1
|
Taran J, Bhar R, Jha H, Kuila SK, Samal B, Pradhan R, Dubey BK. Synthetic coalification of microalgae through hydrothermal carbonization: strategies for enhanced hydrochar characteristics and technological advancements. BIORESOURCE TECHNOLOGY 2025; 429:132542. [PMID: 40239899 DOI: 10.1016/j.biortech.2025.132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
This review explores the hydrothermal carbonization (HTC) of microalgae through a comprehensive evaluation of the influence of process parameters on the resultant products. The findings revealed that HTC of microalgae takes place at lower temperatures (170 - 250 °C) compared to lignocellulosic feedstocks, and the resulting hydrochar and hydrolysate have a higher N-content. Additionally, secondary char production varies based on reaction conditions, with yields between 4 % and 35 %. The interaction between carbohydrates and nitrogenous compounds in the hydrolysate at varying reaction severities was discussed, underlining the extent of nitrogen fixation in the hydrochar and total organic C-content of up to 26.8 g L-1. The article also suggests strategies to improve hydrochar properties by assessing different technical strategies and emphasizing future direction research. In summary, this review underscores the potential of microalgal HTC as a sustainable approach for applications in energy and environmental applications via process optimization and technological upgradation.
Collapse
Affiliation(s)
- Joydeepa Taran
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Bhar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Hema Jha
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Saikat Kumar Kuila
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswajit Samal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjan Pradhan
- CCU & S, Jindal Steel & Power, Jindal Nagar, Angul, Odisha 759111, India; School of Engineering, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
2
|
Zheng Y, Sun F, Liu S, Wang G, Chen H, Guo Y, Wang X, Escobar Bonora ML, Zhang S, Li Y, Chen G. Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of Lactobacillus bulgaricus T15. Front Microbiol 2024; 15:1492127. [PMID: 39703712 PMCID: PMC11655503 DOI: 10.3389/fmicb.2024.1492127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Background The production of D-lactic acid (D-LA) from non-detoxified corn stover hydrolysate is hindered by substrate-mediated inhibition and low cell utilization times. In this study, we developed a novel temperature-sensitive hydrogel, F127-IEA, for efficient D-LA production using a cell-recycle batch fermentation process. Results F127-IEA exhibited a porous structure with an average pore size of approximately 1 μm, facilitating the formation of stable Lactobacillus bulgaricus clusters within the gel matrix. It also maintains excellent mechanical properties. It also maintains excellent mechanical properties. F127-IEA immobilized Lactobacillus bulgaricus T15 (F127-IEA-T15) can be used in cell-recycle fermentation for over 150 days from glucose and 50 days from corn stover hydrolysate, achieving high production rates of D-LA from glucose (2.71 ± 0.85 g/L h) and corn stover hydrolysate (1.29 ± 0.39 g/L h). F127-IEA-T15 enhanced D-LA production by adsorbing and blocking toxic substances present in corn stover hydrolysate that are detrimental to cellular activity. Conclusions The newly developed hydrogels in this study provide a robust platform for large-scale extraction of D-LA from non-detoxified corn stover.
Collapse
Affiliation(s)
- Yuhan Zheng
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Feiyang Sun
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Siyi Liu
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Huan Chen
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Yongxin Guo
- Northeast Institute of Geography and Agroecology, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiufeng Wang
- Biotechnology Research and Development Center, Vegetable and Flower Science Research Institute of Jilin Province, Changchun, China
| | - Maia Lia Escobar Bonora
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Yanli Li
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| |
Collapse
|
3
|
Ramírez-Romero A, da Costa Magalhães B, Matricon L, Sassi JF, Steyer JP, Delrue F. Aqueous phase recycling: impact on microalgal lipid accumulation and biomass quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32701-7. [PMID: 38438644 DOI: 10.1007/s11356-024-32701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
The potential success of microalgal biofuels greatly depends on the sustainability of the chosen pathway to produce them. Hydrothermal liquefaction (HTL) is a promising route to convert wet algal biomass into biocrude. Recycling the resulting HTL aqueous phase (AP) aims not only to recover nutrients from this effluent but also to use it as a substrate to close the photosynthetic loop and produce algal biomass again and process this biomass again into new biocrude. With that purpose, the response to AP recycling of five Chlorellaceae strains was monitored over five cultivation cycles. After four successive cycles of dynamic growth under nutrient-replete conditions, the microalgae were cultivated for a prolonged fifth cycle of 18 days in order to assess the impact of the AP on lipid and biomass accumulation under nutrient-limited conditions. Using AP as a substrate reduced the demand for external sources of N, S, and P while producing a significant amount of biomass (2.95-4.27 g/L) among the strains, with a lipid content ranging from 16 to 36%. However, the presence of the AP resulted in biomass with suboptimal properties, as it slowed down the accumulation of lipids and thus reduced the overall energy content of the biomass in all strains. Although Chlorella vulgaris NIES 227 did not have the best growth on AP, it did maintain the best lipid productivity of all the tested strains. Understanding the impact of AP on microalgal cultivation is essential for further optimizing biofuel production via the HTL process.
Collapse
Affiliation(s)
- Adriana Ramírez-Romero
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France.
- Laboratoire de Biotechnologie de L'Environnement (LBE), INRAE, Univ Montpellier, 102 Avenue Des Etangs, 11100, Narbonne, France.
| | - Bruno da Costa Magalhães
- Institut de Recherches Sur La Catalyse Et L'Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon1, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Lucie Matricon
- CEA LITEN, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jean-François Sassi
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France
| | - Jean-Philippe Steyer
- Laboratoire de Biotechnologie de L'Environnement (LBE), INRAE, Univ Montpellier, 102 Avenue Des Etangs, 11100, Narbonne, France
| | - Florian Delrue
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France
| |
Collapse
|
4
|
Bao T, Zhu J, Zhang N, Shao Y. Effects of Lipids and Type of Amino Acid in Protein in Microalgae on Nitrogen Reaction Pathways during Hydrothermal Liquefaction. Int J Mol Sci 2023; 24:14967. [PMID: 37834414 PMCID: PMC10573331 DOI: 10.3390/ijms241914967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
It is meaningful to understand the conversion pathways of nitrogen during the hydrothermal liquefaction process of microalgae to reveal the related reaction mechanisms and develop effective methods to prevent N from ending in biocrude, which eventually increases the quality of biocrude. Extending from our previous works that mainly focused on two high-protein (>50 wt%) microalgae (Chlorella sp. and Spirulina sp.), Nannochloropsis sp., which has a high lipid content (>70 wt%), was used as the feedstock for this project using the same methodology. The high lipid content in Na. induced less nitrogen during the oil phase and as a result, reduced the heteroatom content while also improving the quality of biocrude. It is worth noting that another investigation was conducted on the model compounds with different types of amino acids to specify the effects of the types of amino acids in the proteins in microalgae on the N pathway and their distribution in the products (aqueous phase, oil, solid, and gas). It was found that the basic amino acid in microalgae caused the formation of more N-heterocyclic compounds in the biocrude. The mass flow based on the mass balance was demonstrated to further refine the map showing the predicted reaction pathway of nitrogen from the previous version.
Collapse
Affiliation(s)
- Tianyi Bao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jesse Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Nianze Zhang
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
| | - Yuanyuan Shao
- Zhejiang—Canada Joint Laboratory on Green Chemicals and Energy, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, The University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
5
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
6
|
Ramírez-Romero A, Martin M, Boyer A, Bolzoni R, Matricon L, Sassi JF, Steyer JP, Delrue F. Microalgae adaptation as a strategy to recycle the aqueous phase from hydrothermal liquefaction. BIORESOURCE TECHNOLOGY 2023; 371:128631. [PMID: 36646358 DOI: 10.1016/j.biortech.2023.128631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Hydrothermal liquefaction (HTL) produces bio-crude oil from wet algae along with an aqueous phase (AP). This effluent contains minerals that can be reused for cultivating new microalgae but whose utility remains limited due to the presence of inhibitors. Reduced photosynthetic performance, growth, and null lipid accumulation were observed in wild-type Chlorella vulgaris NIES 227 cultivated in AP (1/200). Adaptive laboratory evolution was studied by batch transfers and turbidostat mode. Both methods effectively counterbalanced AP toxicity and restored the fitness of the microalgae. After adaptation, a higher AP addition was achieved, from 1/600 to 1/200, without inhibition. As compared with the wild typein control medium (0.261 g/L/d), both adapted-strains maintained competitive productivity (0.310 and 0.258 g/L/d) of lipid-rich biomass (37 %-56 %). The improved tolerance of the adapted strains persisted after the removal of AP and under axenic conditions. Adaptive laboratory evolution is suggested for AP reutilization in the algae production process.
Collapse
Affiliation(s)
- Adriana Ramírez-Romero
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108 Saint-Paul-lez-Durance, France; Laboratoire de Biotechnologie de l'Environnement (LBE), INRAE, Univ. De Montpellier, 102 Avenue des Etangs, 11100 Narbonne, France.
| | - Marion Martin
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108 Saint-Paul-lez-Durance, France
| | - Alana Boyer
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108 Saint-Paul-lez-Durance, France
| | - Romain Bolzoni
- Aix-Marseille University, CNRS, CEA, UMR7265, Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Lucie Matricon
- CEA LITEN, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean-François Sassi
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108 Saint-Paul-lez-Durance, France
| | - Jean-Philippe Steyer
- Laboratoire de Biotechnologie de l'Environnement (LBE), INRAE, Univ. De Montpellier, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Florian Delrue
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
7
|
Rout PR, Goel M, Pandey DS, Briggs C, Sundramurthy VP, Halder N, Mohanty A, Mukherjee S, Varjani S. Technological advancements in valorisation of industrial effluents employing hydrothermal liquefaction of biomass: Strategic innovations, barriers and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120667. [PMID: 36395914 DOI: 10.1016/j.envpol.2022.120667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Hydrothermal liquefaction (HTL) is identified as a promising thermochemical technique to recover biofuels and bioenergy from waste biomass containing low energy and high moisture content. The wastewater generated during the HTL process (HTWW) are rich in nutrients and organics. The release of the nutrients and organics enriched HTWW would not only contaminate the water bodies but also lead to the loss of valued bioenergy sources, especially in the present time of the energy crisis. Thus, biotechnological as well as physicochemical treatment of HTWW for simultaneous extraction of valuable resources along with reduction in polluting substances has gained significant attention in recent times. Therefore, the treatment of wastewater generated during the HTL of biomass for reduced environmental emission and possible bioenergy recovery is highlighted in this paper. Various technologies for treatment and valorisation of HTWW are reviewed, including anaerobic digestion, microbial fuel cells (MFC), microbial electrolysis cell (MEC), and supercritical water gasification (SCWG). This review paper illustrates that the characteristics of biomass play a pivotal role in the selection process of appropriate technology for the treatment of HTWW. Several HTWW treatment technologies are weighed in terms of their benefits and drawbacks and are thoroughly examined. The integration of these technologies is also discussed. Overall, this study suggests that integrating different methods, techno-economic analysis, and nutrient recovery approaches would be advantageous to researchers in finding way for maximising HTWW valorisation along with reduced environmental pollution.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Mukesh Goel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Daya Shankar Pandey
- Center for Rural Development and Innovative Sustainable Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Caitlin Briggs
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | | | - Nirmalya Halder
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India.
| |
Collapse
|
8
|
Li R, Liu D, Zhang Y, Tommaso G, Si B, Liu Z, Duan N. Enhanced anaerobic digestion of post-hydrothermal liquefaction wastewater: Bio-methane production, carbon distribution and microbial metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155659. [PMID: 35513144 DOI: 10.1016/j.scitotenv.2022.155659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal liquefaction (HTL) is a cost-effective and environment-friendly technology for using biomass to produce bio-crude oil. The critical challenge of HTL is its complicated aqueous product containing high concentrations of organics and diverse toxicants. This paper reports the continuous anaerobic digestion of raw and zeolite-adsorbed Chlorella HTL wastewater using up-flow anaerobic sludge bed reactors. The bio-methane production capacity, total carbon distribution and microbial response were investigated. The anaerobic process was severely suppressed when more than 20% raw wastewater was fed; while it showed essentially improved performance till 60% pre-treated wastewater was added. Produced methane contained 17.3% of the total carbon in feedstock, which was comparable with the value (16.7%) when 25% of raw wastewater was added. The metagenomic analysis revealed distinct microbial community structures in different stages and feedstock shifts. The abundance of functional genes was consistent with anaerobic digester performance.
Collapse
Affiliation(s)
- Ruirui Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China
| | - Dianlei Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, Univeristy of Illinois at Urbana-Champaign, 1304 W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Giovana Tommaso
- Laboratory of Environmental Biotechnology, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 225 N Duque de Caxias. Ave., Jardim Elite, Pirassununga, SP, Brazil
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Usman M, Shi Z, Dutta N, Ashraf MA, Ishfaq B, El-Din MG. Current challenges of hydrothermal treated wastewater (HTWW) for environmental applications and their perspectives: A review. ENVIRONMENTAL RESEARCH 2022; 212:113532. [PMID: 35618004 DOI: 10.1016/j.envres.2022.113532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal treatment (HT) is an emerged thermochemical approach for the utilization of biomass. In the last decade, intense research has been conducted on bio-oil and hydrochar, during which extensive amount of hydrothermal treated wastewater (HTWW) is produced, containing large amount of organic compounds along with several toxic chemicals. The composition of HTWW is highly dependent on the process conditions and organic composition of biomass, which determines its further utilization. The current study provides a comprehensive overview of recent advancements in HTWW utilization and its properties which can be changed by varying different parameters like temperature, residence time, solid concentration, mass ratio and catalyst including types of biomasses. HTWW characterization, parameters, reaction mechanism and its application were also summarized. By considering the challenges of HTWW, some suggestions and proposed methodology to overcome the bottleneck are provided.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China.
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai, 200438, China
| | - Nalok Dutta
- Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University, Tri-Cities, Richland, WA, 99354, United States
| | - Muhammad Awais Ashraf
- State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Bushra Ishfaq
- Food Technology Section, Post-harvest Research Center, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada.
| |
Collapse
|
10
|
Harisankar S, Vishnu Mohan R, Choudhary V, Vinu R. Effect of water quality on the yield and quality of the products from hydrothermal liquefaction and carbonization of rice straw. BIORESOURCE TECHNOLOGY 2022; 351:127031. [PMID: 35314308 DOI: 10.1016/j.biortech.2022.127031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The need for fresh water limits the application and scale-up of hydrothermal technologies to convert waste biomass to energy and chemicals. In an effort to demonstrate the use of wastewater for sustainable process development, this work is focused on hydrothermal liquefaction (HTL) (350 °C, 18 MPa, 30 min) and carbonization (HTC) (200 °C, 7 MPa, 4 h) of rice straw with water from various sources (milli-Q water, tap water, seawater, recycled wastewater and industrial wastewater). The bio-crude yield from HTL was maximum (36.4 wt%) with industrial wastewater, while the yield of hydrochar from HTC was maximum (74.5 wt%) with seawater. The ions like K+, PO43- and NH4+ accumulated in the aqueous phase from rice straw. The hydrochars from HTL experiments contained significantly higher amount of ash compared to that from HTC experiments. Cyclopentenones and phenols were the major constituents of the bio-crude, whose HHV was 26.3 MJ/kg using seawater.
Collapse
Affiliation(s)
- S Harisankar
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - R Vishnu Mohan
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India
| | - Vaishali Choudhary
- Department of Civil Engineering, Indian Institute of Technology Madras, 600036, India
| | - R Vinu
- Department of Chemical Engineering and National Centre for Combustion Research and Development, Indian Institute of Technology Madras, 600036, India.
| |
Collapse
|
11
|
Nitrogen distribution in the products from the hydrothermal liquefaction of Chlorella sp. and Spirulina sp. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lu J, Watson J, Liu Z, Wu Y. Elemental migration and transformation during hydrothermal liquefaction of biomass. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126961. [PMID: 34461542 DOI: 10.1016/j.jhazmat.2021.126961] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Over the past few decades, energy and environmental crises have worsened due to the excessive consumption of fossil fuels. Hydrothermal liquefaction (HTL) is a promising technology for sustainable biocrude production from biomass. However, elemental migration and transformation during HTL of biomass have only received scant attention to date. Understanding the transformation mechanism is beneficial for downstream biocrude upgrading and by-products utilization for the future industrialization of HTL. In this paper, biomass is grouped into six categories: microalgae, macroalgae, lignocellulose, food waste, manure, and sludge. The biochemical composition and HTL product distribution of six kinds of biomass are compared. The conversion process of the biomacromolecules (including lipids, proteins, cellulose, hemicellulose, and lignin) and the interactions between them are also reported. Furthermore, the distribution of carbon, nitrogen, sulfur, and inorganic elements (Na, K, Ca, Mg, Al, Fe, Zn, Cu, Pb, Cd, etc.) in the HTL products is summarized, and the transformation of the organic and inorganic elements during HTL of biomass is explored. Finally, outlooks for the HTL of biomass are proposed.
Collapse
Affiliation(s)
- Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jamison Watson
- Department of Agricultural and Biological Engineering University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China.
| |
Collapse
|
13
|
Zhang K, Adams KJ, Kumar S, Wang ZW, Zheng Y. A novel biological treatment of hydrothermal carbonization wastewater by using Thraustochytrium striatum. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Bio-Crude Production through Recycling of Pretreated Aqueous Phase via Activated Carbon. ENERGIES 2021. [DOI: 10.3390/en14123488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The management and optimization of the aqueous phase are the major challenges that hinder the promotion of hydrothermal liquefaction (HTL) technology on a commercial scale. Recently, many studies reported about the accumulation of the N-content in the bio-crude with continuous recycling of the aqueous phase from high protein-containing biomass. In the present study, sewage sludge was processed at 350 °C in an autoclave. The produced aqueous phase was treated with activated carbon, and its subsequent recycling effect on the properties of the bio-crude and aqueous phase was investigated. By contacting the aqueous phase with activated carbon, 38–43% of the total nitrogen was removed from the aqueous phase. After applying the treated aqueous phase recycling, the energy recovery of the bio-crude increased from 50 to 61% after three rounds of recycling. From overall carbon/nitrogen recoveries, 50 to 56% of the carbon was transferred to the bio-crude phase and more than 50% of the nitrogen remained in the aqueous phase. The aqueous phase contained mostly of N&O-heterocyclic compounds, small chain organic acids, and amides. ICP-AES analysis showed that more than 80% of the inorganic elements were concentrated into the solid phase.
Collapse
|
15
|
Hong C, Wang Z, Si Y, Li Z, Xing Y, Hu J, Li Y. Preparation of bio-oils by hydrothermal liquefaction (HTL) of penicillin fermentation residue (PR): Optimization of conditions and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143216. [PMID: 33213924 DOI: 10.1016/j.scitotenv.2020.143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Response surface methodology (RSM) was used to investigate factors influencing the yield of bio-oil from the hydrothermal liquefaction (HTL) process of penicillin fermentation residue (PR). The reaction mechanism of the HTL was also studied. The hydrolysis of organic compounds in PR was enhanced, and the bio-oil yield increased with an increase of temperature. When the temperature rose from 280 °C to 320 °C, the yield of bio-oil decreased due to condensation and pyrolysis. Both the residence time and total solid content had effects on the bio-oil yield. The predicted values from the RSM model was in good agreement with the experimental values. Optimized conditions showed that the predicted value of the highest bio-oil yield was 25.91 wt%. The optimized reaction conditions were as follows: reaction temperature was 300 °C, residence time was 174 min, and total solid content was 18 wt%. The bio-oil was analyzed by GC-MS, and showed that it consisted mainly of hydrocarbons, nitrogen-containing heterocyclic compounds, and oxygen-containing compounds. Finally, the formation mechanism of these components and their possible reaction paths are presented and discussed. The results will provide useful guidance for regulating the characteristics of antibiotic residues, and realizing their further utilization as a chemical feedstock.
Collapse
Affiliation(s)
- Chen Hong
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiqiang Wang
- Department of Coal and Syngas Conversion, Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
| | - Yanxiao Si
- Institute of Ground engineering, Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
| | - Zaixing Li
- Department of Environmental Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yi Xing
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jiashuo Hu
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yifei Li
- Department of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
16
|
Zhang Z, Yang J, Qian J, Zhao Y, Wang T, Zhai Y. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications. BIORESOURCE TECHNOLOGY 2021; 324:124686. [PMID: 33454447 DOI: 10.1016/j.biortech.2021.124686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal carbonization (HTC), as one of thermal conversion techniques, shows promising commercial potential for hydrochar production from wet biowaste. This technique was re-discovered and regraded as artificial coalification to mimic natural process. In recent years, researchers concern more about hydrochar obtained from HTC, since large amount of organic waste including sludge, algae, food waste, manure etc. are generated with high moisture, which can be directly used as reaction medium, and hydrochar has high carbon density and energy retention. With this regard, application of hydrochar as biofuel is a renewable and sustainable way for biowaste recycling. In this review, HTC process and pathways about hydrochar formation from (N-free/N-rich biowaste), carbon-skeleton structure, critical elements on clean properties, and hydrochar pelletization for biofuel production were presented. Potential applications and challenges for HTC as green and sustainable way were presented, which will provide prospect for hydrochar as clean and renewable biofuel.
Collapse
Affiliation(s)
- Zhiming Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Jiantao Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Jianqiang Qian
- College of Forestry, Henan Agricultural University, Zhengzhou, China.
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
|
18
|
Leng L, Zhang W, Leng S, Chen J, Yang L, Li H, Jiang S, Huang H. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:142383. [PMID: 33113702 DOI: 10.1016/j.scitotenv.2020.142383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC)/liquefaction (HTL)/gasification (HTG) are promising processes for biofuel production from biomass containing high moisture. However, wastewater, the aqueous phase (AP) byproduct from these hydrothermal processes, is inevitably produced in large amounts. The AP contains >20% of the biomass carbon, and the total organic carbon in AP is as high as 10-20 g/L. The treatment and utilization of AP are becoming a bottleneck for the industrialization of hydrothermal technologies. The major challenges are the presence of various inhibitory substances and the high complexity of AP. Bioenergy recovery from AP has attracted increasing interest. In the present review, the compositions and characteristics of AP are first presented. Then, the progress in recovering bioenergy from AP by recirculation as the reaction solvent, anaerobic digestion (AD), supercritical water gasification (SCWG), microbial fuel cell (MFC), microbial electrolysis cell (MEC), and microalgae cultivation is discussed. Recirculation of AP as reaction solvent is preferable for AP from biomass with relatively low moisture; AD, MFC/MEC, and microalgae cultivation are desirable for the treatment of AP produced from processing biomass with low lignin content at relatively low temperatures; SCWG is widely applicable but is energy-intensive. Finally, challenges and corresponding strategies are proposed to promote the development of AP valorization technologies. Comprehensive analysis of AP compositions, clarification of the mechanisms of valorization processes, valorization process integration detoxification of AP, polycultures and co-processing of AP with other waste, enhancement in pollutant removal, scaling-up performance, and the techno-economic analysis and life-cycle assessment of valorization systems are promising directions in future investigations.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| | - Weijin Zhang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Songqi Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Jie Chen
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| | - Shaojian Jiang
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
19
|
Jiang H, Fan L, Cai C, Hu Y, Zhao F, Ruan R, Yang W. Study on the bio-oil characterization and heavy metals distribution during the aqueous phase recycling in the hydrothermal liquefaction of As-enriched Pteris vittata L. BIORESOURCE TECHNOLOGY 2020; 317:124031. [PMID: 32871332 DOI: 10.1016/j.biortech.2020.124031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
The hydrothermal liquefaction (HTL) of As enriched Pteris vittata L. (PVL, hyper-accumulator biomass) was performed with the recycled aqueous phase as reaction medium, aiming to dispose the biomass with high water content and produce high-quality bio-oil. After three times of aqueous phase recycling at 275 °C, 30 min, the bio-oil yield increased to 30.32% from 21.54% and the higher heating value (HHV, 28.51 MJ/kg) of the bio-oil was higher than that of the bio-oil from HTL with pure water (26.80 MJ/kg). The main compounds detected in bio-oils were phenols, ketones, hydrocarbons, and aldehydes. Acetic acid (17.21-24.77 mg/mL) was dominant in the aqueous phases, resulting in the low pH (4.31-4.89). The heavy metals (Cu, Pb, Zn, Cd) mainly remained in bio-char whereas As was transferred to aqueous phase. Thus, HTL by aqueous phase recycling could be a promising way for PVL treatment to obtain high-quality bio-oil and arsenic recovery.
Collapse
Affiliation(s)
- Haiwei Jiang
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Liangliang Fan
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Chang Cai
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Ying Hu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Fenghua Zhao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, United States
| | - Weiran Yang
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
20
|
Wang T, Si B, Gong Z, Zhai Y, Cao M, Peng C. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. BIORESOURCE TECHNOLOGY 2020; 316:123900. [PMID: 32739578 DOI: 10.1016/j.biortech.2020.123900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The influence of co-hydrothermal carbonization (co-HTC) on the hydrochar properties and nutrients distribution derived from food waste (FW) and woody sawdust (WS) blend was assessed. The carbon retention, surface functional groups and morphology features involved in hydrochar were evaluated to study the interaction effects. Results suggested that hydrochar yield consistently decreased with increase of both FW ratio and HTC temperature. C retention from 260 °C hydrochar was low (approximately 65%), but more microsphere structures was formed due to the enhanced carbonization degree of hydrochar. Hydrochar obtained at high FW blend ratio and temperature resulted in weaken oxygen-containing groups like OH and CO with enhanced CC and C(O, N). 10.43-60.45% of N and 82-94% of P were retained in hydrochar. NH4+-N (6.63%-15.63%) and organic nitrogen (70.4%-87.7%) were identified as main N-containing species in liquid phase, while total P content (14-166 mg/L) depended more on FW ratio.
Collapse
Affiliation(s)
- Tengfei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; State-province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu 611756, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingfeng Cao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Chuan Peng
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Scale-Up Cultivation of Phaeodactylum tricornutum to Produce Biocrude by Hydrothermal Liquefaction. Processes (Basel) 2020. [DOI: 10.3390/pr8091072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phaeodactylum tricornutum is an interesting source of biomass to produce biocrude by hydrothermal liquefaction (HTL). Its biochemical composition, along with its biomass productivity, can be modulated according to this specific application by varying the photoperiod, the addition of CO2 or the variation of the initial nitrate concentration. The lab-scale culture allowed the production of a P. tricornutum biomass with high biomass and lipid productivities using a 18:6 h light:dark photoperiod and a specific CO2 injection. An initial concentration of nitrates (11.8 mM) in the culture was also essential for the growth of this species at the lab scale. The biomass generated in the scale-up photoreactor had acceptable biomass and lipid productivities, although the values were higher in the biomass cultivated at the lab scale because of the difficulty for the light to reach all cells, making the cells unable to develop and hindering their growth. The biocrudes from a 90-L cultivated microalga (B-90L) showed lower yields than the ones obtained from the biomass cultivated at the lab scale (B-1L) because of the lower lipid and high ash contents in this biomass. However, the culture scaling-up did not affect significantly the heteroatom concentrations in the biocrudes. A larger-scale culture is recommended to produce a biocrude to be used as biofuel after a post-hydrotreatment stage.
Collapse
|
22
|
Egerland Bueno B, Américo Soares L, Quispe-Arpasi D, Kimiko Sakamoto I, Zhang Y, Amancio Varesche MB, Ribeiro R, Tommaso G. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. BIORESOURCE TECHNOLOGY 2020; 312:123552. [PMID: 32502889 DOI: 10.1016/j.biortech.2020.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal liquefaction is a process that converts wet biomass into biofuels, more specifically bio-crude oil. During the process, post hydrothermal liquefaction waste water (PHWW) is generated, rich in nutrient and organic matter, however potentially toxic. Anaerobic digestion of PHWW from Spirulina, was evaluated using biostimulated sludge as a strategy to optimize the process. The biostimulation was conducted in a sequential batch reactor fed with organic acids and methanol aiming at development of acetogenic and methanogenic microorganism. Anaerobic biodegradability batch assays were performed, with biostimulated sludge and with non-biostimulated sludge, using increasing PHWW concentrations. Biostimulated sludge were more favourable for reaching higher methane yields at higher organic matter concentrations in comparison to non-biostimulated sludge, presenting less inhibition at conditions tested. Biostimulation was a key process to select and favour potential microorganisms involved in specialized uptake of recalcitrant compounds, such as Mesotoga and Methanomethylovorans.
Collapse
Affiliation(s)
- Beatriz Egerland Bueno
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Laís Américo Soares
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Diana Quispe-Arpasi
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Maria Bernadete Amancio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Rogers Ribeiro
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Giovana Tommaso
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil.
| |
Collapse
|
23
|
Choudhary P, Assemany PP, Naaz F, Bhattacharya A, Castro JDS, Couto EDADC, Calijuri ML, Pant KK, Malik A. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:137961. [PMID: 32334349 DOI: 10.1016/j.scitotenv.2020.137961] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Microalgae are recognized as a potential source of biomass for obtaining bioenergy. However, the lack of studies towards economic viability and environmental sustainability of the entire production chain limits its large-scale application. The use of wastewaters economizes natural resources used for algal biomass cultivation. However, desirable biomass characteristics for a good fuel may be impaired when wastewaters are used, namely low lipid content and high ash and protein contents. Thus, the choice of wastewaters with more favorable characteristics may be one way of obtaining a more balanced macromolecular composition of the algal biomass and therefore, a more suitable feedstock for the desired energetic route. The exploration of biorefinery concept and the use of wastewaters as culture medium are considered as the main strategic tools in the search of this viability. Considering the economics of overall process, direct utilization of wet biomass using hydrothermal liquefaction or hydrothermal carbonization and anaerobic digestion is recommended. Among the explored routes, anaerobic digestion is the most studied process. However, some main challenges remain as little explored, such as a low energy pretreatment and suitable and large-scale reactors for algal biomass digestion. On the other hand, thermochemical conversion routes offer better valorization of the algal biomass but have higher costs. A biorefinery combining anaerobic digestion, hydrothermal carbonization and hydrothermal liquefaction processes would provide the maximum possible output from the biomass depending on its characteristics. Therefore, the choice must be made in an integrated way, aiming at optimizing the quality of the final product to be obtained. Life cycle assessment studies are critical for scaling up of any algal biomass valorization technique for sustainability. Although there are limitations, suitable integrations of these processes would enable to make an economically feasible process which require further study.
Collapse
Affiliation(s)
- Poonam Choudhary
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Paula Peixoto Assemany
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Farah Naaz
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Arghya Bhattacharya
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India
| | - Jackeline de Siqueira Castro
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Eduardo de Aguiar do Couto Couto
- Universidade Federal de Itajubá/Itabira campus, Instituto de Ciências Puras e Aplicadas, Rua Irmã Ivone Drummond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Universidade Federal de Viçosa/Civil Engineering Department, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Kamal Kishore Pant
- Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, IIT Delhi, 110016, India.
| | - Anushree Malik
- Applied Microbiology Laboratory, Centre for Rural Development and Technology, IIT Delhi, 110016, India.
| |
Collapse
|
24
|
Ciarlini J, Alves L, Rajarathnam GP, Haynes BS, Montoya A. Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Zhang CC, Zhang FS. Enhanced dehalogenation and coupled recovery of complex electronic display housing plastics by sub/supercritical CO 2. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121140. [PMID: 31518770 DOI: 10.1016/j.jhazmat.2019.121140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Electronic display housing plastics contain a high amount of halogenated compounds such as brominated flame retardants (BFRs) and polyvinyl chloride (PVC). Compared with moderate critical conditions of conventional eco-friendly sub/supercritical carbon dioxide (Sc-CO2), a novel and sustainable procedure by using improved Sc-CO2 was developed for disposal of this type of plastic. The main merit of the process was that complex halogen-containing plastics were safely disposed and halogen-free products were recycled without using catalysts or additives. It was discovered that additive BFRs were initially extracted by Sc-CO2 technique and then it decomposed accompanied with PVC rapidly to form HBr and HCl, which could be separated by traditional bromine stripping techniques from seawater. Based on response surface methodology (RSM), the maximum debromination and dechlorination efficiencies were achieved at 99.51% and 99.12% respectively. After the treatment, halogen-free products such as solid carbon materials and organic chemical feedstocks were obtained. Mechanism study elucidated that free radicals reaction involving chain initiation, growth and termination induced the polymer decomposition to form these products. This study provides an applicable and green approach for disposal and recovery of halogen-containing plastics.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| | - Fu-Shen Zhang
- Department of Solid Waste Treatment and Recycling, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Alimoradi S, Stohr H, Stagg-Williams S, Sturm B. Effect of temperature on toxicity and biodegradability of dissolved organic nitrogen formed during hydrothermal liquefaction of biomass. CHEMOSPHERE 2020; 238:124573. [PMID: 31454741 DOI: 10.1016/j.chemosphere.2019.124573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/19/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the nutrient content and reuse potential of wastewater generated during hydrothermal liquefaction of microalgal biomass. The hydrothermal liquefaction reaction was tested at 270, 300, 330, and 345 °C to determine the effect of temperature on the formation of non-biodegradable dissolved organic nitrogen (nbDON). Total nitrogen, ammonium, color, and toxicity were selected as key characteristics for the reuse of hydrothermal liquefaction wastewater. Results indicated that a higher concentration of nbDON5 (nbDON defined with a 5 day growth assay) and more diverse heterocyclic N-containing organic compounds were associated with greater toxicity as measured by a growth rate assay. For the tested temperature ranges, the total nitrogen content of the hydrothermal liquefaction wastewater slightly decreased from 5020 ± 690 mg L-1 to 4160 ± 120 mg L-1, but the % nbDON5 fraction increased from 57 ± 3 %DON to 96 ± 5 %DON. The temperature of hydrothermal liquefaction reactions can be optimized to maximize carbon conversion and nitrogen recovery.
Collapse
Affiliation(s)
- Sirwan Alimoradi
- Civil, Environmental, and Architectural Engineering Department, The University of Kansas, Lawrence, KS, 66045, USA
| | - Hannah Stohr
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66045, USA
| | - Susan Stagg-Williams
- Chemical & Petroleum Engineering Department, The University of Kansas, Lawrence, KS, 66045, USA
| | - Belinda Sturm
- Civil, Environmental, and Architectural Engineering Department, The University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
27
|
Das P, AbdulQuadir M, Thaher M, Khan S, Chaudhary AK, Al-Jabri H. A feasibility study of utilizing hydrothermal liquefaction derived aqueous phase as nutrients for semi-continuous cultivation of Tetraselmis sp. BIORESOURCE TECHNOLOGY 2020; 295:122310. [PMID: 31670114 DOI: 10.1016/j.biortech.2019.122310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The feasibility of substituting 50% nutrients by aqueous phase liquid (APL), derived from hydrothermal liquefaction of Tetraselmis sp. biomass, in a semi-continuous cultivation of Tetraselmis sp. was studied. Growth experiments were conducted in indoor photobioreactor and outdoor raceway tank for three consecutive cycles. At the end of exponential growth pahse, 75% of the culture was harvested, and the supernatant was returned to the cultivation system. For control cultures, fresh nutrients were added; however, for the experimental cultures, an appropriate volume of APL was added to replace half of the nutrients. Either indoor or outdoor, the growth rate and biomass yield in APL-added cultures were either equal or slightly better compared to control culture; although APL had little to no effect on the metabolite content of Tetraselmis sp., metabolites profile of Tetraselmis sp. varied between APL-added and control cultures. Nevertheless, 50% nutrients requirements for microalgae cultivation could be replaced by APL.
Collapse
Affiliation(s)
- Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar.
| | - Mohammad AbdulQuadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar
| | - Mahmoud Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar
| | - Afeefa Kiran Chaudhary
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar
| | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Qatar
| |
Collapse
|
28
|
León M, Marcilla AF, García ÁN. Hydrothermal liquefaction (HTL) of animal by-products: Influence of operating conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 99:49-59. [PMID: 31472440 DOI: 10.1016/j.wasman.2019.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal liquefaction (HTL) of Animal By-Products (ABP) is a promising technology for their recycling and disposal. Different operating parameters have been studied to determine their influence on the process. Higher heating values of biocrudes ranging between 35 and 39 MJ/kg have been obtained showing a maximum yield of 61% at 225 °C. At low HTL temperature, the products are similar to those of rendering process and the biocrude is mainly formed by triglycerides and fatty acids in a 90:10 ratio, approximately. By increasing temperature, the free fatty acid yield increases, as well as amides and heterocyclic compounds as a result of the triglycerides and protein reactions. Between 250 and 290 °C a great difference in the composition of the biocrude obtained is observed. Water content also showed significant effects on the product yields. Large amounts of foams were obtained at low water contents that were minimised when it is increased. This is a very important feature to be considered for scaling up the phase separation process. Glycerine amount in the aqueous phase was remarkable, as a consequence of fat hydrolysis. Increasing pH to 9 increases the extraction of organics into the aqueous phase, whereas operating at pH 5 yields similar amounts of biocrude as compared with neutral pH, with a higher percentage of fatty acids. Reusing of the aqueous phase is necessary for the viability of the process and leads to increasing amounts of dissolved organics in the aqueous phase with the number of cycles, reaching a saturation level after three-four recycling rounds.
Collapse
Affiliation(s)
- Milagros León
- Department of Chemical Engineering, University of Alicante, 99 P.O. Box, E-03080 Alicante, Spain.
| | | | - Ángela Nuria García
- Department of Chemical Engineering, University of Alicante, 99 P.O. Box, E-03080 Alicante, Spain
| |
Collapse
|
29
|
Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0345-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
The individual and synergistic impacts of feedstock characteristics and reaction conditions on the aqueous co-product from hydrothermal liquefaction. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Das P, Khan S, Thaher M, AbdulQuadir M, Hoekman SK, Al-Jabri H. Effect of harvesting methods on the energy requirement of Tetraselmis sp. biomass production and biocrude yield and quality. BIORESOURCE TECHNOLOGY 2019; 284:9-15. [PMID: 30925427 DOI: 10.1016/j.biortech.2019.03.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
A halo-tolerant Tetraselmis sp. was grown in a 100,000 L raceway pond in the Qatari desert environment. As the biomass density reached 0.679 g/L, after 7 days, five different harvesting methods (i.e., cross-flow filtration, electrocoagulation, and coagulation-flocculation by FeCl3, NaOH, and alum) were applied to harvest the biomass. Hydrothermal liquefaction, for all the harvested biomass, was conducted at 350 °C for 30 mins in 10 mL Swagelok unions. The biocrude yield from cross-flow processed biomass (i.e., control) was 50.8%. Biocrude yield from electrocoagulation and alum processed biomass were 62.7% and 60.4% respectively where aluminum could have a catalytic effect. Biocrude yield from FeCl3 and NaOH processed biomass were 42.9% and 19.8% respectively. The total fraction of alkenes and alkanes was higher in the biocrude obtained from alum-harvested biomass, compared to other biocrude samples. However, the transition of metal species from biomass to biocrude was very low in all the biocrudes.
Collapse
Affiliation(s)
- Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mahmoud Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohammed AbdulQuadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - S Kent Hoekman
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA
| | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
32
|
Shin YH, Schideman L, Plewa MJ, Zhang P, Scott J, Zhang Y. Fate and transport of estrogenic compounds in an integrated swine manure treatment systems combining algal-bacterial bioreactor and hydrothermal processes for improved water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16800-16813. [PMID: 31001778 DOI: 10.1007/s11356-019-04969-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
An integrated manure treatment system, including a mixed algal-bacterial bioreactor (MABB) and hydrothermal processing of biomass solids, was found to remove 76.4-97.0% of the total estrogenic hormones (estrone (E1), 17β-estradiol (E2), and estriol (E3)) from the liquid portion of animal manure (LPAM). The mixed biomass was converted into either biocrude oil with a yield up to 40% via hydrothermal liquefaction (HTL) or syngas with a yield up to 54% yield via catalytic hydrothermal gasification (CHG). Adding granular activated carbon (GAC) in the MABB enhanced the removal of estrogenic hormones (+ 7.2%), cytotoxicity (+ 58%), and heavy metals (+ 10.5%). After the integrated system with the MABB, HTL, and CHG processes, the overall percent removal of heavy metals from the LPAM ranged from 27.1 to 40.3%. The concentrations of potentially toxic heavy metals (lead (Pb), copper (Cu), zinc (Zn), cadmium (Cd), nickel (Ni), chromium (Cr)) in the aqueous phase after HTL and CHG tests ranged from 0.01 to 25.3 mg/L.
Collapse
Affiliation(s)
- Young Hwan Shin
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA.
- Smart construction team, Daewoo Institute of Construction Technology, 20 Suil-ro 123 beon-gil Jangan-gu, Suwon-si, Gyeonggi-do, 16297, South Korea.
| | - Lance Schideman
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Hazelwood Drive, Champaign, IL, 61820, USA
| | - Michael J Plewa
- Department of Crop Sciences and the Safe Global Water Institute, University of Illinois at Urbana-Champaign, 1101 W. Peabody, Urbana, IL, 61801, USA
| | - Peng Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA
| | - John Scott
- Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana-Champaign, Hazelwood Drive, Champaign, IL, 61820, USA
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Gu Y, Zhang X, Deal B, Han L. Biological systems for treatment and valorization of wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. BIORESOURCE TECHNOLOGY 2019; 278:329-345. [PMID: 30723025 DOI: 10.1016/j.biortech.2019.01.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal liquefaction (HTL) is one of the most promising platforms to valorize diverse biomass. Yet, a large amount of wastewater is produced containing a large amount of recalcitrant substances. Valorization of the refractory wastewater by biological systems to recapture organic matter and nutrients is not only clearly beneficial for the environment but also good for energy recovery. To this end, this study reviews the valorization of HTL wastewater via biological systems from many points of view, starting with the brief characterization of wastewater derived from HTL of diverse biomass. The fundamentals, pros and cons, and the most recent outcomes of numerous biological systems are comprehensively demonstrated with emphasis on their combinations. We then use a systems-thinking concept to shed light on a procedural model exhibiting a new perspective to consolidate the utilization of these systems. Finally, this review elucidates the future perspectives of HTL wastewater valorization.
Collapse
Affiliation(s)
- Yexuan Gu
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Xuesong Zhang
- Illinois Sustainable Technology Center, University of Illinois at Urbana-Champaign, 1 Hazelwood Drive, Champaign, IL 61820, USA; Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Brian Deal
- Department of Landscape Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
34
|
McGinn PJ, Park KC, Robertson G, Scoles L, Ma W, Singh D. Strategies for recovery and recycling of nutrients from municipal sewage treatment effluent and hydrothermal liquefaction wastewaters for the growth of the microalga Scenedesmus sp. AMDD. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Evaluating the Impacts of ACP Management on the Energy Performance of Hydrothermal Liquefaction via Nutrient Recovery. ENERGIES 2019. [DOI: 10.3390/en12040729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrothermal liquefaction (HTL) is of interest in producing liquid fuels from organic waste, but the process also creates appreciable quantities of aqueous co-product (ACP) containing high concentrations of regulated wastewater pollutants (e.g., organic carbon, nitrogen (N), and phosphorus (P)). Previous literature has not emphasized characterization, management, or possible valorization of ACP wastewaters. This study aims to evaluate one possible approach to ACP management via recovery of valuable scarce materials. Equilibrium modeling was performed to estimate theoretical yields of struvite (MgNH4PO4·6H2O) from ACP samples arising from HTL processing of selected waste feedstocks. Experimental analyses were conducted to evaluate the accuracy of theoretical yield estimates. Adjusted yields were then incorporated into a life-cycle energy modeling framework to compute energy return on investment (EROI) for the struvite precipitation process as part of the overall HTL life-cycle. Observed struvite yields and residual P concentrations were consistent with theoretical modeling results; however, residual N concentrations were lower than model estimates because of the volatilization of ammonia gas. EROI calculations reveal that struvite recovery is a net-energy producing process, but that this benefit offers little to no improvement in EROI performance for the overall HTL life-cycle. In contrast, corresponding economic analysis suggests that struvite precipitation may be economically appealing.
Collapse
|
36
|
Influence of Fe/HZSM-5 catalyst on elemental distribution and product properties during hydrothermal liquefaction of Nannochloropsis sp. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Anaerobic and photocatalytic treatments of post-hydrothermal liquefaction wastewater using H2O2. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Si B, Li J, Zhu Z, Shen M, Lu J, Duan N, Zhang Y, Liao Q, Huang Y, Liu Z. Inhibitors degradation and microbial response during continuous anaerobic conversion of hydrothermal liquefaction wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1124-1132. [PMID: 29554734 DOI: 10.1016/j.scitotenv.2018.02.310] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
One critical challenge of hydrothermal liquefaction (HTL) is its complex aqueous product, which has a high concentration of organic pollutants (up to 100gCOD/L) and diverse fermentation inhibitors, such as furfural, phenolics and N-heterocyclic compounds. Here we report continuous anaerobic digestion of HTL wastewater via an up-flow anaerobic sludge bed reactor (UASB) and packed bed reactor (PBR). Specifically, we investigated the transformation of fermentation inhibitors and microbial response. GC-MS identified the complete degradation of furfural and 5-hydroxymethylfurfural (5-HMF), and partial degradation (54.0-74.6%) of organic nitrogen and phenolic compounds, including 3-hydroxypyridine, phenol and 4-ethyl-phenol. Illumina MiSeq sequencing revealed that the bacteria families related to detoxification increased in response to the HTL aqueous phase. In addition, the increase of acetate-oxidizing bacteria in UASB and acetogens in PBR showed a strengthened acetogenesis. As for the archaeal communities, an increase in hydrogenotrophic methanogens was observed. Based on GC-MS/HPLC and microbial analysis, we speculate that dominant fermentation inhibitors were transformed into intermediates (Acetyl-CoA and acetate), further contributing to biomethane formation.
Collapse
Affiliation(s)
- Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jiaming Li
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhangbing Zhu
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, United States
| | - Mengmeng Shen
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianwen Lu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, United States
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
39
|
Bauer SK, Reynolds CF, Peng S, Colosi LM. Evaluating the Water Quality Impacts of Hydrothermal Liquefaction Assessment of Carbon, Nitrogen, and Energy Recovery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Wu K, Yang M, Hu H, Liang J, Wu Y. ZrMn Oxides for Aqueous-Phase Ketonization of Acetic Acid: Effect of Crystal and Porosity. Chem Asian J 2018; 13:1180-1186. [PMID: 29498220 DOI: 10.1002/asia.201800114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/16/2018] [Indexed: 11/07/2022]
Abstract
Aqueous-phase ketonization of bio-based acetic acid is important to improve the conversion efficiency of biomass resources. In this study, ZrMn mixed oxides (ZrMnOx ) with high aqueous-phase ketonization activity are synthetized through a carbonization/oxidation method (COM) and solvothermal method (STM). The results show that ZrMnOx prepared by COM possesses tetragonal ZrO2 , and hausmannite Mn3 O4 is observed only at a high oxidation temperature of 750 °C. Low-temperature and long oxidation results in decreased crystallinity and crystallite size, which is related to highly dispersed Mnn+ species. The catalysts with improved acid sites possess high ketonization activity. Surface areas and pore size of ZrMnOx synthetized by STM are controlled by the solvents for thermal treatment. Compared with water as solvent, ethanol increases the surface area and pore size, resulting in high ketonization activity.
Collapse
Affiliation(s)
- Kejing Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China.,Institute of New Energy Low-Carbon Technology, Sichuan University, Chengdu, 610065, P. R. China
| | - Mingde Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Husheng Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Junmei Liang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China.,Beijing Key Laboratory of Fine Ceramics, Beijing, 100084, P. R. China
| |
Collapse
|
41
|
Leng L, Li J, Wen Z, Zhou W. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. BIORESOURCE TECHNOLOGY 2018; 256:529-542. [PMID: 29459104 DOI: 10.1016/j.biortech.2018.01.121] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Hydrothermal liquefaction (HTL) of microalgae biomass generates an aqueous phase (AP) byproduct with limited energy value. Recycling the AP solution as a source of nutrients for microalgae cultivation provides an opportunity for a cost-effective production of HTL based biofuel and algal biomass feedstock for HTL, allowing a closed-loop biofuel production in microalgae HTL biofuel system. This paper aims to provide a comprehensive overview of characteristics of AP and its nutrients recycling for algae production. Inhibitory effects resulted from the toxic compounds in AP and alleviation strategies are discussed.
Collapse
Affiliation(s)
- Lijian Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Jun Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Zhiyou Wen
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China.
| |
Collapse
|
42
|
Shakya R, Adhikari S, Mahadevan R, Shanmugam SR, Nam H, Hassan EB, Dempster TA. Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. BIORESOURCE TECHNOLOGY 2017; 243:1112-1120. [PMID: 28764118 DOI: 10.1016/j.biortech.2017.07.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Hydrothermal liquefaction (HTL) of nine algae species were performed at two reaction temperatures (280 and 320°C) to compare the effect of their biomass composition on product yields and properties. Results obtained after HTL indicate large variations in terms of bio-oil yields and its properties. The maximum bio-oil yield (66wt%) was obtained at 320°C with a high lipid containing algae Nannochloropsis. The higher heating value of bio-oils ranged from 31 to 36MJ/kg and around 50% of the bio-oils was in the vacuum gas oil range while high lipid containing algae Nannochloropsis contained a significant portion (33-42%) in the diesel range. A predictive relationship between bio-oil yields and biochemical compositions was developed and showed a broad agreement between predictive and experimental yields. The aqueous phases obtained had high amount of TOC (12-43g/L), COD (35-160g/L), TN (1-18g/L), ammonium (0.34-12g/L) and phosphate (0.7-12g/L).
Collapse
Affiliation(s)
- Rajdeep Shakya
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States.
| | - Ravishankar Mahadevan
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Saravanan R Shanmugam
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Hyungseok Nam
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - El Barbary Hassan
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi, MS 39762, United States
| | - Thomas A Dempster
- Arizona Center for Algae Technology and Innovation, Arizona State University, AZ 85212, United States
| |
Collapse
|
43
|
|
44
|
Yang CM, Lee CG, Won JI. Improvement of Bio-crude Oil Yield and Phosphorus Content by Hydrothermal Liquefaction Using Microalgae. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201700148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheol-Min Yang
- Hongik University; Department of Chemical Engineering; 94 Wausan-ro, 04066 Seoul Korea
| | - Choul-Gyun Lee
- Inha University; Department of Biological Engineering, Marine Bioenergy Research Center; 22212 Incheon Korea
| | - Jong-In Won
- Hongik University; Department of Chemical Engineering; 94 Wausan-ro, 04066 Seoul Korea
| |
Collapse
|
45
|
Huang R, Fang C, Lu X, Jiang R, Tang Y. Transformation of Phosphorus during (Hydro)thermal Treatments of Solid Biowastes: Reaction Mechanisms and Implications for P Reclamation and Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10284-10298. [PMID: 28876917 DOI: 10.1021/acs.est.7b02011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for all organisms, thus playing unique and critical roles at the food-energy-water nexus. Most P utilized by human activities eventually converges into various solid biowastes, such as crop biomass, animal manures, and sewage sludges. Therefore, integration of efficient P recovery practices into solid biowaste management will not only significantly reduce the dependence on limited geological P resources but also reduce P runoff and related water contamination issues associated with traditional waste management strategies. This study reviews the applications of (hydro)thermal techniques for the treatment of solid biowastes, which can greatly facilitate P recovery in addition to waste volume reduction, decontamination, and energy recovery. Research showed that P speciation (including molecular moiety, complexation state, and mineralogy) can experience significant changes during (hydro)thermal treatments, and are impacted by treatment techniques and conditions. Changes in P speciation and overall properties of the products can alter the mobility and bioavailability of P, and subsequent P reclamation and recycling efficiency of the treatment products. This review summarizes recent progresses in this direction, identifies the challenges and knowledge gaps, and provides a foundation for future research efforts targeting at sustainable management of nutrient-rich biowastes.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Ci Fang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Xiaowei Lu
- School of Civil and Environmental Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Rongfeng Jiang
- College of Resources and Environmental Sciences, China Agricultural University , Beijing 100193, China
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| |
Collapse
|
46
|
Hu Y, Feng S, Yuan Z, Xu CC, Bassi A. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. BIORESOURCE TECHNOLOGY 2017; 239:151-159. [PMID: 28521224 DOI: 10.1016/j.biortech.2017.05.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, the aqueous phase obtained from catalytic/non-catalytic hydrothermal liquefaction (HTL) of Chlorella vulgaris was recycled as the reaction medium with an aim to reduce water consumption and increase bio-crude oil yield. Although both Na2CO3 and HCOOH catalysts have been proven to be effective for promoting biomass conversion, the bio-crude oil yield obtained from HTL with Na2CO3 (11.5wt%) was lower than that obtained from the non-catalytic HTL in pure water at 275°C for 50min. While, the HCOOH led to almost the same bio-crude yield from HTL (29.4wt%). Interestingly, bio-crude oil yield obtained from non-catalytic or catalytic HTL in recycled aqueous phase was much higher than that obtained from HTL in pure water. Recycling aqueous phase obtained from catalytic HTL experiments resulted in a sharp increase in the bio-crude oil yield by 32.6wt% (Na2CO3-HTL) and 16.1wt% (HCOOH-HTL), respectively.
Collapse
Affiliation(s)
- Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Shanghuan Feng
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Zhongshun Yuan
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| | - Chunbao Charles Xu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada.
| | - Amarjeet Bassi
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London N6A 3K7, Canada
| |
Collapse
|
47
|
Martinez-Fernandez JS, Chen S. Sequential Hydrothermal Liquefaction characterization and nutrient recovery assessment. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Yang L, Si B, Martins MA, Watson J, Chu H, Zhang Y, Tan X, Zhou X, Zhang Y. Improve the biodegradability of post-hydrothermal liquefaction wastewater with ozone: conversion of phenols and N-heterocyclic compounds. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 2017:248-255. [PMID: 29698239 DOI: 10.2166/wst.2018.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrothermal liquefaction is a promising technology to convert wet biomass into bio-oil. However, post-hydrothermal liquefaction wastewater (PHWW) is also produced during the process. This wastewater contains a high concentration of organic compounds, including phenols and N-heterocyclic compounds which are two main inhibitors for biological treatment. Thus, proper treatment is required. In this work, ozone was used to convert phenols and N-heterocyclic compounds with a dosage range of 0-4.64 mg O3/mL PHWW. After ozone treatment, the phenols were fully converted, and acids were produced. However, N-heterocyclic compounds were found to have a low conversion rate (21.7%). The kinetic analysis for the degradation of phenols and N-heterocyclic compounds showed that the substitute played an important role in determining the priority of ozone reactions. The OH moiety in the ring compounds (phenols and pyridinol) may form hydroxyl radical, which lead to an efficient reaction. A substantial improved biodegradability of PHWW was observed after ozone treatment. The ratio of BOD5/COD was increased by about 32.36%, and reached a maximum of 0.41. The improved biodegradability of PHWW was justified by the conversion of phenols and N-heterocyclic compounds.
Collapse
Affiliation(s)
- Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E), and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marcio Arêdes Martins
- Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Campus Universitário, Viçosa, MG 36570-000, Brazil
| | - Jamison Watson
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaobo Tan
- College of Urban and Environment Sciences, Hunan University of Technology, Zhuzhou City, Hunan Province 412007, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China E-mail:
| |
Collapse
|
49
|
Wu K, Yang M, Chen Y, Pu W, Hu H, Wu Y. Aqueous‐phase ketonization of acetic acid over Zr/Mn mixed oxides. AIChE J 2017. [DOI: 10.1002/aic.15687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kejing Wu
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
| | - Mingde Yang
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
| | - Yu Chen
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
| | - Weihua Pu
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
| | - Husheng Hu
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
| | - Yulong Wu
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084 China
- Beijing Engineering Research Center for BiofuelsBeijing100084 China
| |
Collapse
|
50
|
Mehrabadi A, Craggs R, Farid MM. Wastewater treatment high rate algal pond biomass for bio-crude oil production. BIORESOURCE TECHNOLOGY 2017; 224:255-264. [PMID: 27816350 DOI: 10.1016/j.biortech.2016.10.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150-300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1-24.9wt% and 37.5-38.9kJ/g, respectively. The bio-crudes were comprised of 71-72.4wt% carbon, 0.9-4.8wt% nitrogen, 8.7-9.8wt% hydrogen and 12-15.7wt% oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5-26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0-9.3wt% gas and 44.8-85.5wt% solid residue (12.2-18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.
Collapse
Affiliation(s)
- Abbas Mehrabadi
- Chemical and Materials Engineering Department, University of Auckland, New Zealand.
| | - Rupert Craggs
- National Institute of Water and Atmospheric Research Ltd. (NIWA), PO Box 11-115, Hamilton 3200, New Zealand.
| | - Mohammed M Farid
- Chemical and Materials Engineering Department, University of Auckland, New Zealand.
| |
Collapse
|