1
|
Wang B, Zhang L, Lian L, Zhang X, Qi Y. Treatment of compound pollution in simulated livestock and poultry wastewater by algae-bacteria symbiosis system. CHEMOSPHERE 2025; 370:143927. [PMID: 39662840 DOI: 10.1016/j.chemosphere.2024.143927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Livestock and poultry breeding wastewater contains a large number of heavy metals and antibiotics; the volume is huge, and it is difficult to treat, which causes serious pollution of the environment. Some studies have shown that symbiotic systems can effectively improve the efficiency of sewage treatment, but there is still a lack of research on the treatment of livestock and poultry wastewater. This experiment not only provides a more in-depth discussion of previous studies, but also demonstrates the feasibility of symbiotic treatment of livestock and poultry wastewater and explores the survival mode and operation mechanism of algal and bacterial symbiosis. The results show that the presence of bacteria greatly promoted the growth of microalgae, with production of 0.50-0.59 g/L biomass and 17.5% lipid content. Lipid levels in the algae from the symbiotic system were 1.3 times higher than for the system of pure algae, which is attributed to the bacteria releasing extracellular substances to promote their own growth and providing small molecules of organic matter and other essential elements which can be used by microalgae. In addition, during the removal of complex pollutants in the symbiotic system we found that the main contributor to the removal of heavy metal ions was the adsorption by Chlorella, while the decomposition of antibiotics mainly originated from bacteria. Furthermore, in the context of this experiment was obtained the highest removal rate of SM2 reached 28.8%, while the removal rate of Cu(II) reached 60.6%-66.7%. The technology of symbiotic treatment of wastewater from livestock and poultry breeding fills a gap and lays a theoretical foundation for the improvement of wastewater treatment.
Collapse
Affiliation(s)
- Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
2
|
Zhang L, Wang B, Zhang L, Lian L, Cheng X, Yang Z, Jin Y, Chen J, Ren Z, Qi Y, Chen F, Wu D, Wang L. Responses of Chlorella vulgaris to the native bacteria in real wastewater: Improvement in wastewater treatment and lipid production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122737. [PMID: 37838313 DOI: 10.1016/j.envpol.2023.122737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
Alga-bacterium interaction can improve wastewater treatment efficiency. To unravel the mystery of the interaction between microalgae and bacteria in wastewater, mono-cultures and co-cultures of Chlorella vulgaris and native bacteria in pretreated biochemical wastewater from landfill leachate were investigated. The results showed that the microalgae selected dominant commensal bacteria, creating a further reduction in species richness for the co-culture, which in turn aids in the dominant commensal bacteria's survival, thereby enhancing algal and bacterial metabolic activity. Strikingly, the lipid productivity of Chlorella in co-culture - namely 41.5 mg/L·d - was 1.4 times higher than in algal monoculture. Additionally, pollutant removal was enhanced in co-cultures, attributed to the bacterial community associated with pollutants' degradation. Furthermore, this study provides an important advance towards observations on the migration and transformation pathways of nutrients and metals, and bridges the gap in algal-bacterial synergistic mechanisms in real wastewater, laying the theoretical foundation for improving wastewater treatment.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Libin Zhang
- School of Civil Engineering, Tianjin University, Tianjin, 300072, China
| | - Lu Lian
- Shandong Institute for Product Quality Inspection, Jinan, 250102, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
3
|
Chen J, Ren Z, Li Z, Wang B, Qi Y, Yan W, Liu Q, Song H, Han Q, Zhang L. Interaction of Scenedesmus quadricauda and native bacteria in marine biopharmaceutical wastewater for desirable lipid production and wastewater treatment. CHEMOSPHERE 2023; 313:137473. [PMID: 36481174 DOI: 10.1016/j.chemosphere.2022.137473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Improving knowledge of the alga-bacterium interaction can promote the wastewater treatment. The untreated marine biopharmaceutical wastewater (containing native bacteria) was used directly for culturing microalgae. Unlike previous studies on specific bacteria in algal-bacterial co-culture systems, the effect of native bacteria in wastewater on microalgae growth was investigated in this study. The results showed that the coexistence of native bacteria greatly promoted the microalgae growth, ultimately producing biomass of 0.64 g/L and biomass productivity of 56.18 mg/L·d. Moreover, the lipid accumulation in the algae + bacteria group was 1.31 and 1.13 times higher than those of BG11 and pure algae, respectively, mainly attributed to the fact that bacteria provided a good environment for microalgae growth by using extracellular substances released from microalgae for their own growth, and providing micromolecules of organic matter and other required elements to microalgae. This study would lay the theoretical foundation for improving biopharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Junren Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zian Ren
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zheng Li
- Shandong Institute of Eco-environmental Planning, Jinan, 250101, China
| | - Bo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuejun Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, 539 Jiaodingshan Road, Rizhao, 276800, China
| | - Qingqing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Hengyu Song
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Qingxiang Han
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
4
|
khalaji M. Evaluation of fatty acid profiles of Chlorella Vulgaris microalgae grown in dairy wastewater for producing biofuel. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:691-697. [PMID: 36406613 PMCID: PMC9672247 DOI: 10.1007/s40201-022-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 06/09/2023]
Abstract
Biodiesel is a biofuel made from plant oils and animal lipids. Utilization of lipid accumulation in algae biomass as biodiesel is a good alternative to fossil fuels. In this research Chlorella vulgaris microalga was applied after planting in BG11 culture medium in effluent and wastewater of dairy industry after preparation of 25, 50, and 75% dilutions. Algae in two concentrations with low (13 million cells/mL) and high density (26 million cells/mL) were injected. According to the results obtained in the wastewater environment the highest amount of C16:0 fatty acid was observed in F2 25% treatment, and C18:0 fatty acid is related to F1 75% treatment. In the effluent environment, the highest amount of fatty acids C16:0 and C16:1n7 occur in P1 50% treatment, and C18:0 and C18:3n3 fatty acids are related to P1 50% treatment, respectively. The highest amount of saturated fatty acids (SFA) was reported at P2 75% treatment (56.25%) and monounsaturated fatty acids (MUFA) has accumulated in F175% (40.13%) treatment. Chlorella vulgaris microalgae can be considered as a rich source of lipid and fatty acid profiles in both wastewater and effluents, and it can be regarded as potential significance source for biodiesel production.
Collapse
Affiliation(s)
- Mahtab khalaji
- Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Recourses, Gorgan, Iran
| |
Collapse
|
5
|
Agarwalla A, Mishra S, Mohanty K. Treatment and recycle of harvested microalgal effluent using powdered activated carbon for reducing water footprint and enhancing biofuel production under a biorefinery model. BIORESOURCE TECHNOLOGY 2022; 360:127598. [PMID: 35820557 DOI: 10.1016/j.biortech.2022.127598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, the suitability of cultivating Monoraphidium sp. KMC4 was exhibited in different effluent based culture (EBC) media concentrations, the latter being treated with powdered activated carbon (PAC) with a loading of 5-50 mg L-1. The optimum EBC media treated with 30 mg L-1 PAC enhanced the biomass yield by 21.9% as compared to the untreated one (1.21 g L-1). A recyclability study performed in five batches resulted in an optimal growth up to three batches with an overall biomass yield of 4.21 g and a total water savings of 30%. Additionally, physico-chemical characterization and FAME profile of the biomass from the recyclability study validated feedstock's energy potential. Moreover, this study proposes a biorefinery model which could recover nutrient rich liquid effluent (3.1 million litres) and solid residue for various applications along with the generation of 5760 kg of biomass followed by 113 L d-1 biodiesel yield.
Collapse
Affiliation(s)
- Ankit Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanjeev Mishra
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
6
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
7
|
Zhang L, Zhang L, Wu D, Wang L, Yang Z, Yan W, Jin Y, Chen F, Song Y, Cheng X. Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae's self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity. BIORESOURCE TECHNOLOGY 2021; 340:125640. [PMID: 34325398 DOI: 10.1016/j.biortech.2021.125640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Heightened awareness of additional pretreatment for wastewater, has driven studies towards building a full wastewater-recycling chain wherein the wastewater pretreatment is performed by microalgae themselves. We applied biochemical wastewater from landfill leachate with added K2HPO4 (BWLL + P) directly to microalgal cultivation. The results showed that the pretreatment provided by the 1st cultivation reduced suspended solids by nearly half, greatly boosting microalgal growth, which thus yielded 1.06 g/L of dry mass and 87.06 mg/L·d of biomass productivity. From the 2nd to the 4th cultivation, lipid accumulation in BWLL + P was 1.12-1.27 times and 1.95-2.36 times higher than in BG11 and BWLL, respectively, mainly attributed to the comfortable environment engendered by the microalgal pretreatment and the organic carbon in the wastewater. Strikingly, the biodiesel production fed with BWLL + P could save 99% of the cost compared with in BG11. In combination, our pioneering full wastewater-recycling chain achieved microalgae's self-reliant cultivation, with wastewater nourishment.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Libin Zhang
- School of Civil Engineering, Tianjin University, Tianjin 300072, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Lin Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Wenbao Yan
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecological and Environment Bureau, 539 Jiaodingshan Road, Rizhao, 276800, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
8
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Manrique SM. Biomass as a Cornerstone of a Circular Economy: Resources, Energy, and Environment. AGROECOLOGICAL FOOTPRINTS MANAGEMENT FOR SUSTAINABLE FOOD SYSTEM 2021:179-219. [DOI: 10.1007/978-981-15-9496-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Qu Z, Duan P, Cao X, Liu M, Lin L, Li M. Comparison of monoculture and mixed culture (Scenedesmus obliquus and wild algae) for C, N, and P removal and lipid production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20961-20968. [PMID: 31115809 DOI: 10.1007/s11356-019-05339-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
This study compared the efficiency of nutrient removal and lipid accumulation by a monoculture of Scenedesmus obliquus and mixed cultures of microalgae. The highest removal efficiencies of ammonium (99.2%), phosphate (91.2%), and total organic carbon (83.6%) occurred in the monoculture. All the mixed cultures were dominated by S. quadricauda; in some mixed cultures, the proportions of Chlamydomonas reinhardtii and C. microsphaera reached > 20%. The lipid content and lipid production in the monoculture were 15.9% and 52.3 mg kg-1, respectively, significantly higher than those in all the mixed cultures of microalgae. In all the mixed cultures, the proportion of palmitic acid was > 50%. The results suggest that the monoculture had advantages over the mixed culture of microalgae in terms of nutrient removal and lipid production.
Collapse
Affiliation(s)
- Zhi Qu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, No. 5 Jinhuananlu, Xi'an, 710048, People's Republic of China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Xubing Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Manli Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Li Lin
- Department of Water Environment Research, Changjiang River Scientific Research Institute, Wuhan, 430010, People's Republic of China
| | - Ming Li
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, People's Republic of China.
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
11
|
Mishra S, Mohanty K. Comprehensive characterization of microalgal isolates and lipid-extracted biomass as zero-waste bioenergy feedstock: An integrated bioremediation and biorefinery approach. BIORESOURCE TECHNOLOGY 2019; 273:177-184. [PMID: 30445270 DOI: 10.1016/j.biortech.2018.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
The present study investigated the feasibility of domestic sewage wastewater (DSW) as an alternate to fresh-water microalgae growth media towards high-value bioenergy feedstock production. Eight native microalgal strains were screened from DSW and the effect of raw DSW (RDSW), and autoclaved DSW (ADSW) on growth and bioremediation potential were evaluated and compared with control BG11 medium. The study confirmed RDSW as a potential growth medium while Monoraphidium sp. KMC4 showed superior biomass (1.47 ± 0.08 g L-1) and lipid yield (436.01 ± 0.06 mg L-1). The corresponding values for bioremediation of ammonia, nitrate, phosphate, as well as COD remained within 88-100%. CHNS, biochemical, TGA, FTIR, FAME analysis of KMC4 confirmed it's potential as bioenergy feedstock. Additionally, a comprehensive characterization of lipid-extracted microalgae biomass (LEMB) was carried out which suggested that LEMB can be used as a growth promoter as well as feedstock for biogas, bioethanol, and bio-oil production.
Collapse
Affiliation(s)
- Sanjeev Mishra
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
12
|
Jiang L, Cheng J, Pei H, Zhang S, Yang Z, Nie C, Zhang L. Coupled microalgal cultivation with the treatment of domestic sewage and high-level CO 2. ENVIRONMENTAL TECHNOLOGY 2018; 39:1422-1429. [PMID: 28504059 DOI: 10.1080/09593330.2017.1330901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The ability of Scenedesmus quadricauda SDEC-13 to accumulate biomass and remove nutrients in domestic sewage from campus when incorporated with 15% CO2 was explored. The maximum specific growth rate, biomass productivity, biomass concentration, and CO2 fixation rate were 0.14 d-1, 0.08 g/L/d, 0.69 g/L, and 0.076 g-CO2/L/d, respectively. The lipid content of SDEC-13 at different culture phases was also evaluated and it increased following nutrient limitation. The removal efficiencies of total nitrogen, total phosphorus, nitrate, and ammonium were all above 90%. A coupled system was designed with hydraulic retention time of 8.33 d and biomass harvest ratio of 12%, which could yield 0.54 g/L biomass and 25% lipid content with efficient domestic sewage treatment.
Collapse
Affiliation(s)
- Liqun Jiang
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| | - Juan Cheng
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| | - Haiyan Pei
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
- b Shandong Provincial Engineering Centre on Environmental Science and Technology , Jinan , People's Republic of China
| | - Shuo Zhang
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| | - Zhigang Yang
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| | - Changliang Nie
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| | - Lijie Zhang
- a School of Environmental Science and Engineering , Shandong University , Jinan , People's Republic of China
| |
Collapse
|
13
|
Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. BIORESOURCE TECHNOLOGY 2018; 256:502-508. [PMID: 29478783 DOI: 10.1016/j.biortech.2018.02.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/23/2023]
Abstract
Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes.
Collapse
Affiliation(s)
- Hyun Uk Cho
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jong Moon Park
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Bioenergy Research Center, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
14
|
Hou Q, Cheng J, Nie C, Pei H, Jiang L, Zhang L, Yang Z. Features of Golenkinia sp. and microbial fuel cells used for the treatment of anaerobically digested effluent from kitchen waste at different dilutions. BIORESOURCE TECHNOLOGY 2017; 240:130-136. [PMID: 28314663 DOI: 10.1016/j.biortech.2017.02.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study Golenkinia sp. and microbial fuel cells (MFCs) for the treatment of anaerobically digested effluent from kitchen waste (ADE-KW) with different dilution factors. A dual-chamber MFC was fabricated for treating ADE-KW in the two chambers of the MFC and harvesting Golenkinia sp. All the anodic TN was removed more than 80%. COD removal efficiency increased from 48.2% to 76% when the dilution factor increased from 1 to 4. Maximum COD and TN removal rates were 3.56 and 3.71mg·L-1·h-1 when ADE-KW was treated without dilution in the anodic chamber. All the cathodic TN and TP removal efficiencies were approximately 90%. The highest open circuit voltage (OCV) and power density were approximately 400mV and 400mW when ADE-KW was treated directly (undiluted) in the MFC, with the highest biomass and total lipid content production of Golenkinia sp. in the cathodic chamber.
Collapse
Affiliation(s)
- Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| | - Juan Cheng
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| | - Changliang Nie
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, No.17923 Jingshi Road, Jinan 250061, China.
| | - Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| | - Zhigang Yang
- School of Environmental Science and Engineering, Shandong University, No.27 Shanda Nan Road, Jinan 250100, China
| |
Collapse
|
15
|
Mehrabadi A, Farid MM, Craggs R. Potential of five different isolated colonial algal species for wastewater treatment and biomass energy production. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kalinová JP, Tříska J, Vrchotová N, Novák J. Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:518-523. [PMID: 26985739 DOI: 10.1016/j.envpol.2016.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
The consumption of polyamides produced from caprolactam is increasing continuously, and for that reason the danger of environmental contamination by this lactam is also rising. This study's aim was to evaluate the influence of caprolactam on the growth and oxygen production of the green alga Desmodesmus quadricauda and on caprolactam uptake by this alga. The presence of caprolactam in water was observed to cause the algae significantly to increase its oxygen production. Caprolactam concentration of 5,000 mg/L stopped algae growth after 6 days and influenced coenobia structure (seen as disappearance of pyrenoids, deformation of cells) but did not decrease the number of cells in the coenobia. Caprolactam uptake is probably passive but relatively rapid. Maximum concentration in the algae was reached after 18-24 h.
Collapse
Affiliation(s)
- Jana Pexová Kalinová
- Faculty of Agriculture, University of South Bohemia, Studentská 13, 370 05 České Budějovice, Czech Republic.
| | - Jan Tříska
- Laboratory of Metabolomics and Isotopic Analyses, Global Change Research Centre, Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Naděžda Vrchotová
- Laboratory of Metabolomics and Isotopic Analyses, Global Change Research Centre, Academy of Sciences of the Czech Republic, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Jan Novák
- Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zámek 136, 373 33 Nové Hrady, Czech Republic
| |
Collapse
|
17
|
Jiang L, Pei H, Hu W, Han F, Zhang L, Hou Q. Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. BIORESOURCE TECHNOLOGY 2015; 197:178-84. [PMID: 26340025 DOI: 10.1016/j.biortech.2015.08.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/09/2015] [Accepted: 08/18/2015] [Indexed: 05/09/2023]
Abstract
The low productivity of microalgae has restricted scale-up application of microalgae-based biodiesel processes. Diethyl aminoethyl hexanoate (DA-6) was investigated to enhance the biomass and metabolite productivity. At a very low concentration (10(-7)M) DA-6 made Chlorella ellipsoidea SDEC-11 and Scenedesmus quadricauda SDEC-13 obtain enlarged cell size, 114mgL(-1)d(-1), 101mgL(-1)d(-1) biomass productivity and 39.13mgL(-1)d(-1), 32.69mgL(-1)d(-1) lipid productivity, respectively. Biomass and lipid productivity of SDEC-11 and SDEC-13 were 100mgL(-1)d(-1) and 30.05mgL(-1)d(-1), 94mgL(-1)d(-1) and 28.43mgL(-1)d(-1), respectively, without DA-6. Twice hormone dose in 10(-6)M DA-6 medium resulted in higher biomass productivity (106mgL(-1)d(-1)) and longer exponential growth of SDEC-13. DA-6 also ensured the property of microalgae biodiesel to meet the EN 14214 standard. The current investigation demonstrated that DA-6 accelerated the microalgae growth and simultaneously improved the quality and quantity of lipid for biodiesel production.
Collapse
Affiliation(s)
- Liqun Jiang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan 250061, China.
| | - Wenrong Hu
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, No. 17923 Jingshi Road, Jinan 250061, China
| | - Fei Han
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Lijie Zhang
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| | - Qingjie Hou
- School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Road, Jinan 250100, China
| |
Collapse
|