1
|
Kumar R, Næss G, Sørensen M. Xylooligosaccharides from lignocellulosic biomass and their applications as nutraceuticals: a review on their production, purification, and characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7765-7775. [PMID: 38625727 DOI: 10.1002/jsfa.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Xylooligosaccharides (XOS) are considered a potent source of prebiotics for humans. The global prebiotic market is expanding in size, was valued at USD 6.05 billion in 2021, and is expected to grow at a 14.9% compound annual growth rate between 2022 and 2030, indicating a huge demand. These XOS are non-digestible pentose sugar oligomers comprising mainly xylose. Xylose is naturally present in the lignocellulosic biomass (LCB), fruits and vegetables. Apart from the prebiotic effect, these XOS have been reported to reduce blood cholesterol, possess antioxidant effects, increase calcium absorption, reduce colon cancer risk, and benefit diabetic patients. The primary use of XOS is reported in the feed industry followed by health, medical use, food and drinks. LCB mainly contains glucan, xylan and lignin. After glucan, xylan is the second-highest available sugar on the globe composed of xylose. Therefore, the xylan fraction of LCB has great significance in producing food, feed and energy. Glucan has been exploited for the commercial production of ethanol, xylitol, furfural, hydroxymethyl furfural and glucose. As of now, xylan has limited applications. Therefore, xylan can be exploited to convert to XOS. The production of XOS from LCB fraction not only helps to produce these at a very low price, but also helps in the reduction of greenhouse gases. Its use in food and drinks is increasing as it can be derived from the abundantly and cheaply available LCB. The article provides a review on the production, purification and characterization of XOS in view of their use as nutraceuticals. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ravindra Kumar
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Geir Næss
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| |
Collapse
|
2
|
Sharma N, Allardyce BJ, Rajkhowa R, Agrawal R. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres. Sci Rep 2023; 13:16327. [PMID: 37770522 PMCID: PMC10539515 DOI: 10.1038/s41598-023-43535-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Rice straw is a waste product generated after the harvesting of rice crops and is commonly disposed of by burning it off in open fields. This study explored the potential for the extraction and conversion of cellulose to cellulose nanofibres (CNFs) to be used as smart delivery systems for fertilizers applications. In this study, alkali, steam explosion, and organosolv treatments were investigated for cellulose extraction efficiency. The morphological characterization of cellulose showed smooth fibrillar structures. Fourier transform infrared spectroscopy represented significant removal of non-cellulosic components in treatments. The crystallinity increased from 52.2 to 65% in CNFs after fibrillation. Cellulose nanofibres (CNFs) had an average diameter of 37.4 nm and - 25.2 mV surface charges as determined by SEM and zeta potential, respectively, which have desired properties for holding fertilizers. Therefore, this study paves the way for value-added uses of rice straw as alternatives to current environmentally harmful practices.
Collapse
Affiliation(s)
- Neha Sharma
- TERI Deakin Nanobiotechnology Centre, TERI Gram, Gual Pahari, Gurugram, India
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | | | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| | - Ruchi Agrawal
- TERI Deakin Nanobiotechnology Centre, TERI Gram, Gual Pahari, Gurugram, India.
| |
Collapse
|
3
|
Zhou R, Zhang L, Zeng B, Zhou Y, Jin W, Zhang G. A novel self-purified auxiliary protein enhances the lichenase activity towards lichenan for biomass degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12608-y. [PMID: 37272940 DOI: 10.1007/s00253-023-12608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Due to the complex composition of lichenan, lichenase alone cannot always hydrolyze it efficiently. Carbohydrate-binding modules (CBMs) and lytic polysaccharide monooxygenases (LPMOs) have been confirmed to increase the hydrolysis efficiency of lichenases. However, their practical application was hampered by the complex and costly preparation procedure, as well as the poor stability of LPMOs. Herein, we discovered a novel and stable auxiliary protein named SCE to boost the hydrolysis efficiency. SCE was composed of SpyCatcher (SC) and elastin-like polypeptides (ELPs) and could be easily and cheaply prepared. Under the optimal conditions, the boosting degree for SCE/lichenase was 1.45, and the reducing sugar yield improved by nearly 45%. The results of high-performance liquid chromatography (HPLC) indicated that SCE had no influence on the hydrolysis pattern of lichenase. Through the experimental verification and bioinformatics analysis, we proposed the role of SCE in promoting the interaction between the lichenase and substrates. These findings endow SC with a novel function in binding to insoluble lichenan, paving the way for biomass degradation and biorefinery. KEY POINTS: • A novel self-purification auxiliary protein that could boost the hydrolysis efficiency of lichenase has been identified. • The protein is highly produced, simple to prepare, well stable, and does not require any external electron donor. • The novel function of SpyCatcher in binding to insoluble lichenan was first demonstrated.
Collapse
Affiliation(s)
- Rui Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Bo Zeng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Wenhui Jin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian Province, People's Republic of China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China.
| |
Collapse
|
4
|
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:44. [PMID: 36915167 PMCID: PMC10012730 DOI: 10.1186/s13068-023-02295-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.
Collapse
Affiliation(s)
- Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Madhuri Girdhar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Abhineet Goyal
- SAGE School of Science, SAGE University Bhopal, Sahara Bypass Road Katara Hills, Extension, Bhopal, Madhya Pradesh, 462022, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
5
|
du Pasquier J, Paës G, Perré P. Principal factors affecting the yield of dilute acid pretreatment of lignocellulosic biomass: A critical review. BIORESOURCE TECHNOLOGY 2023; 369:128439. [PMID: 36493953 DOI: 10.1016/j.biortech.2022.128439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
This review provides a critical analysis of the state of the art of dilute acid pretreatment applied to lignocellulosic biomass. Data from 63 publications were extracted and analysed. The majority of the papers used residence times of<30 min, temperature ranges from 100 °C to 200 °C, and acid levels between 0 % and 2 %. Yields are quantified directly after pretreatment (xylose content) or after enzymatic hydrolysis (glucose content). Statistical analyses allowed the time-temperature equivalence to be quantified for three types of biomass: they were formulated by non-linear expressions. In further works, investigating less explored areas, for example moderate temperature levels with longer residence times, is recommended. Pretreatment material (time-temperature kinetics, reactor type) and analytical methods should be standardized and better described. It becomes mandatory to promote the development of an open, findable, accessible, interoperable, and reusable data approach for pretreatments research.
Collapse
Affiliation(s)
- Julien du Pasquier
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France; Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| | - Gabriel Paës
- Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51100 Reims, France.
| | - Patrick Perré
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 51110 Pomacle, France
| |
Collapse
|
6
|
Nongthombam GD, Sarangi PK, Singh TA, Sharma CK, Talukdar NC. Bioethanol production from Ficus fruits ( Ficus cunia) by Fusarium oxysporum through consolidated bioprocessing system. 3 Biotech 2022; 12:178. [PMID: 35865259 PMCID: PMC9294110 DOI: 10.1007/s13205-022-03234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/18/2022] [Indexed: 11/01/2022] Open
Abstract
Fusarium oxysporum is among the few filamentous fungi capable of fermenting ethanol directly from lignocellulose biomass (LCB). It has the essential enzymatic toolbox to disintegrate LCB to its monosaccharides, which subsequently fermented to ethanol under anaerobic and micro-aerobic conditions. However, the structural complexity of LCB and modest performances of wild fungi are major limitations for application in local biorefineries. This study assessed the potential of the locally isolated Fusarium oxysporum for the production of bioethanol from Ficus fruits (Ficus cunia) using Consolidated Bioprocessing (CBP). The maximum ethanol concentration achieved was at 5% substrate loadings with pH 6 irrespective of temperature variance, attaining a concentration of 3.54 g/L and 3.88 g/L at 28 °C and 32 °C, respectively. The monitoring of analytes (glucose, arabinose, cellobiose, xylose, acetic acid, ethanol, furfural, and HMF) in this study suggests the utilization of an array of sugars released from Ficus fruits, irrespective of the difference in the process parameters. This study also shows that CBP of freshly grounded Ficus fruits was feasible employing a mild hydrothermal pretreatment (autoclaved at 121 °C for 30 min in 1:10 w/v) and without supplementing any extraneous enzymes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03234-y.
Collapse
Affiliation(s)
| | | | | | - Chandradev K. Sharma
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal, 795001 India
| | - Narayan C. Talukdar
- Faculty of Science, Assam Downtown University, Panikhaiti, Guwahati, 781006 India
| |
Collapse
|
7
|
Technoeconomic analysis and environmental sustainability estimation of bioalcohol production from barley straw. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
9
|
Krafft MJ, Berger J, Saake B. Analytical Characterization and Inhibitor Detection in Liquid Phases Obtained After Steam Refining of Corn Stover and Maize Silage. Front Chem 2021; 9:760657. [PMID: 34722463 PMCID: PMC8551624 DOI: 10.3389/fchem.2021.760657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The utilization of agricultural products and residues for the production of value-added and biobased products is a highly relevant topic in present research. Due to the natural recalcitrance of lignocellulosic biomass against enzymatic degradation, pretreatments are important requirement for further processes. For the raw material in this study, corn stover (CS) as highly available agricultural residue and maize silage (MS) as model substrate for an ensiled agricultural product were pretreated by steam refining. However, after processing a liquid fraction and fibers are present. Subsequent to steaming the fiber fraction is well characterized. Nonetheless, in depth characterizations of the filtrates are also important for their subsequent utilization. Decreasing molar masses from 7,900 g/mol to 1,100 g/mol for CS filtrates and 100.000–12.900 g/mol for MS filtrates were determined with increasing severity. Due to their proven inhibitory effect on microorganisms weak acids, furans and phenolic compounds within the liquid phased were analyzed. Especially formic acid increases with increasing severity from 0.27 to 1.20% based on raw material for CS and from 0.07 to 0.23% based on raw material for MS. Further GC/MS measurements indicate, that up to 8.25% (CS filtrate) and 5.23% (MS filtrates) of the total peak area is related to inhibitory phenols. Considering the data, detoxification strategies are of non-negligible importance for filtrates after steam refining and should be considered for further research and process or parameter optimizations. An alternative may be the application of milder process conditions in order to prevent the formation of inhibitory degradation products or the dilution of the gained filtrates.
Collapse
Affiliation(s)
- Malte Jörn Krafft
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| | - Jens Berger
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| | - Bodo Saake
- Chemical Wood Technology, University of Hamburg, Barsbüttel, Germany
| |
Collapse
|
10
|
Hua Y, Chen S, Li H, Cai C, Dai X. A novel thermal pretreatment method called air frying improves the enzymatic saccharification effect of straw. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148191. [PMID: 34111786 DOI: 10.1016/j.scitotenv.2021.148191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Thermal pretreatment is a shared method to improve the efficiency of straw biochemical conversion. However, the process is often accompanied by problems such as the loss of carbon source. The objective of this study was to develop a novel thermal pretreatment method, called air frying, with less loss of biodegradable organic matter and favorable surface hydrophilicity. After pretreatment of two straws, the sugar yields were improved, and the improvement effect of corn stover was more significant. The total saccharification rate of corn stover increased from 31.31 ± 1.06% to 44.77 ± 1.23%, and the cellulose conversion rate increased from 44.10 ± 1.85% to 67.44 ± 2.37%. Functional groups with lower polarity on the surface were oxidized into the one with stronger polarity, so the hydrophilicity was enhanced. The surface roughness decreased, the surface tended to be flat, the original pores collapsed, and the average pore size increased, which was more conducive to the binding of enzyme and active site. The matching relationship between the optimal conditions and substrate, and the possibility of scaling up need further study.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huiping Li
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Liu CY, Sun YY, Jia YQ, Geng XQ, Pan LC, Jiang W, Xie BY, Zhu ZY. Effect of steam explosion pretreatment on the structure and bioactivity of Ampelopsis grossedentata polysaccharides. Int J Biol Macromol 2021; 185:194-205. [PMID: 34166690 DOI: 10.1016/j.ijbiomac.2021.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Steam explosion (SE) was a friendly environmentally pretreatment method. In this study, the effect of steam explosion (SE) pretreatment on structure and α-glucosidase inhibitory activity of Ampelopsis grossedentata polysaccharides was evaluated. Two novel polysaccharides (AGP and AGP-SE) were extracted, isolated, purified and analyzed by NMR, FT-IR and methylation. The results indicated that AGP mainly consisted of Rha, Xyl, Glc, and Ara with a molecular weight of 2.74 × 103 kDa and AGP-SE mainly consisted of Man, Ara, and Gal with a molecular weight of 2.14 × 103 kDa. Furthermore, the backbone of AGP and AGP-SE were mainly composed of 5)-Araf-(1→, -Glcp-(1→, 6)-Glcp-(1→, 6)-Galp-(1→, 3,6)-Manp-(1→, and 2,3,6)-Glcp-(1→. Finally, we demonstrated that all polysaccharides exhibited obviously α-glucosidase inhibition activity and mixed type inhibition. AGP-SE had better α-glucosidase inhibition activity and the binding affinity KD on α-glucosidase by using Surface Plasmon Resonance (SPR) than AGP. Overall, SE pretreatment is an effective method for extracting polysaccharide and provides a new idea into the improvement of biological activity.
Collapse
Affiliation(s)
- Chun-Yu Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang-Yang Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yun-Qin Jia
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue-Qing Geng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Li-Chao Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Jiang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bei-Yu Xie
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Novel Single-step Pretreatment of Steam Explosion and Choline Chloride to De-lignify Corn Stover for Enhancing Enzymatic Edibility. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wang H, Liu Z, Zheng X, Pan X, Hui L, Li J, Zhang H. Assessment on temperature-pressure severally controlled explosion pretreatment of poplar. Carbohydr Polym 2020; 230:115622. [PMID: 31887866 DOI: 10.1016/j.carbpol.2019.115622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
Abstract
In this work, temperature-pressure severally controlled explosion pretreatment (TPE) was proposed to pretreat poplar chips to improve the cellulase hydrolysis yield. In TPE process, native poplar chips (NP) were mixed with steam and N2 under pressure of 2.6, 2.8 and 3.0 MPa at 209 °C for 7 min. Meanwhile, steam explosion (SE) was also used to pretreat poplar chips for comparison at 209 °C (1.9 MPa) for 7 min. Results showed that the contents of hemicellulose and lignin were decreased from 19.4 % to 4.6 % and from 27.8 %-19.5 % with increasing pressure, respectively. For cellulase hydrolysis process, TPE was more advantageous than SE due to lower contents of hemicellulose and lignin, resulting in a higher cellulose conversion (40.7 %) in relation to SE sample (34.9 %). The Langmuir isothermal- type equation expressed the factors related to the hydrolysis capacity, and the results showed that this model can well describe the kinetics of the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Huimei Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xu Zheng
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingzhi Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Pérez-Pimienta JA, Papa G, Gladden JM, Simmons BA, Sanchez A. The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Adv 2020; 10:18147-18159. [PMID: 35517195 PMCID: PMC9053731 DOI: 10.1039/d0ra04031b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022] Open
Abstract
A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.
Collapse
Affiliation(s)
- José A. Pérez-Pimienta
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| | - Gabriela Papa
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - John M. Gladden
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Blake A. Simmons
- Joint BioEnergy Institute
- Biological Systems and Engineering Division
- Lawrence Berkeley National Laboratory
- Emeryville
- USA
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía
- Unidad Guadalajara de Ingeniería Avanzada
- Centro de Investigación y Estudios Avanzados (CINVESTAV)
- Zapopan
- Mexico
| |
Collapse
|
15
|
Javaid R, Sabir A, Sheikh N, Ferhan M. Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals. Molecules 2019; 24:E786. [PMID: 30813221 PMCID: PMC6412211 DOI: 10.3390/molecules24040786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H₂O₂. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.
Collapse
Affiliation(s)
- Rehman Javaid
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Aqsa Sabir
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| | - Nadeem Sheikh
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
- Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab Quaid-e Azam Campus, 54590 Lahore, Pakistan.
| | - Muhammad Ferhan
- Lignin Valorization & Nanomaterials Lab, Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road, Thokar Niaz Baig, 53700 Lahore, Pakistan.
| |
Collapse
|
16
|
Yuan Z, Li G, Hegg EL. Enhancement of sugar recovery and ethanol production from wheat straw through alkaline pre-extraction followed by steam pretreatment. BIORESOURCE TECHNOLOGY 2018; 266:194-202. [PMID: 29982039 DOI: 10.1016/j.biortech.2018.06.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
To improve sugar recovery and ethanol production from wheat straw, a sequential two-stage pretreatment process combining alkaline pre-extraction and acid catalyzed steam treatment was investigated. The results showed that alkaline pre-extraction using 8% (w/w) sodium hydroxide at 80 °C for 90 min followed by steam pretreatment with 3% (w/w) sulfur dioxide at 151 °C for 16 min was sufficient to prepare a substrate that could be efficiently hydrolyzed at high solid loadings. Moreover, alkaline pre-extraction reduced the process severity of steam pretreatment and decreased the generation of inhibitory compounds. During enzymatic hydrolysis, increasing solid loading decreased the yield of monomeric sugars. Enzymatic hydrolysis at 25% (w/v) solid loading, the yields of approximately 80% of glucose and 65% of xylose could be reached with an enzyme dosage of 25 mg protein/g glucan. Following fermentation of hydrolysate with sugar concentration of approximately 120 g/L, an ethanol concentration of 54.5 g/L was achieved.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Guodong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Zhai R, Hu J, Saddler JN. Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment. BIORESOURCE TECHNOLOGY 2018; 258:12-17. [PMID: 29518686 DOI: 10.1016/j.biortech.2018.02.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
The aim of this work was to study how to minimize cellulase inhibition of whole slurry biomass hydrolysis through addition of carbocation scavengers during acid-catalyzed pretreatment. Various potential carbocation scavengers were compared and their inhibition mitigating effects towards the hydrolytic performance of cellulase enzymes was assessed. The results indicated that the addition of carbocation scavengers during the pretreatment process could not only alleviate the inhibitory effect of the phenolics on the enzymatic hydrolysis but also increase the accessibility of cellulases to the pretreated substrates. It appeared that lignin-derived compounds such as 4-hydroxybenzoic acid, vanillic acid, syringic acid could all serve as efficient scavengers to alleviate the inhibitory effect of phenolics on cellulose hydrolysis where the syringic acid showed the best mitigating effect. By combining the carbocation scavengers in the pretreatment process, an improved cellulose hydrolysis of the pretreated whole slurry could be achieved without any post detoxification step.
Collapse
Affiliation(s)
- Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| | - Jinguang Hu
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada.
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| |
Collapse
|
18
|
Zhang W, Sun H, Zhu C, Wan K, Zhang Y, Fang Z, Ai Z. Mechanical and water-resistant properties of rice straw fiberboard bonded with chemically-modified soy protein adhesive. RSC Adv 2018; 8:15188-15195. [PMID: 35541306 PMCID: PMC9080012 DOI: 10.1039/c7ra12875d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, rice straw and soy protein were used to make fiberboard which may replace wood fiberboard. Soy protein isolates (SPI) were modified by epoxidized oleic acid to improve the soy protein adhesive properties such as adhesion strength and water resistance. The effects of NaOH content, the addition of modified-SPI adhesives and fiberboard density on the mechanical and water-resistant properties of the rice straw fiberboards were investigated. FTIR and XRD results of modified SPI indicated the epoxidized oleic acid and soy protein reacted with each other. FTIR and SEM images of rice straw fibers showed that NaOH solution removed the wax layer through chemical etching. The results of investigating mechanical properties and water absorption illustrate that when the soy protein-based adhesives content and density and the hot pressing temperature and pressure of fiberboard are 12%, 0.8 g cm-3, 140 °C and 6 MPa, respectively, the panels have optimal mechanical and water-resistant performances. Moreover, the panels meet the requirements of chinese medium density fiberboard (MDF) Standard of GB/T 11718-2009. Since biological raw materials are recyclable and biomass, the fiberboard bonded with modified soy protein adhesive has no toxicity and is easily biodegradable. In addition, the rice straw burned to produce haze has been preferably utilized.
Collapse
Affiliation(s)
- Wanrong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Hongguang Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Chao Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Kai Wan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Yu Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Zhengping Fang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| | - Zhaoquan Ai
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Educational Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University Wuhan Hubei 430062 China +86-18963962367 +86-18963962367
| |
Collapse
|
19
|
Aftab MN, Zafar A, Iqbal I, Kaleem A, Zia KM, Awan AR. Optimization of saccharification potential of recombinant xylanase from Bacillus licheniformis. Bioengineered 2018; 9:159-165. [PMID: 28886289 PMCID: PMC5972937 DOI: 10.1080/21655979.2017.1373918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Saccharification potential of xylanase enzyme cloned from Bacillus licheniformis into E. coli BL21 (DE3) was evaluated against plant biomass for the production of bioethanol. The expression of cloned gene was studied and conditions were optimized for its large scale production. The parameters effecting enzyme production were examined in a fermenter. Recombinant xylanase has the ability to breakdown birchwood xylan to release xylose as well as the potential to treat plant biomass, such as wheat straw, rice straw, and sugarcane bagass. The saccharification ability of this enzyme was optimized by studying various parameters. The maximum saccharification percentage (84%) was achieved when 20 units of recombinant xylanase were used with 8% sugarcane bagass at 50°C and 120 rpm after 6 hours of incubation. The results indicated that the bioconversion of natural biomass by recombinant xylanase into simple sugars can be used for biofuel (bioethanol) production. This process can replace the use of fossil fuels, and the use of bioethanol can significantly reduce the emission of toxic gases. Future directions regarding pre-treatment of cellulosic and hemicellulosic biomass and other processes that can reduce the cost and enhance the yield of biofuels are briefly discussed.
Collapse
Affiliation(s)
- Muhammad N Aftab
- a Institute of Industrial Biotechnology , Government College University , Katchery Road, Lahore , Pakistan
| | - Asma Zafar
- a Institute of Industrial Biotechnology , Government College University , Katchery Road, Lahore , Pakistan
| | - Irfana Iqbal
- b Department of Zoology , Lahore College for Women University , Lahore , Pakistan
| | - Afshan Kaleem
- c Department of Biotechnology , Lahore College for Women University , Lahore , Pakistan
| | - Khalid M Zia
- d Institute of Chemistry , Government College University , Faisalabad , Pakistan
| | - Ali R Awan
- e Institute of Biochemistry & Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| |
Collapse
|
20
|
Sea Water as a Reaction Medium for Bioethanol Production. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Gaur R, Semwal S, Raj T, Yadav Lamba B, Ramu E, Gupta RP, Kumar R, Puri SK. Intensification of steam explosion and structural intricacies impacting sugar recovery. BIORESOURCE TECHNOLOGY 2017; 241:692-700. [PMID: 28614764 DOI: 10.1016/j.biortech.2017.05.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Dilute acid (DA) pretreatment at pilot level failed for cotton stalk (CS) due to the technical issues posed by its inherent nature. Reasonable glucan conversion has been reported via two-stage pretreatment but adds on to the process cost. Proposed herewith is a single-stage steam explosion (SE) process preceded by water extraction resulting in high sugar recovery from CS. Raising the extraction temperature to 80°C increased the glucan conversion from 37.9 to 52.4%. Further improvement up to 68.4% was achieved when DA was incorporated during the room temperature extraction. LC-MS revealed the formation of xylo-oligomers limiting the glucan conversion in proportion to the length of xylo-oligomers. Varying extraction conditions induced structural alterations in biomass after SE evident by compositional analysis, Infrared Spectroscopy, X-Ray Diffraction and Scanning Electron Microscopy. Overall glucose recovery, i.e. 75.8-76.7% with and without DA extraction respectively was achieved.
Collapse
Affiliation(s)
- Ruchi Gaur
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India
| | - Surbhi Semwal
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India
| | - Tirath Raj
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India; College of Engineering, Department of Chemistry, University of Petroleum & Energy Studies, Village & P.O Bidholi, Prem Nagar, Dehradun (UA) 248007, India
| | - Bhawna Yadav Lamba
- College of Engineering, Department of Chemistry, University of Petroleum & Energy Studies, Village & P.O Bidholi, Prem Nagar, Dehradun (UA) 248007, India
| | - E Ramu
- Analytical Division, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India
| | - Ravi P Gupta
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India
| | - Ravindra Kumar
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India.
| | - Suresh K Puri
- DBT-IOC Center for Advanced Bioenergy Research, Indian Oil Corporation, R&D Centre, Sector-13, Faridabad, Haryana 121007, India
| |
Collapse
|
22
|
Veluchamy C, Raju VW, Kalamdhad AS. Prerequisite - An electrohydrolysis pretreatment for anaerobic digestion of lignocellulose waste material. BIORESOURCE TECHNOLOGY 2017; 235:274-280. [PMID: 28371765 DOI: 10.1016/j.biortech.2017.03.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 06/07/2023]
Abstract
This novel work is focused on evaluating the electrohydrolysis pretreatment conditions (applied voltage and time) and anaerobic digestion process for the biological bioconversion of pulp and paper mill sludge into biogas in batch assay. The pretreatment at 15V for 45min shows highest impact on sludge solubilization. The XRD and FT-IR spectroscopic characterization shows the development of aliphatic, unsaturated and carbonyl carbon functionalities in the pretreated samples. FESEM picture also qualities the change in alteration of structure after pretreatment. Batch anaerobic bioreactor was carried out to determine the efficacy of electrohydrolysis pretreated and untreated pulp and paper mill sludge. The methane production potential was increased from 274±5 to 301±4mL CH4/g VS after electrohydrolysis pretreatment.
Collapse
Affiliation(s)
- C Veluchamy
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - V Wilson Raju
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
23
|
Auxenfans T, Crônier D, Chabbert B, Paës G. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:36. [PMID: 28191037 PMCID: PMC5297051 DOI: 10.1186/s13068-017-0718-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/26/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Biorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (Miscanthus × giganteus, poplar and wheat straw), before and after steam explosion pretreatment at increasing severities, by monitoring chemical analysis, SEM, FTIR and 2D NMR. RESULTS Regardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-O-4' aryl-ether linkages were found to be homolytically cleaved, followed by some recoupling/recondensation to β-β' and β-5' linkages, regardless the biomass type. Finally, 2D NMR analysis of the whole biomass showed that the pretreatment preferentially degraded the syringyl-type lignin fractions in miscanthus and wheat straw while it was not affected in the pretreated poplar samples. CONCLUSIONS Our findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.
Collapse
Affiliation(s)
- Thomas Auxenfans
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - David Crônier
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Brigitte Chabbert
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
24
|
Agrawal R, Satlewal A, Kapoor M, Mondal S, Basu B. Investigating the enzyme-lignin binding with surfactants for improved saccharification of pilot scale pretreated wheat straw. BIORESOURCE TECHNOLOGY 2017; 224:411-418. [PMID: 27847236 DOI: 10.1016/j.biortech.2016.11.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 05/11/2023]
Abstract
In this study, commercial surfactants have been investigated at economically viable dosage to enhance the enzymatic saccharification of pretreated wheat straw at high solid loadings. Twenty one surfactants were evaluated with pilot scale pretreated wheat straw and mechanism of surfactant action has been elucidated. One surfactant has improved the saccharification of dilute acid wheat straw (DAWS) by 26.4% after 24h and 23.1% after 48h while, steam exploded wheat straw (SEWS) saccharification was increased by 51.2% after 24h and 36.4% after 48h at 10% solid loading. At 20% solid loading, about 31% increase in yield was obtained on DAWS and about 55% on SEWS after 48h. Further, lignin was isolated from pretreated wheat straws and characterized which revealed that SEWS derived lignin was more hydrophobic than DAWS lignin. This investigation suggests that surfactant supplementation during saccharification is an effective strategy to achieve higher saccharification yield.
Collapse
Affiliation(s)
- Ruchi Agrawal
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad 121007, India
| | - Alok Satlewal
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad 121007, India.
| | - Manali Kapoor
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad 121007, India
| | - Sujit Mondal
- Analytical Department, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad 121007, India
| | - Biswajit Basu
- DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd., Sector-13, Faridabad 121007, India
| |
Collapse
|
25
|
Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:73. [PMID: 28344648 PMCID: PMC5361838 DOI: 10.1186/s13068-017-0756-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. RESULTS In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L-1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L-1 and 82.74% degradation at 10 g L-1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. CONCLUSIONS This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
Collapse
Affiliation(s)
- Nisha Singh
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anshu S. Mathur
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Ravi. P. Gupta
- DBT-IOC Centre for Advance Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Colin J. Barrow
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
| | - Munish Puri
- Bioprocessing Laboratory, Centre for Chemistry and Biotechnology, Deakin University, Waurn Ponds, VIC 3217 Australia
- Centre for Marine Bioproducts Development, Medical Biotechnology, Flinders University, Adelaide, Australia
| |
Collapse
|
26
|
Capolupo L, Faraco V. Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 2016; 100:9451-9467. [PMID: 27714444 PMCID: PMC5071362 DOI: 10.1007/s00253-016-7884-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/01/2022]
Abstract
Lignocellulosic biomass is the most abundant, low-cost, bio-renewable resource that holds enormous importance as alternative source for production of biofuels and other biochemicals that can be utilized as building blocks for production of new materials. Enzymatic hydrolysis is an essential step involved in the bioconversion of lignocellulose to produce fermentable monosaccharides. However, to allow the enzymatic hydrolysis, a pretreatment step is needed in order to remove the lignin barrier and break down the crystalline structure of cellulose. The present manuscript is dedicated to reviewing the most commonly applied "green" pretreatment processes used in bioconversion of lignocellulosic biomasses within the "biorefinery" concept. In this frame, the effects of different pretreatment methods on lignocellulosic biomass are described along with an in-depth discussion on the benefits and drawbacks of each method, including generation of potentially inhibitory compounds for enzymatic hydrolysis, effect on cellulose digestibility, and generation of compounds toxic for the environment, and energy and economic demand.
Collapse
Affiliation(s)
- Laura Capolupo
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- European Center "Europe Direct LUP", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
- Interdepartmental Center "R. d'Ambrosio, LUPT", Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126, Naples, Italy.
| |
Collapse
|
27
|
Sharma S, Horn SJ. Enzymatic saccharification of brown seaweed for production of fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 213:155-161. [PMID: 26961713 DOI: 10.1016/j.biortech.2016.02.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Svein Jarle Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|
28
|
Duangwang S, Ruengpeerakul T, Cheirsilp B, Yamsaengsung R, Sangwichien C. Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production. BIORESOURCE TECHNOLOGY 2016; 203:252-258. [PMID: 26735880 DOI: 10.1016/j.biortech.2015.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Pilot-scale steam explosion equipments were designed and constructed, to experimentally solubilize xylose from oil palm empty fruit bunches (OPEFB) and also to enhance an enzyme accessibility of the residual cellulose pulp. The OPEFB was chemically pretreated prior to steam explosion at saturated steam (SS) and superheated steam (SHS) conditions. The acid pretreated OPEFB gave the highest xylose recovery of 87.58 ± 0.21 g/kg dried OPEFB in the liquid fraction after explosion at SHS condition. These conditions also gave the residual cellulose pulp with high enzymatic accessibility of 73.54 ± 0.41%, which is approximately threefold that of untreated OPEFB. This study has shown that the acid pretreatment prior to SHS explosion is an effective method to enhance both xylose extraction and enzyme accessibility of the exploded OPEFB. Moreover, the xylose solution obtained in this manner could directly be fermented by Candida shehatae TISTR 5843 giving high ethanol yield of 0.30 ± 0.08 g/g xylose.
Collapse
Affiliation(s)
- Sairudee Duangwang
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Taweesak Ruengpeerakul
- Department of Computer Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ram Yamsaengsung
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chayanoot Sangwichien
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
29
|
Agrawal R, Satlewal A, Gaur R, Mathur A, Kumar R, Gupta RP, Tuli DK. Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Liu ZH, Chen HZ. Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility. BIORESOURCE TECHNOLOGY 2015; 193:345-56. [PMID: 26143002 DOI: 10.1016/j.biortech.2015.06.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 05/26/2023]
Abstract
A novel conversion process using steam explosion combined with enzymatic digestibility was exploited to increase sugar yield. Results showed that glucan and xylan recovery decreased with the increase of holding temperature and residence time in SE, respectively, while glucan and xylan conversion exhibited an opposite trend. The optimal conditions of steam explosion were 160 °C and 48 min, under which glucan and xylan recovery was 93.4% and 71.6%, respectively. Glucan and xylan conversion at 18% solid loading by periodic peristalsis increased by 3.4-5.8% and 4.5-6.2%, respectively, compared with that by water baths shaker. In the whole process, glucose, xylose and total sugar yield reached to 77.3%, 62.8% and 72.3%, respectively. The yield of hydroxymethyl furfural, furfural and lignin-derived products was 6.3 × 10(-2), 7.5 × 10(-2) and less than 3.7 × 10(-2) g/100 g feedstock, respectively. This novel conversion process increased sugar recovery, reduced degradation products formation, improved digestibility efficiency, and hence increased sugar yield.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol (Praha) 2015; 61:179-89. [DOI: 10.1007/s12223-015-0420-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
32
|
Chen HZ, Liu ZH. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 2015; 10:866-85. [DOI: 10.1002/biot.201400705] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
|
33
|
Oh YH, Lee SH, Jang YA, Choi JW, Hong KS, Yu JH, Shin J, Song BK, Mastan SG, David Y, Baylon MG, Lee SY, Park SJ. Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. BIORESOURCE TECHNOLOGY 2015; 181:283-290. [PMID: 25661307 DOI: 10.1016/j.biortech.2015.01.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
Rice bran treatment process for the production of 43.7 kg of hydrolysate solution containing 24.41 g/L of glucose and small amount of fructose from 5 kg of rice bran was developed and employed to produce polyhydroxyalkanoates in recombinant Escherichia coli and Ralstonia eutropha strains. Recombinant E. coli XL1-Blue expressing R. eutropha phaCAB genes and R. eutropha NCIMB11599 could produce poly(3-hydroxybutyrate) with the polymer contents of 90.1 wt% and 97.2 wt%, respectively, when they were cultured in chemically defined MR medium and chemically defined nitrogen free MR medium containing 10 mL/L of rice bran hydrolysate solution, respectively. Also, recombinant E. coli XL1-Blue and recombinant R. eutropha 437-540, both of which express the Pseudomonas sp. phaC1437 gene and the Clostridium propionicum pct540 gene could produce poly(3-hydroxybutyrate-co-lactate) from rice bran hydrolysate solution. These results suggest that rice bran may be a good renewable resource for the production of biomass-based polymers by recombinant microorganisms.
Collapse
Affiliation(s)
- Young Hoon Oh
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Seung Hwan Lee
- Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - Young-Ah Jang
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Jae Woo Choi
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea; Department of Chemical System Engineering, Hongik University, Jochiwon, Chungnam 339-701, Republic of Korea
| | - Kyung Sik Hong
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Ju Hyun Yu
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Jihoon Shin
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Bong Keun Song
- Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea
| | - Shaik G Mastan
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Yokimiko David
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Mary Grace Baylon
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Department of Bio and Brain Engineering, Department of Biological Sciences, BioProcess Engineering Research Center, and Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido 449-728, Republic of Korea.
| |
Collapse
|
34
|
Gaur R, Agrawal R, Kumar R, Ramu E, Bansal VR, Gupta RP, Kumar R, Tuli DK, Das B. Evaluation of recalcitrant features impacting enzymatic saccharification of diverse agricultural residues treated by steam explosion and dilute acid. RSC Adv 2015. [DOI: 10.1039/c5ra12475a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exploring agricultural biomass for biofuel production necessitates pretreatment as a prerequisite step.
Collapse
Affiliation(s)
- Ruchi Gaur
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ruchi Agrawal
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Rahul Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - E. Ramu
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Veena Rani Bansal
- Analytical Division
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravi P. Gupta
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Ravindra Kumar
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Deepak K. Tuli
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| | - Biswapriya Das
- Indian Oil Corporation Ltd
- Research and Development Centre
- Faridabad-121007
- India
| |
Collapse
|
35
|
Bioethanol from lignocellulosic biomass: current findings determine research priorities. ScientificWorldJournal 2014; 2014:298153. [PMID: 25614881 PMCID: PMC4295598 DOI: 10.1155/2014/298153] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022] Open
Abstract
“Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes.
Collapse
|