactor with glucose. Enhanced total nitrogen (TN) removal (to 74.6%) by the algal-bacterial consortium was achieved via mixotrophic algal assimilation and bacterial denitrification under oxygen-limited and glucose-sufficient conditions. Nitrogen distribution indicated that ammonia oxidation (∼41.8%) and algal assimilation (∼43.5%) were the main pathways to remove ammonium by the algal-bacterial consortium. TN removal by the algal-bacterial consortium was primarily achieved by algal assimilation (28.1-40.8%), followed by bacterial denitrification (2.9-26.5%). Furthermore, the algal-bacterial consortium contributed to N2O mitigation compared with the activated sludge, reducing N2O production by 35.5-55.0% via autotrophic pathways and by 81.0-93.6% via mixotrophic pathways. Nitrogen assimilation by algae was boosted with the addition of glucose and thus largely restrained N2O production from nitrification and denitrification. The synergism between algae and bacteria was also conducive to an enhanced N2O reduction by denitrification and reduced direct/indirect carbon emissions.
Collapse
Affiliation(s)
- Qi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University 639798, Singapore
| |
Collapse
|
14
|
Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW. Smart systems in producing algae-based protein to improve functional food ingredients industries. Food Res Int 2023; 165:112480. [PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
Collapse
Affiliation(s)
- Yi Ting Neo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Siew Shee Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Cheng Loong Ngan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62, Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
15
|
Pu Y, Li Y, Zhu L, Cheng Y, Nuamah LA, Zhang H, Chen H, Du G, Wang L, Song C. Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:161219. [PMID: 36584951 DOI: 10.1016/j.scitotenv.2022.161219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Collapse
Affiliation(s)
- Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, PR China
| | - Yu Cheng
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongwei Chen
- Water Conservancy Bureau of Jiangsu Province, Yancheng 224002, PR China
| | - Guanchao Du
- Yanlong Lake Drinking Water Source Management Office, Yancheng 224002, PR China
| | - Ling Wang
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| | - Congqing Song
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| |
Collapse
|
16
|
Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Ganesh Moorthy IM, Ashokkumar B, Pugazhendhi A, Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. CHEMOSPHERE 2023; 313:137310. [PMID: 36460155 DOI: 10.1016/j.chemosphere.2022.137310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Phycoremediation of heavy metals are gaining much attention and becoming an emerging practice for the metal removal in diverse environmental matrices. Still, the physicochemical state of metal polluted sites is often found to be complex and haphazard in nature due to the irregular discharge of wastes, that leads to the lack of conjecture on the application of microalgae for the metal bioremediation. Besides, the foresaid issues might be eventually ended up with futile effect to the polluted site. Therefore, this review is mainly focusing on interpretative assessment on pre-existing microalgal strategies and their merits and demerits for selected metal removal by microalgae through various process such as natural attenuation, nutritional amendment, chemical pretreatment, metal specific modification, immobilization and amalgamation, customization of genetic elements and integrative remediation approaches. Thus, this review provides the ideal knowledge for choosing an efficient metal remediation tactics based on the state of polluted environment. Also, this in-depth description would provide the speculative knowledge of counteractive action required for pass-over the barriers and obstacles during implementation. In addition, the most common metal removal mechanism of microalgae by adsorption was comparatively investigated with different metals through the principal component analysis by grouping various factor such as pH, temperature, initial metal concentration, adsorption capacity, removal efficiency, contact time in different microalgae. Conclusively, the suitable strategies for different heavy metals removal and addressing the complications along with their solution is comprehensively deliberated for metal removal mechanism in microalgae.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nair Anjitha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kottilinkal Manniath Athira
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation Group, New Delhi, 110067, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Sankar Karthikumar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar, 626001, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
17
|
Ahmad I, Ibrahim NNB, Abdullah N, Koji I, Mohama SE, Khoo KS, Cheah WY, Ling TC, Show PL. Bioremediation strategies of palm oil mill effluent and landfill leachate using microalgae cultivation: An approach contributing towards environmental sustainability. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Evaluation of Microalgal Bacterial Dynamics in Pig-Farming Biogas Digestate under Impacts of Light Intensity and Nutrient Using Physicochemical Parameters. WATER 2022. [DOI: 10.3390/w14142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Determination of the dynamics between microalgae and bacteria in pig farming biogas digestate is vital for a consistent and reliable application towards sustainable wastewater treatment and biofuel production. This study assesses the reliability of using physicochemical parameters as indicators for the rapid evaluation of microalgal bacterial dynamics in real digestate under impacts of light, nutrient loads, and N:P ratios. The relationship between variation profiles of nutrients, biomass and physicochemical properties in each experiment was analyzed. High light and high nutrient load enhanced biomass growth and nutrient removal rate. Ammonium addition (high N:P ratio) elevated NH3 level which inhibited the growth of microalgae, subsequently reducing the biomass growth and nutrient removal. Low N:P ratio triggered the accumulation of phosphorus and the growth of chlorophyll-a but exerted little influence on treatment. Variation profiles of dissolved oxygen, nutrient and biomass were highly consistent in every experiment allowing us to identify the shift from microalgal to bacterial predomination under unfavorable conditions including low light intensity and high N:P ratio. Strong linear correlation was also found between total nitrogen removal and electrical conductivity (R2 = 0.9754). The results show the great potential of rapid evaluation of microalgal bacterial dynamics for large scale system optimization and modelling.
Collapse
|
19
|
Sutherland DL, Bramucci A. Dissolved organic phosphorus bioremediation from food-waste centrate using microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115018. [PMID: 35405545 DOI: 10.1016/j.jenvman.2022.115018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic phosphorus (DOP) accounts for a substantial proportion of the total phosphorus remaining in the wastewater discharge and remains a concern for the receiving environment. This study assessed the potential of wastewater microalgae for the bioremediation of DOP from anaerobically digested food-waste centrate. For high DOP to low DIP ratio, the microalgal consortia was able to remove over 98% of DOP and 95% of total dissolved phosphorus. However, under a 1:1 ratio of DOP to DIP, the microalgal consortia was only able to remove 5% of the organic phosphorus and 76% of total dissolved phosphorus. All five main microalgal species were capable of producing alkaline phosphatase to some degree, the enzyme responsible for hydrolysing the phosphorus. For the dominant species Desmodesmus communis, total phosphatase activity reduced from 46.0 ± 2.3 mmol L-1 h-1 in axenic cultures to only 6.3 ± 0.7 mmol L-1 h-1 in presence of its microbiome. This resulted in a reduction in biomass from 209 ± 13 g m-3 to 73 ± 5 g m-3. For Tetradesmus dimorphus, alkaline phosphatase increased from 6.5 ± 0.3 mmol L-1 h-1 in the axenic culture to 169.8 ± 40.1 mmol L-1 h-1 in presence of both its microbiome and centrate-sourced bacteria but had little impact on biomass production. DOP removal rates across all five species, in all treatments ranged from 17 to 91%. With the exception of D. communis, the nutrient removal efficiency of DOP per unit biomass suggested luxury uptake of phosphorus into the microalgal cell. For wastewaters with low inorganic and moderate to high organic phosphorus microalgal-based wastewater treatment systems may offer a cost-effective mechanism for the removal and recovery of dissolved organic phosphorus from wastewater. Further research on refining organic phosphorus bioremediation in a range of wastewater types, particularly at pilot and full-scale, is needed.
Collapse
Affiliation(s)
- Donna L Sutherland
- Faculty of Science, University of Technology Sydney, Ultimo NSW, 2007, Australia.
| | - Anna Bramucci
- Faculty of Science, University of Technology Sydney, Ultimo NSW, 2007, Australia
| |
Collapse
|
20
|
Zainol N, Samad KA, Ilyana Che Jazlan CA, Razahazizi NA. Optimization of COD, nitrate-N and phosphorus removal from hatchery wastewater with acclimatized mixed culture. Heliyon 2022; 8:e09217. [PMID: 35368883 PMCID: PMC8971312 DOI: 10.1016/j.heliyon.2022.e09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
The goal of this study is to optimize the condition of the pollutant removal process by using acclimatized mixed culture (AMC) in the treatment of contaminated waste from the hatchery industry. The removal of chemical oxygen demand (COD), nitrate-N, and total phosphorus was optimized using a central composite design and the Response Surface Methodology (RSM) with two parameters: AMC content and retention time (days). Each factor had a range value of 15%–35% AMC content and a retention time of 3–5 days, with COD, nitrate-N, and total phosphorus removal as responses. Prior to experimentation, the synthetic wastewater was prepared, and the mixed cultures were acclimatized. In 13 runs, the experiment was carried out in accordance with the setup created by the Design-Expert software. The sample was tested for COD, nitrate-N, and total phosphorus using a Hach spectrophotometer. The findings show a strong relationship between predicted and experimental COD, nitrate-N, and total phosphorus removal values. At optimum conditions of 29% AMC content and 4 days of retention time, removal of COD, nitrate-N, and total phosphorus was observed to be 28%, 80% and 36%, respectively. The discovery also revealed that maximum values of removal of 62% COD, 94% nitrate-N, and 46% total phosphorus could be obtained under various optimum conditions. The study shows that, the acclimatized mixed culture (AMC) can be used as a potential biological wastewater treatment as well as a natural removal of COD, nitrate-N, and total phosphorus.
Collapse
|
21
|
Goshtasbi H, Atazadeh E, Fathi M, Movafeghi A. Using physicochemical and biological parameters for the evaluation of water quality and environmental conditions in international wetlands on the southern part of Lake Urmia, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18805-18819. [PMID: 34704226 DOI: 10.1007/s11356-021-17057-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The Kani Barazan and Yadegarlou wetlands in the southern part of Lake Urmia (Iran) have been substantially modified due to human activities and anthropogenic use. In recent years, freshwater-based eco-biological studies to recognize the quality of water resources have been greatly expanded. Microalgae and Cyanophyta are considered important bioindicators for the evaluation of water quality and wetland health worldwide. Herein, 22 microalgae and 5 Cyanophyta genera were identified in both wetlands, in which Cyanophyta has mainly caused blooms. Principal components analysis (PCA) was carried out based on links between the distribution of microalgae and Cyanophyta with physical and chemical parameters. The data showed that depth, turbidity, and the temperature had a significant influence on the microalga and Cyanophyta communities in both wetlands. Based on the biological properties, it seems that the Kani Barazan and Yadegarlou international wetlands experience meso-eutrophic conditions. The integration of the physical, chemical and biological parameters with the water quality index (WQI) revealed that both wetlands were polluted as a consequence of human activities. Moreover, a close relationship between WQI and the biological parameters was documented. Thus, we concluded that microalgae and Cyanophyta communities, their abundance patterns, and water quality changes could provide valuable data for the conservation of the Kani Barazan and Yadegarlou international wetlands.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Atazadeh
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
22
|
A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules 2022; 27:molecules27031141. [PMID: 35164405 PMCID: PMC8839941 DOI: 10.3390/molecules27031141] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
This review proposes a new bioremediation method based on the diverse functionalities of algae. A greenway for cleansing wastewater is more ecologically friendly and environmentally sustainable than prior methods with other bacteria. New bioremediation technology employing algae and cyanobacteria for the removal of a wide range of organic contaminants is reasonable and has great potential. The prevalence of organic contaminants in aquatic habitats may endanger the health and well-being of several marine creatures. Agriculture, industry, and household trash are just a few of the human-caused sources of organic pollutants that contaminate waterways around the world. Before wastewater can be released into waterways, it must be cleaned. Algae-based wastewater treatment systems are becoming increasingly popular because of their environmental sustainability and lack of secondary pollutants. According to the kind of pollutant, the physicochemical properties of wastewater, and the algal species, algae and cyanobacteria can absorb and accumulate a wide spectrum of organic pollutants at different rates. In addition, phytoremediation is a cost-effective alternative to conventional treatments for degrading organic contaminants. Phycoremediationally produced algal biomass may also be an important part of the bioenergy value chain. This article focuses on microalgae and cyanobacteria species, which may remove many organic contaminants from water systems.
Collapse
|
23
|
Tham PE, Ng YJ, Vadivelu N, Lim HR, Khoo KS, Chew KW, Show PL. Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. BIORESOURCE TECHNOLOGY 2022; 346:126558. [PMID: 34906702 DOI: 10.1016/j.biortech.2021.126558] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
This research work aims to fabricate an optimized up-scaled photobioreactor and extraction tank which incorporates the Internet of Things (IoT) for remote monitoring of selected parameters without being present in the lab as the industry is gradually moving towards the direction of remote operation. Several design factors were considered where modelling using ANSYS was carried out before the finalised design is drawn using AutoCAD. To monitor critical parameters that include liquid level, temperature, and pH condition during the operation of the tanks, water-proof sensors are implemented with the aid of Arduino NodeMCU board and the sensors are linked with Blynk, a smartphone application that allows remote monitoring via Wi-Fi connection. The sensors' results obtained using the Blynk application show high accuracy as compared with manual data except for photobioreactor liquid level. This shows that IoT and remote monitoring can be integrated successfully.
Collapse
Affiliation(s)
- Pei En Tham
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih 43500, Malaysia
| | - Yan Jer Ng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih 43500, Malaysia
| | - Navintran Vadivelu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih 43500, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih 43500, Malaysia
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Selangor Darul Ehsan, Sepang 43900, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Selangor Darul Ehsan, Semenyih 43500, Malaysia.
| |
Collapse
|
24
|
Avila R, García-Vara M, López-García E, Postigo C, López de Alda M, Vicent T, Blánquez P. Evaluation of an outdoor pilot-scale tubular photobioreactor for removal of selected pesticides from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150040. [PMID: 34798717 DOI: 10.1016/j.scitotenv.2021.150040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
This work assesses the capacity of a microalgae-based system to remove three highly to medium polar pesticides typically found in freshwater: acetamiprid, bentazone, and propanil. Degradation of the pesticides was firstly studied individually at batch lab-scale reactors and abiotic and heated-killed controls were employed to clarify their removal pathways. At lab-scale, propanil and acetamiprid were completely removed after 7 days whereas bentazone was not removed. Four and two transformation products (TPs) were generated in the biodegradation process for acetamiprid and propanil, respectively. Then, the simultaneous removal of the pesticides was assessed in an outdoor pilot photobioreactor, operated with a hydraulic residence time of 8 days. During the steady-state, high removal efficiencies were observed for propanil (99%) and acetamiprid (71%). The results from batch experiments suggest that removal is mainly caused by algal-mediated biodegradation. Acetamiprid TPs raised throughout the operational time in the photobioreactor, while no propanil TP was detected at the pilot-scale. This suggests complete mineralization of propanil or residual formation of its TPs at concentrations below the analytical method detection limit. Aiming at biomass valorization, diverse microalgae harvesting methods were investigated for biomass concentration, and the effect of residual pesticides on the biogas yield was determined by biochemical methane potential tests. Anaerobic digestion was not inhibited by the pesticides as verified by the digestion performance. The results highlight the potential of microalgae-based systems to couple nutrient removal, biomass production, micropollutant biodegradation, and biofuel production.
Collapse
Affiliation(s)
- Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| | - Teresa Vicent
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
25
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
26
|
Couto E, Calijuri ML, Assemany P, Cecon PR. Evaluation of high rate ponds operational and design strategies for algal biomass production and domestic wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148362. [PMID: 34412414 DOI: 10.1016/j.scitotenv.2021.148362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effect of high rate ponds (HRPs) depth on algal biomass production during domestic wastewater treatment. HRPs were evaluated for 20, 30, and 40 cm depths, with and without CO2 supplementation. In addition, 40 cm deep HRP with ultraviolet (UV) pre-disinfection was evaluated. The concentration of chlorophyll-a as a function of time for each evaluated condition was represented by logistic models that were after submitted to cluster analysis. The 20 cm HRPs presented higher chlorophyll-a concentration, reaching a maximum of 5.8 and 4.3 mg L-1, in the HRPs with and without CO2 addition, respectively. Ammonia nitrogen and soluble phosphorus were greater removed in shallower HRPs. The addition of CO2 influenced the nutrient removal processes, optimizing nutrient recovery by biomass assimilation. HRP configuration did not influence organic matter removal (~40% of removal efficiency in all HRPs), predominant microalgae genera (Chlorella sp. and Scenedesmus), and E. coli inactivation (removal of ~2 log units), except for the 20 cm HRP without CO2 that had removal of 4 log units due to high pH values. For HRPs with CO2 addition and UV pre-disinfection, the models for 40 cm were grouped together with those obtained for 30 cm HRPs, indicating the same behavior for chlorophyll-a production as a function of time. Thus, it can be concluded that the evaluated strategies represent alternatives for reducing HRP area requirements. Moreover, results may represent advancement and major contributions for HRP design criteria.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal University of Itajubá, Campus Itabira (Universidade Federal de Itajubá, Campus Itabira/Unifei), Institute of Applied and Pure Sciences, Rua Irmã Ivone Drumond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Environmental Engineering Group - nPA, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil
| | - Paula Assemany
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Department of Environmental Engineering, Campus Universitário, 37200-900 Lavras, MG, Brazil
| | - Paulo Roberto Cecon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Statistics, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
27
|
Sutherland DL, Park J, Ralph PJ, Craggs R. Ammonia, pH and dissolved inorganic carbon supply drive whole pond metabolism in full-scale wastewater high rate algal ponds. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Magalhães IB, Ferreira J, de Siqueira Castro J, Assis LRD, Calijuri ML. Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Chen S, Xie J, Wen Z. Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124284. [PMID: 33139107 DOI: 10.1016/j.jhazmat.2020.124284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Pharmaceutical and Personal Care Products (PPCPs) in the aquatic environment has raised concerns due to their accumulation in the ecosystem. This study aims to explore the feasibility of using a Revolving Algal Biofilm (RAB) reactor for PPCPs removal from waterbody. Five model PPCP compounds including ibuprofen, oxybenzone, triclosan, bisphenol A and N, N-diethyl-3-methylbenzamide (DEET) were mixed and added to the culture medium. It shows that PPCP removal efficiencies of the RAB reactor ranged from 70% to 100%. The degradation of PPCPs by the RAB reactor contributed > 90% PPCP removal while < 10% PPCPs removal was due to accumulation in the algal biomass. The nutrients removal performance of the RAB reactor was not affected by exposing to the PPCPs. The extracellular polysaccharides content of the biomass increased when exposing to PPCPs, while the extracellular proteins content remained constant. The Chl a content maintained constant in the PPCPs-treated biomass, but decreased in the biomass without PPCP treatment. It was also found that the microbial consortium of the RAB reactor was enriched with PPCPs degradation microorganisms with the progressing of feeding PPCPs. Collectively, this work demonstrates that the RAB system is a promising technology for removing PPCPs from wastewater.
Collapse
Affiliation(s)
- Si Chen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Jiahui Xie
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA
| | - Zhiyou Wen
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farmhouse Lane, Ames 50011, Iowa, USA; Gross-Wen Technologies Inc., 404 Main Street, Slater 50244, Iowa, USA.
| |
Collapse
|
30
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
31
|
Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front Bioeng Biotechnol 2021; 8:602040. [PMID: 33490051 PMCID: PMC7817812 DOI: 10.3389/fbioe.2020.602040] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are Synthetic Organic Compounds (SOCs) which are of current concern as they are linked to a myriad of adverse health effects in mammals. They can be found in drinking water, rivers, groundwater, wastewater, household dust, and soils. In this review, the current challenge and status of bioremediation of PFAs in soils was examined. While several technologies to remove PFAS from soil have been developed, including adsorption, filtration, thermal treatment, chemical oxidation/reduction and soil washing, these methods are expensive, impractical for in situ treatment, use high pressures and temperatures, with most resulting in toxic waste. Biodegradation has the potential to form the basis of a cost-effective, large scale in situ remediation strategy for PFAS removal from soils. Both fungal and bacterial strains have been isolated that are capable of degrading PFAS; however, to date, information regarding the mechanisms of degradation of PFAS is limited. Through the application of new technologies in microbial ecology, such as stable isotope probing, metagenomics, transcriptomics, and metabolomics there is the potential to examine and identify the biodegradation of PFAS, a process which will underpin the development of any robust PFAS bioremediation technology.
Collapse
Affiliation(s)
| | - Duncan Rouch
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Leadin S Khudur
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Duncan Thomas
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | | - Andrew S Ball
- School of Science, RMIT University, Bundoora, VIC, Australia.,ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
32
|
Conventional vs. algal wastewater technologies: Reclamation of microbially safe water for agricultural reuse. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
A coupled RTD and mixed-order kinetic model to predict high rate algal pond wastewater treatment under different operational conditions: Performance assessment and sizing application. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Increased harvest frequency improves biomass yields and nutrient removal on a filamentous algae nutrient scrubber. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Li Y, Zhang H, Zhu L, Chen H, Du G, Gao X, Pu Y. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system: A case study. BIORESOURCE TECHNOLOGY 2020; 309:123310. [PMID: 32325377 DOI: 10.1016/j.biortech.2020.123310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haikuo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, China.
| | - Hongwei Chen
- Yancheng Water Conservancy Bureau of Jiangsu Province, Yancheng 224001, China
| | - Guanchao Du
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Xu Gao
- Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
| | - Yashuai Pu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
36
|
Choudhary P, Assemany PP, Naaz F, Bhattacharya A, Castro JDS, Couto EDADC, Calijuri ML, Pant KK, Malik A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:137961. [PMID: 32334349 DOI: 10.1016/j.scitotenv.2020.137961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are recognized as a potential source of biomass for obtaining bioenergy. However, the lack of studies towards economic viability and environmental sustainability of the entire production chain limits its large-scale application. The use of wastewaters economizes natural resources used for algal biomass cultivation. However, desirable biomass characteristics for a good fuel may be impaired when wastewaters are used, namely low lipid content and high ash and protein contents. Thus, the choice of wastewaters with more favorable characteristics may be one way of obtaining a more balanced macromolecular composition of the algal biomass and therefore, a more suitable feedstock for the desired energetic route. The exploration of biorefinery concept and the use of wastewaters as culture medium are considered as the main strategic tools in the search of this viability. Considering the economics of overall process, direct utilization of wet biomass using hydrothermal liquefaction or hydrothermal carbonization and anaerobic digestion is recommended. Among the explored routes, anaerobic digestion is the most studied process. However, some main challenges remain as little explored, such as a low energy pretreatment and suitable and large-scale reactors for algal biomass digestion. On the other hand, thermochemical conversion routes offer better valorization of the algal biomass but have higher costs. A biorefinery combining anaerobic digestion, hydrothermal carbonization and hydrothermal liquefaction processes would provide the maximum possible output from the biomass depending on its characteristics. Therefore, the choice must be made in an integrated way, aiming at optimizing the quality of the final product to be obtained. Life cycle assessment studies are critical for scaling up of any algal biomass valorization technique for sustainability. Although there are limitations, suitable integrations of these processes would enable to make an economically feasible process which require further study.
Collapse
Affiliation(s)
- Poonam Choudhary
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Paula Peixoto Assemany
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Farah Naaz
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Arghya Bhattacharya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Jackeline de Siqueira Castro
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Eduardo de Aguiar do Couto Couto
- Universidade Federal de Itajubá/Itabira campus, Instituto de Ciências Puras e Aplicadas, Rua Irmã Ivone Drummond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, IIT Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India.
| |
Collapse
|
37
|
Laubscher RK, Cowan AK. Elaboration of an algae-to-energy system and recovery of water and nutrients from municipal sewage. Eng Life Sci 2020; 20:305-315. [PMID: 32647509 PMCID: PMC7336153 DOI: 10.1002/elsc.202000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022] Open
Abstract
Increasing pressure is being exerted on the peri-urban space that has elevated the demand for electricity, affects the global water resource, and impacts the potential to produce food, fiber, and commodity products. Algae-based technologies and in particular algae-based sewage treatment provides an opportunity for recovery of water for recycle and re-use, sequestration of greenhouse gases, and generation of biomass. Successful coupling of municipal sewage treatment to an algae-to-energy facility depends largely on location, solar irradiance, and temperature to achieve meaningful value recovery. In this paper, an algae-to-energy sewage treatment system for implementation in southern Africa is elaborated. Using results from the continued operation of an integrated algal pond system (IAPS), it is shown that this 500-person equivalent system generates 75 kL per day water for recycle and re-use and, ∼9 kg per day biomass that can be converted to methane with a net energy yield of ∼150 MJ per day, and ∼0.5 kL per day of high nitrogen-containing liquid effluent (>1 g/L) with potential for use as organic fertilizer. It is this opportunity that IAPS-based algae-to-energy sewage treatment provides for meaningful energy and co-product recovery within the peri-urban space and, which can alleviate pressure on an already strained water-energy-food nexus.
Collapse
Affiliation(s)
- Richard K. Laubscher
- Institute for Environmental Biotechnology (EBRU)Rhodes UniversityMakhandaSouth Africa
| | - A. Keith Cowan
- Institute for Environmental Biotechnology (EBRU)Rhodes UniversityMakhandaSouth Africa
| |
Collapse
|
38
|
Couto E, Calijuri ML, Assemany P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138104. [PMID: 32408433 DOI: 10.1016/j.scitotenv.2020.138104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Against the worldwide energy crisis and climate change, new forms of energy generation have been investigated. Among the possibilities, microalgae are considered potential feedstock for biofuels production. However, there are still important challenges to overcome. In this context, the integration of biomass cultivation and the treatment of different types of wastewater can represent a source of nutrients and water, with the additional benefit of reducing the discharge of pollutant loads into water bodies. The wastewater grown biomass is composed by a microorganism consortium. These microorganisms can develop important symbiotic relationships for the optimization of biomass production. However, the success of algal biomass cultivation in effluents also involves the development of efficient reactors, which ranges from design criteria to operational parameters. High rate ponds are the most suitable reactors for such a purpose, within the context of a wastewater treatment plant. In this reactor, the addition of CO2 is an important parameter for pH control and, consequently, will influence nutrient assimilation. Another relevant operational parameter is the pond depth, which will have a major role in radiation availability along the water column. With respect to the energy use of the biomass, hydrothermal liquefaction (HTL) represents an interesting alternative for wastewater grown biomass, since the process does not require complete drying of the biomass, its bio-oil production efficiency is not necessarily attached to the lipid content and may present a positive energy balance. In addition, the possibility of using the HTL by-products, especially the water soluble products, in the context of a biorefinery, represents a route for nutrient recycling, residue minimization, and cost reduction.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal Universityof Itajubá, Campus Itabira (Universidade Federal de Itajubá, Campus Itabira/Unifei), Intitute of Applied and Pure Sciences, Rua Irmã Ivone Drumond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Environmental Engineering Group - nPA, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Paula Assemany
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Department of Water Resources and Sanitation, Campus Universitário, 37200-000 Lavras, MG, Brazil.
| |
Collapse
|
39
|
Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. BIORESOURCE TECHNOLOGY 2020; 301:122804. [PMID: 31982297 DOI: 10.1016/j.biortech.2020.122804] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 05/05/2023]
Abstract
Biodiesel is one of the best promising candidates in response to the energy crisis, since it has the capability to minimize most of the environmental problems. Microalgae, as the feedstock of third-generation biodiesel, are considered as one of the most sustainable resources. However, microalgae production for biodiesel feedstock on a large scale is still limited, because of the influences of lipid contents, biomass productivities, lipid extraction technologies, the water used in microalgae cultivation and processes of biomass harvesting. This paper firstly reviews the recent advances in microalgae cultivation and growth processes. Subsequently, current microalgae harvesting technologies are summarized and flocculation mechanisms are analyzed, while the characteristics that the ideal harvesting methods should have are summarized. This review also summarizes the environmental pollution control performances and the key challenges in future. The key suggestions and conclusions in the paper can offer a promising roadmap for the cost-effective biodiesel production.
Collapse
Affiliation(s)
- Zhihong Yin
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China; Faculty of Technology, and Vaasa Energy Institute, University of Vaasa, PO Box 700, FI-65101 Vaasa, Finland.
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Tianyi Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Fan Mo
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Chenchen Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Bin Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
41
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
42
|
Lee T, Nam IH, Jung S, Park YK, Kwon EE. Synthesis of nickel/biochar composite from pyrolysis of Microcystis aeruginosa and its practical use for syngas production. BIORESOURCE TECHNOLOGY 2020; 300:122712. [PMID: 31911316 DOI: 10.1016/j.biortech.2019.122712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
This study proposes a sustainable waste-to-energy/biochar platform using a toxic microalgal biomass waste. In particular, CO2-feeding pyrolysis of Microcystis aeruginosa (M. aeruginosa) waste was investigated, focusing on the analysis of gaseous pyrolysates and properties of biochar with a construction of mass balance. Also, the catalytic capability of biochar produced from M. aeruginosa was explored to reinforce the mechanistic impact of CO2 on the pyrolysis process within the overall process level. Ni impregnated biochar composite was further synthesized and used as a catalyst to promote syngas formation in the CO2-feeding pyrolysis process of M. aeruginosa.
Collapse
Affiliation(s)
- Taewoo Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - In-Hyun Nam
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
43
|
Prospects of integrating algae technologies into landfill leachate treatment. World J Microbiol Biotechnol 2020; 36:39. [PMID: 32095995 DOI: 10.1007/s11274-020-2810-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Landfilling of municipal waste, an environmental challenge worldwide, results in the continuous formation of significant amounts of leachate, which poses a severe contamination threat to ground and surface water resources. Landfill leachate (LL) is generated by rainwater percolating through disposed waste materials and must be treated effectively before safe discharge into the environment. LL contains numerous pollutants and toxic substances, such as dissolved organic matter, inorganic chemicals, heavy metals, and anthropogenic organic compounds. Currently, LL treatment is carried out by a combination of physical, chemical, and microbial technologies. Microalgae are now viewed as a promising sustainable addition to the repertoire of technologies for treating LL. Photosynthetic algae have been shown to grow in LL under laboratory conditions, while some species have also been employed in larger-scale LL treatments. Treating leachate with algae can contribute to sustainable waste management at existing landfills by remediating low-quality water for recycling and reuse and generating large amounts of algal biomass for cost-effective manufacturing of biofuels and bioproducts. In this review, we will examine LL composition, traditional leachate treatment technologies, LL toxicity to algae, and the potential of employing algae at LL treatment facilities. Emphasis is placed on how algae can be integrated with existing technologies for biological treatment of LL, turning leachate from an environmental liability to an asset that can produce value-added biofuels and bioproducts for the bioeconomy.
Collapse
|
44
|
Iasimone F, Seira J, Desmond-Le Quéméner E, Panico A, De Felice V, Pirozzi F, Steyer JP. Bioflocculation and settling studies of native wastewater filamentous cyanobacteria using different cultivation systems for a low-cost and easy to control harvesting process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109957. [PMID: 31822456 DOI: 10.1016/j.jenvman.2019.109957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Bioflocculation phenomena for filamentous cyanobacteria were studied and analysed in two different cultivation systems (i.e. based on air-bubbling and on shaking) and for different initial biomass concentrations. Floc formation and biomass settling were monitored during batch cultivation tests according to an innovative protocol. Results showed that the two cultivation systems enhanced two different flocculation behaviours: air bubbling led to the formation of small and dense flocs, while the shaking table resulted in larger (14 mm2 vs 4 mm2) but mechanically weaker flocs. Floc analysis evidenced that the different mixing systems also affected the speciation of biomass. A mathematical model was developed to simulate and predict the settling performance during the bioflocculation process of filamentous cyanobacteria. Natural settling was examined at different phases of biomass growth. Optimal conditions were obtained at the end of the exponential growth phase, when 70% of the total cultivated biomass could be recovered.
Collapse
Affiliation(s)
- Floriana Iasimone
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, C.da Fonte Lappone, 86090, Pesche (IS), Italy.
| | - Jordan Seira
- LBE, Univ Montpellier, INRA, 102 Avenue des Étangs, 11100, Narbonne, France
| | | | - Antonio Panico
- Università Telematica Pegaso, Piazza Trieste e Trento 48, 80132, Napoli, Italy
| | - Vincenzo De Felice
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, C.da Fonte Lappone, 86090, Pesche (IS), Italy
| | - Francesco Pirozzi
- Università degli Studi di Napoli, Dipartimento di Ingegneria Civile Edile Ambientale, Via Claudio 21, 80125, Napoli, Italy
| | | |
Collapse
|
45
|
Sutherland DL, Park J, Heubeck S, Ralph PJ, Craggs RJ. Size matters – Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101734] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Sutherland DL, Ralph PJ. Microalgal bioremediation of emerging contaminants - Opportunities and challenges. WATER RESEARCH 2019; 164:114921. [PMID: 31382151 DOI: 10.1016/j.watres.2019.114921] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/21/2019] [Accepted: 07/26/2019] [Indexed: 05/06/2023]
Abstract
Emerging contaminants (ECs) are primarily synthetic organic chemicals that have a focus of increasing attention due to either increased awareness of their potential risks to humans and aquatic biota, or only recently been detected in the aquatic environment or drinking water supplies, through improved analytical techniques. . Many ECs have no regulatory standards due to the lack of information on the effects of chronic exposure. Pharmaceuticals, personal care products, pesticides and flame retardants are some of the most frequently detected ECs in aquatic environments, with over 200 individual compounds identified, to date. Current wastewater treatment is ineffective at removing ECs and there is a vital need for the development of efficient, cost-effective EC treatment systems that can be applied to a range of scales and wastewater types. Microalgae have demonstrated potential for detoxifying organic and inorganic pollutants, with a number of large-scale wastewater treatment microalgal technologies already developed. There are three main pathways that microalgae can bioremediate ECs; bioadsorption, bio-uptake and biodegradation. Microalgal bioadsorption occurs when ECs are either adsorbed to cell wall components, or onto organic substances excreted by the cells, while bio-uptake involves the active transport of the contaminant into the cell, where it binds to intracellular proteins and other compounds. Microalgal biodegradation of ECs involves the transformation of complex compounds into simpler breakdown molecules through catalytic metabolic degradation. Biodegradation provides one of the most promising technologies for the remediation of contaminants of concern as it can transform the contaminant to less toxic compounds rather than act as a biofilter. Further research is needed to exploit microalgal species for EC bioremediation properties, such as increased bioadsorption, enhanced biodegrading enzymes and optimised growth conditions. When coupled with nutrient removal, microalgal treatment of EC can be a cost-effective viable option for the reduction of contaminant pollution in waterways.
Collapse
Affiliation(s)
- Donna L Sutherland
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
47
|
Li K, Liu Q, Fang F, Luo R, Lu Q, Zhou W, Huo S, Cheng P, Liu J, Addy M, Chen P, Chen D, Ruan R. Microalgae-based wastewater treatment for nutrients recovery: A review. BIORESOURCE TECHNOLOGY 2019; 291:121934. [PMID: 31395401 DOI: 10.1016/j.biortech.2019.121934] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 05/05/2023]
Abstract
The water resource crisis and concerns with environmental pollution are pushing for upgrading of conventional wastewater treatment process. Microalgae-based wastewater treatment process has shown many advantages that can meet the new demand for improved wastewater treatment. However, considering the issues related to the complexity of wastewater characteristics and adaptability of microalgae species, and the challenges to the design and optimization of treatment processes in order to achieve higher removal efficiencies with lower costs, further exploration and research are still needed. This review provides an overview of microalgae strains commonly used for wastewater treatment, physical and chemical properties of various wastewaters and their suitability for algae cultivation, factors affecting algae growth, nutrient assimilation/removal and biomass productivity. The design and operation of microalgae-based wastewater treatment processes are also discussed. Moreover, the issues and limitations of microalgae-based wastewater treatment are also discussed and suggestions are proposed for the further research and development.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China; Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Qiang Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fan Fang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ruihuan Luo
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qian Lu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Junzhi Liu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Dongjie Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA.
| |
Collapse
|
48
|
Li D, Chu Z, Huang M, Zheng B. Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands. BIORESOURCE TECHNOLOGY 2019; 290:121748. [PMID: 31323511 DOI: 10.1016/j.biortech.2019.121748] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
As an important technology for purifying and recycling agricultural wastewater, storing multiple-pond constructed wetlands (SMCWs) are widely used in the treatment of non-point source pollution. However, the influences of design configuration (surface area, volume, flow path, aspect ratio, water depth, percent vegetation cover and planting pattern) on pollution mitigation in SMCWs are still underexplored. To improve the sustainability of constructed wetlands, the removal performances of four groups of SMCWs were assessed through multiphasic analyses. The maximum removal efficiencies of nitrogen and phosphorus were 63.7% and 64.0%, respectively. Higher mass removal rates per square meter (MRR) and mass removal rates per cubic meter (MRRV) were observed in ecological floating treatment wetlands (EFTWs). Compared with RE, the interception performances of deep-water SMCWs were more clearly described by using MRR and MRRV. EFTWs with good plant configurations (mixed planting, 60-80% plant cover) were recommended in deep-water SMCWs (water depth > 1.5 m).
Collapse
Affiliation(s)
- Dan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Minsheng Huang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
49
|
Ranganathan P, Savithri S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. BIORESOURCE TECHNOLOGY 2019; 284:256-265. [PMID: 30947140 DOI: 10.1016/j.biortech.2019.03.087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In this work, a conceptual process design of wastewater-based algal biofuels production through hydrothermal liquefaction and hydroprocessing is proposed. Then a steady-state process simulation is performed to calculate the mass and energy analysis of the whole process for the production of hydrocarbons such as diesel, jet, gasoline, and H2. A discounted cash flow analysis is used to calculate a minimum selling price (MSP) of the hydrocarbon fuels. The MSP of the hydrocarbon fuels is found at US$4.3/GGE. This value is comparable with the previously reported value in the literature. In addition, the sensitivity study is carried out to study the influence of both processes and economic parameters on the minimum selling price (MSP) of the hydrocarbon fuels.
Collapse
Affiliation(s)
- Panneerselvam Ranganathan
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, India.
| | - Sivaraman Savithri
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, India
| |
Collapse
|
50
|
Behera B, Acharya A, Gargey IA, Aly N, P B. Bioprocess engineering principles of microalgal cultivation for sustainable biofuel production. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|