1
|
Thomsen J, Lett S, Martens HJ, Sørensen H, Kelleher D, Tryfona T, Dupree P, Johansen KS. Enzymatic saccharification of peat polysaccharides is limited by accessibility. PLoS One 2025; 20:e0312219. [PMID: 40408618 PMCID: PMC12101845 DOI: 10.1371/journal.pone.0312219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/29/2025] [Indexed: 05/25/2025] Open
Abstract
Sphagnum peat bogs store a large fraction of biologically-bound carbon, due to a steady accumulation of plant material over millennia. The resistance of Sphagnum biomass to decay is poorly understood and of high importance for preservation efforts and climate models. Sphagnum peat mostly consists of the polysaccharide-rich cell wall of the moss but the mechanisms by which it resist degradation by microbes remain unclear. Here we show that enzymatic saccharification of peat polysaccharides including cellulose and other glucose-rich polysaccharides is predominantly limited by access to the substrate. The experimental approach involved biotechnological tools including hydrothermal pretreatment to disrupt and relocate cell wall components. This physical change was confirmed by confocal laser scanning microscopy. A cocktail of microbial enzymes (Cellic® CTec3) designed for industrial saccharification of lignocellulose of vascular plants was used to assess enzymatic digestibility of peat polysaccharides. The glucose yield increased from close to zero for untreated peat to 30% and 50% when pretreated at 160 and 180 °C. An overall catalytic rate constant for enzymatic glucose-release from peat-cellulose of 26.98 h-1 was calculated using a kinetic model. This is a similar or higher rate compared to cellulose from vascular plant tissues. With an iron content of 2 g/kg dry peat, oxidative inactivation of enzymes is an important factor to take into account. A high inactivation constant of 125.91 x10-3 h-1 was found for the used saccharification conditions, but the addition of catalase alleviated the oxidative inactivation and increased the glucose yield with 60% in peat pretreated at 180 °C. These findings show that molecular structures of Sphagnum peat which prevents access for cell wall degrading enzymes can be disrupted by hydrothermal pretreatment. This brings us closer to understanding peat recalcitrance and thus how very large amounts of organic carbon is stored.
Collapse
Affiliation(s)
- Jonas Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Signe Lett
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle J. Martens
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Helle Sørensen
- Data Science Lab, Department of Mathematical Sciences, University of Copenhagen, København, Denmark
| | - Darragh Kelleher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Katja S. Johansen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Banerjee S, Beraja G, Eilts KK, Singh V. Redefining the product portfolio of oilcane bagasse biorefinery: Recovering natural colorants, vegetative lipids and sugars. BIORESOURCE TECHNOLOGY 2025; 419:132052. [PMID: 39793670 DOI: 10.1016/j.biortech.2025.132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Bioenergy crops have been known for their ability to produce biofuels and bioproducts. In this study, the product portfolio of recently developed transgenic sugarcane (oilcane) bagasse has been redefined for recovering natural pigments (anthocyanins), sugars, and vegetative lipids.The total anthocyanin content in oilcane bagasse has been estimated as 92.9 ± 18.9 µg/g of dried bagasse with cyanidin-3-glucoside (13.5 ± 18.9 µg per g of dried bagasse) as the most prominent anthocyanin present. More than 85 % (w/w) of the total anthocyanins were recovered from oilcane bagasse at a pretreatment temperature of 150 °C for 15 min. These conditions for the hydrothermal pretreatment also led to a 2-fold increase in the glucose yield upon the enzymatic saccharification of the pretreated bagasse. Further, a 1.5-fold enrichment of the vegetative lipids was demonstrated in the pretreated residue.Re-defining green biorefineries with multiple high-value products in a zero-waste approach is the need of the hour for attaining sustainability.
Collapse
Affiliation(s)
- Shivali Banerjee
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Galit Beraja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kristen K Eilts
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Saelor S, Kongjan P, Prasertsan P, Mamimin C, O-Thong S. Enhancing thermophilic methane production from oil palm empty fruit bunches through various pretreatment methods: A comparative study. Heliyon 2024; 10:e39668. [PMID: 39506955 PMCID: PMC11538946 DOI: 10.1016/j.heliyon.2024.e39668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the effects of various pretreatment methods on the anaerobic digestibility of oil palm empty fruit bunches (EFB) for methane production. Pretreatment methods included weak alkaline (2 % Ca(OH)2), weak acid (2 % acetic acid), acidified palm oil mill effluent (POME), biogas effluent, hydrothermal (180 °C, 190 °C, and 200 °C), and microwave pretreatments. All pretreatment methods enhanced methane yield compared to untreated EFB (189.45 mL-CH4/g-VS), with weak alkaline pretreatment being the most effective (277.11 mL-CH4/g-VS), followed by hydrothermal pretreatment at 180 °C (244.33 mL-CH4/g-VS) and biogas effluent pretreatment (238.32 mL-CH4/g-VS). The enhanced methane yield was attributed to increased cellulose content (45.5 % for weak alkaline pretreatment), reduced hemicellulose (18.0 % for hydrothermal pretreatment at 200 °C), and lignin contents (19.0 % for hydrothermal pretreatment at 200 °C), decreased crystallinity index (40.0 % for hydrothermal pretreatment at 200 °C), and increased surface area. Weak alkaline pretreatment also showed the highest net energy balance (8.73 kJ/g-VS) and a short break-even point (2 years). Microbial community analysis revealed that weak alkaline pretreatment favored the growth of syntrophic acetate-oxidizing bacteria and hydrogenotrophic methanogens, contributing to improved methane yield. This study demonstrates the potential of EFB pretreatment, particularly weak alkaline and biogas effluent pretreatment, for enhancing methane production and sustainable management of palm oil mill waste.
Collapse
Affiliation(s)
- Sittikorn Saelor
- Department of Biological Science, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung 93210, Thailand
- Faculty of Science and Technology, Hatyai University, Hat Yai, Songkhla 90110, Thailand
| | - Prawit Kongjan
- Chemistry Division, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Sompong O-Thong
- Biofuel and Biocatalysis Innovation Research Unit, Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| |
Collapse
|
4
|
Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ, Toghyani J. Comparison of acid and hydrothermal pretreatments of date waste for value creation. Sci Rep 2024; 14:18056. [PMID: 39103400 PMCID: PMC11300665 DOI: 10.1038/s41598-024-68879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
The production of date syrup yields a substantial amount of date press cake (DPC), fibrous and moisturising material with great potential for generating value through bioprocessing. However, the recalcitrant structure of DPC affects the yield of products in bioprocesses. To boost the accessibility of the structure as well as increase the soluble fraction of carbohydrates and facilitate further enzymatic hydrolysis, hydrothermal and dilute acid (0.5% (v/v) sulfuric acid) pretreatments as cost-effective and feasible methods were applied on DPC at relatively low temperatures (80, 100, 120 and 140 °C) and reaction times (60 and 90 min). The success in pretreatment was then evaluated by a post-enzymatic treatment using an enzyme cocktail of cellulases and hemicelluloses. Based on total accessible sugar with minimum produced inhibitors, an optimal operating condition was considered acid pretreatment at 120 °C for 90 min with a 55.02% increase in total sugar yield. To explore the potential use of pretreated DPC, an anaerobic digestion was conducted on untreated and acid-pretreated DPC at 120 °C for 90 min. The results showed that pretreatment increased the total bioproduct yield, including hydrogen, ethanol, and volatile fatty acid yields, by 59.75%. This demonstrates the significant impact of pretreatment on product yields in a bioprocess.
Collapse
Affiliation(s)
- Sepideh Oladzad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, The University of Borås, 501 90, Borås, Sweden
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| | - Mohammad J Taherzadeh
- Swedish Centre for Resource Recovery, The University of Borås, 501 90, Borås, Sweden
| | - Javad Toghyani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran
| |
Collapse
|
5
|
Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. Non-conventional yeast strains: Unexploited resources for effective commercialization of second generation bioethanol. Biotechnol Adv 2023; 63:108100. [PMID: 36669745 DOI: 10.1016/j.biotechadv.2023.108100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The conventional yeast (Saccharomyces cerevisiae) is the most studied yeast and has been used in many important industrial productions, especially in bioethanol production from first generation feedstock (sugar and starchy biomass). However, for reduced cost and to avoid competition with food, second generation bioethanol, which is produced from lignocellulosic feedstock, is now being investigated. Production of second generation bioethanol involves pre-treatment and hydrolysis of lignocellulosic biomass to sugar monomers containing, amongst others, d-glucose and D-xylose. Intrinsically, S. cerevisiae strains lack the ability to ferment pentose sugars and genetic engineering of S. cerevisiae to inculcate the ability to ferment pentose sugars is ongoing to develop recombinant strains with the required stability and robustness for commercial second generation bioethanol production. Furthermore, pre-treatment of these lignocellulosic wastes leads to the release of inhibitory compounds which adversely affect the growth and fermentation by S. cerevisae. S. cerevisiae also lacks the ability to grow at high temperatures which favour Simultaneous Saccharification and Fermentation of substrates to bioethanol. There is, therefore, a need for robust yeast species which can co-ferment hexose and pentose sugars and can tolerate high temperatures and the inhibitory substances produced during pre-treatment and hydrolysis of lignocellulosic materials. Non-conventional yeast strains are potential solutions to these problems due to their abilities to ferment both hexose and pentose sugars, and tolerate high temperature and stress conditions encountered during ethanol production from lignocellulosic hydrolysate. This review highlights the limitations of the conventional yeast species and the potentials of non-conventional yeast strains in commercialization of second generation bioethanol.
Collapse
Affiliation(s)
| | - Chioma O Amadi
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Tochukwu N Nwagu
- Department of Microbiology, University of Nigeria Nsukka, Nigeria
| | - Y Murata
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - James C Ogbonna
- Department of Microbiology, University of Nigeria Nsukka, Nigeria.
| |
Collapse
|
6
|
Sun LL, Yue Z, Sun SC, Li Y, Cao XF, Sun SN. Microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system for one-pot fractionation and valorization of Eucalyptus biomass. BIORESOURCE TECHNOLOGY 2023; 369:128392. [PMID: 36435421 DOI: 10.1016/j.biortech.2022.128392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The developing of pretreatment method to break the biomass barrier of lignocellulosic is a challenging task for achieve high value utilization. A fast microwave-assisted choline chloride/1,2-propanediol/methyl isobutyl ketone biphasic system was constructed for pretreating Eucalyptus to the production of furfural and cellulose-rich residues and the extraction of lignin. Results showed that the combination of AlCl3·6H2O and HCl had the best catalytic ability for furfural production among the examined catalysts. Under the optimal conditions (140 °C, 15 min, 0.075 M AlCl3·6H2O, 0.05 M HCl), the furfural yield of 55.4 %, the glucose yield of 90.3 % and the delignification rate of 92.4 % could be achieved. Moreover, the extracted lignin samples with a low polydispersity (1.55-1.73) and molecular weight (1380-2040 g/mol) are promising to act as precursor for the value-add products processing. These findings demonstrated an ultrafast pretreatment process with excellent results in biomass fractionation and comprehensive utilization of biomass components.
Collapse
Affiliation(s)
- Li-Li Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuang Yue
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Chao Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Yu Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Li N, Meng F, Yang H, Shi Z, Zhao P, Yang J. Enhancing enzymatic digestibility of bamboo residues using a three-constituent deep eutectic solvent pretreatment. BIORESOURCE TECHNOLOGY 2022; 346:126639. [PMID: 34971777 DOI: 10.1016/j.biortech.2021.126639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
A three-constituent deep eutectic solvent (3c-DES) pretreatment with choline chloride-oxalic acid-ethylene glycol was applied to examine its effectiveness on bamboo residues. The 3c-DES pretreatment can remove 91.09% xylan and significantly improved the 72 h hydrolysis yield of D. sinicus by 6.3 and 1.7 times as compared with the liquid hot water and two-constituent deep eutectic solvent (2c-DES) pretreatment. The introduction of ethylene glycol (EG) into choline chloride (ChCl)/ oxalic acid (OA) decreased the content of surface lignin and the condensation of lignin, which contributed to the increase of hydrophilic nature and cellulose accessibility in substrates. Moreover, higher glucose (85.72%) and xylose (91.05%) yields of 3c-DES pretreated bamboo were achieved with the addition of Tween 80. The 3c-DES system provides an alternative approach for the development of efficient bamboo pretreatment, and had broad space for bamboo biorefinery in southern China.
Collapse
Affiliation(s)
- Ning Li
- School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Fanyang Meng
- School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Haiyan Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Ping Zhao
- School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China
| | - Jing Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, PR China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China.
| |
Collapse
|
8
|
Chen WH, Nižetić S, Sirohi R, Huang Z, Luque R, M Papadopoulos A, Sakthivel R, Phuong Nguyen X, Tuan Hoang A. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. BIORESOURCE TECHNOLOGY 2022; 344:126207. [PMID: 34715344 DOI: 10.1016/j.biortech.2021.126207] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
In recent years, lignocellulosic biomass has emerged as one of the most versatile energy sources among the research community for the production of biofuels and value-added chemicals. However, biomass pretreatment plays an important role in reducing the recalcitrant properties of lignocellulose, leading to superior quality of target products in bioenergy production. Among existing pretreatment techniques, liquid hot water (LHW) pretreatment has several outstanding advantages compared to others including minimum formation of monomeric sugars, significant removal of hemicellulose, and positive environmental impacts; however, several constraints of LHW pretreatment should be clarified. This contribution aims to provide a comprehensive analysis of reaction mechanism, reactor characteristics, influencing factors, techno-economic aspects, challenges, and prospects for LHW-based biomass pretreatment. Generally, LHW pretreatment could be widely employed in bioenergy processing from biomass, but circular economy-based advanced pretreatment techniques should be further studied in the future to achieve maximum efficiency, and minimum cost and drawbacks.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000 Split, Croatia
| | - Ranjna Sirohi
- Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Zuohua Huang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014 Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Agis M Papadopoulos
- Department of Mechanical Engineering, Aristotle University Thessaloniki, Greece
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh city, Vietnam
| | - Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh city University of Technology (HUTECH), Ho Chi Minh city, Vietnam.
| |
Collapse
|
9
|
Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, Yuan TQ. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. BIORESOURCE TECHNOLOGY 2021; 341:125807. [PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Wei-Jing Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Bo Pang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing 100083, PR China.
| |
Collapse
|
10
|
Yuan Y, Jiang B, Chen H, Wu W, Wu S, Jin Y, Xiao H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:205. [PMID: 34670604 PMCID: PMC8527784 DOI: 10.1186/s13068-021-02054-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 05/19/2023]
Abstract
Enzymatic hydrolysis of lignocellulose for bioethanol production shows a great potential to remit the rapid consumption of fossil fuels, given the fact that lignocellulose feedstocks are abundant, cost-efficient, and renewable. Lignin results in low enzymatic saccharification by forming the steric hindrance, non-productive adsorption of cellulase onto lignin, and deactivating the cellulase. In general, the non-productive binding of cellulase on lignin is widely known as the major cause for inhibiting the enzymatic hydrolysis. Pretreatment is an effective way to remove lignin and improve the enzymatic digestibility of lignocellulose. Along with removing lignin, the pretreatment can modify the lignin structure, which significantly affects the non-productive adsorption of cellulase onto lignin. To relieve the inhibitory effect of lignin on enzymatic hydrolysis, enormous efforts have been made to elucidate the correlation of lignin structure with lignin-enzyme interactions but with different views. In addition, contrary to the traditional belief that lignin inhibits enzymatic hydrolysis, in recent years, the addition of water-soluble lignin such as lignosulfonate or low molecular-weight lignin exerts a positive effect on enzymatic hydrolysis, which gives a new insight into the lignin-enzyme interactions. For throwing light on their structure-interaction relationship during enzymatic hydrolysis, the effect of residual lignin in substrate and introduced lignin in hydrolysate on enzymatic hydrolysis are critically reviewed, aiming at realizing the targeted regulation of lignin structure for improving the saccharification of lignocellulose. The review is also focused on exploring the lignin-enzyme interactions to mitigate the negative impact of lignin and reducing the cost of enzymatic hydrolysis of lignocellulose.
Collapse
Affiliation(s)
- Yufeng Yuan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Shufang Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
- Laboratory of Wood Chemistry, Nanjing Forestry University, 159 Longpan Rd, Nanjing, 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 11 5A3, Canada
| |
Collapse
|
11
|
Norrrahim MNF, Huzaifah MRM, Farid MAA, Shazleen SS, Misenan MSM, Yasim-Anuar TAT, Naveen J, Nurazzi NM, Rani MSA, Hakimi MI, Ilyas RA, Jenol MA. Greener Pretreatment Approaches for the Valorisation of Natural Fibre Biomass into Bioproducts. Polymers (Basel) 2021; 13:2971. [PMID: 34503011 PMCID: PMC8434465 DOI: 10.3390/polym13172971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
The utilization of lignocellulosic biomass in various applications has a promising potential as advanced technology progresses due to its renowned advantages as cheap and abundant feedstock. The main drawback in the utilization of this type of biomass is the essential requirement for the pretreatment process. The most common pretreatment process applied is chemical pretreatment. However, it is a non-eco-friendly process. Therefore, this review aims to bring into light several greener pretreatment processes as an alternative approach for the current chemical pretreatment. The main processes for each physical and biological pretreatment process are reviewed and highlighted. Additionally, recent advances in the effect of different non-chemical pretreatment approaches for the natural fibres are also critically discussed with a focus on bioproducts conversion.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, Kuala Lumpur 57000, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Malaysia; (M.I.H.); (M.A.J.)
| | | | - Mohammed Abdillah Ahmad Farid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Malaysia; (M.I.H.); (M.A.J.)
| | - Siti Shazra Shazleen
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM, Serdang 43400, Malaysia;
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul 34220, Turkey;
| | | | - Jesuarockiam Naveen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Norizan Mohd Nurazzi
- Center for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Saiful Asmal Rani
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia;
| | - Mohd Idham Hakimi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Malaysia; (M.I.H.); (M.A.J.)
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia UTM, Johor Bahru 81310, Malaysia
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Malaysia; (M.I.H.); (M.A.J.)
| |
Collapse
|
12
|
Zhu Y, Qi B, Liang X, Luo J, Wan Y. Comparison of Corn Stover Pretreatments with Lewis Acid Catalyzed Choline Chloride, Glycerol and Choline Chloride-Glycerol Deep Eutectic Solvent. Polymers (Basel) 2021; 13:polym13071170. [PMID: 33917314 PMCID: PMC8038657 DOI: 10.3390/polym13071170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
| | - Benkun Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (B.Q.); (X.L.)
| | - Xinquan Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
- Correspondence: (B.Q.); (X.L.)
| | - Jianquan Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhua Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Revealing the structural characteristics of lignin macromolecules from perennial ryegrass during different integrated treatments. Int J Biol Macromol 2021; 178:373-380. [PMID: 33652042 DOI: 10.1016/j.ijbiomac.2021.02.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
To reveal the structural characteristics and physicochemical properties of perennial ryegrass lignin, sequential alkali extractions or double ball-milling and enzymatic hydrolysis on the basis of ultrasonic and hydrothermal pretreatments were proposed in this study. Results revealed that sequential alkali extractions released 89.4% of original lignin from the ryegrass cell walls and 0.75-4.16% of associated carbohydrates as compared to the double ball-milling and enzymatic hydrolysis (96.0% and 18.39%). It was observed that the two types of lignin prepared were SGH-type and had different amounts of p-coumarates and ferulates, and primarily consisted of β-O-4' linkages combined with minor amounts of β-β' and β-5' linkages. Besides, alkali-soluble lignins exhibited relatively fewer β-O-4' linkages, higher S/G ratios and H-type units, and abundant phenolic OH groups as compared to the double enzymatic lignin. Overall, the deeper investigation of the lignin structure of ryegrass will provide useful information for the efficient utilization of lignin macromolecules in biorefineries.
Collapse
|
14
|
Hu J, Wang Q, Wang W, Xu Z, Fu J, Xu Q, Wang Z, Yuan Z, Shen F, Qi W. Synthesis of a Stable Solid Acid Catalyst from Chloromethyl Polystyrene through a Simple Sulfonation for Pretreatment of Lignocellulose in Aqueous Solution. CHEMSUSCHEM 2021; 14:979-989. [PMID: 33274593 DOI: 10.1002/cssc.202002599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
A stable solid acid catalyst, SCPR140-1, was synthesized from chloromethyl polystyrene resin (CPR) and used for catalytic pretreatment of corncob in aqueous solution. Under the optimized pretreatment condition, 73.07 % of xylose was directly obtained, and the enzymatic digestibility of treated residue reached up to 94.65 %, indicating that the SCPR140-1 had high selectivity for xylose production and effectively deconstructed the structure of corncob. The -CH2 Cl group of CPR was substituted by -SO3 H through the sulfonation, and the -SO3 H was stably bound on the catalyst during the pretreatment process. Compared with other similar reports, the SCPR140-1 was not only synthesized through a simpler process but also had a more stable catalytic activity during multiple recycling runs.
Collapse
Affiliation(s)
- Jinke Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
- Institute of Ecological and Environmental Sciences, Environment College, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Qiong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Zihan Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Juan Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Qingli Xu
- East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Environment College, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P. R. China
| |
Collapse
|
15
|
Environmentally Friendly Approach for the Production of Glucose and High-Purity Xylooligosaccharides from Edible Biomass Byproducts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xylooligosaccharides (XOS) production from sweet sorghum bagasse (SSB) has been barely studied using other edible biomasses. Therefore, we evaluated the XOS content as well as its purity by comparing the content of total sugars from SSB. An environmentally friendly approach involving autohydrolysis was employed, and the reaction temperature and time had variations in order to search for the conditions that would yield high-purity XOS. After autohydrolysis, the remaining solid residues, the glucan-rich fraction, were used as substrates to be enzymatically hydrolyzed for glucose conversion. The highest XOS was observed for total sugars (68.7%) at 190 °C for 5 min among the autohydrolysis conditions. However, we also suggested two alternative conditions, 180 °C for 20 min and 190 °C for 15 min, because the former condition might have the XOS at a low degree of polymerization with a high XOS ratio (67.6%), while the latter condition presented a high glucose to total sugar ratio (91.4%) with a moderate level XOS ratio (64.4%). Although it was challenging to conclude on the autohydrolysis conditions required to obtain the best result of XOS content and purity and glucose yield, this study presented approaches that could maximize the desired product from SSB, and additional processes to reduce these differences in conditions may warrant further research.
Collapse
|
16
|
Extraction and intensive conversion of lignocellulose from oil palm solid waste into lignin monomer by the combination of hydrothermal pretreatment and biological treatment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
18
|
Mariano APB, Unpaprom Y, Ramaraj R. Hydrothermal pretreatment and acid hydrolysis of coconut pulp residue for fermentable sugar production. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Liu F, Xu WF, Mu H, Lv ZR, Peng J, Guo C, Zhou HM, Ye ZM, Li XH. Inhibition kinetics of acetosyringone on xylanase in hydrolysis of hemicellulose. Biosci Biotechnol Biochem 2020; 84:1788-1798. [PMID: 32448038 DOI: 10.1080/09168451.2020.1767499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Many phenolic compounds, derived from lignin during the pretreatment of lignocellulosic biomass, could obviously inhibit the activity of cellulolytic and hemicellulolytic enzymes. Acetosyringone (AS) is one of the phenolic compounds produced from lignin degradation. In this study, we investigated the inhibitory effects of AS on xylanase activity through kinetic experiments. The results showed that AS could obviously inhibit the activity of xylanase in a reversible and noncompetitive binding manner (up to 50% activity loss). Inhibitory kinetics and constants of xylanase on AS were conducted by the HCH-1 model (β = 0.0090 ± 0.0009 mM-1). Furthermore, intrinsic and 8-anilino-1-naphthalenesulfonic (ANS)-binding fluorescence results showed that the tertiary structure of AS-mediated xylanase was altered. These findings provide new insights into the role of AS in xylanase activity. Our results also suggest that AS was an inhibitor of xylanase and targeting AS was a potential strategy to increase xylose production.
Collapse
Affiliation(s)
- Feng Liu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangdong, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Wen-Fei Xu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Hang Mu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Zhi-Rong Lv
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Jie Peng
- Women's Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Chao Guo
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| | - Zhuo-Ming Ye
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University , Guangdong, China
| | - Xu-Hui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University , Zhejiang, China
| |
Collapse
|
20
|
Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis. Appl Biochem Biotechnol 2020; 192:415-431. [PMID: 32394318 DOI: 10.1007/s12010-020-03315-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Three typical waste furniture boards, including fiberboard, chipboard, and blockboard, were pretreated with conventional hydrothermal method. The responses of chemical composition, physicochemical morphology, and performances of enzymatic hydrolysis were evaluated. Results indicated the almost complete hemicellulose removal at higher pretreatment temperatures, the enhanced crystallinity index, and disordered morphology of the pretreated substrates indicated that the hydrothermal pretreatment deconstructed these boards well. However, the very low enzymatic hydrolysis (< 8% after 72 h) of the pretreated substrates showed the poor biological conversion. Three hypotheses for the weakened enzymatic hydrolysis were investigated, and results indicated that the residual adhesives and their degraded fractions were mainly responsible for poor hydrolysis. When NaOH post-pretreatment was attempted, cellulose-glucose conversion of the hydrothermally pretreated fiberboard, chipboard and blockboard can be improved to 28.5%, 24.1%, and 37.5%. Herein, the process of NaOH hydrothermal pretreatment was integrated, by which the hydrolysis of pretreated fiberboard, chipboard and blockboard was greatly promoted to 47.1%, 37.3%, and 53.8%, suggesting a possible way to pretreat these unconventional recalcitrant biomasses.
Collapse
|
21
|
Noorshamsiana AW, Nor Faizah J, Kamarudin H, Nur Eliyanti AO, Fatiha I, Astimar AA. Integrated production of prebiotic xylooligosaccharides and high value cellulose from oil palm biomass. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/736/2/022044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Oil palm empty fruit bunch (OPEFB) fibre, which is the byproduct of fruits being stripped from the fresh fruit bunch in palm oil mill, was evaluated in terms of the production of xylooligosaccharides (XOs) and the solid residue was treated for cellulose recovery. Chemoenzymatic hydrolysis that consists of chemical fractionation of OPEFB fibre to isolate xylan with further enzymatic hydrolysis to XOs in a packed bed column reactor (PBCR) was performed. An immobilised xylanase of Thermomyces lanuginosus at the concentration of 8.25 fungal xylanase unit wheat/mililitre (FXUW mL−1) was employed on a PBCR to hydrolyse the xylan at 55 °C and pH 5.5. The yields of XOs are composed of xylopentaose, xylotetraose, xylotriose and xylobiose, successfully produced from the OPEFB-xylan, shown in HPLC analysis with the total production of 8,776 mg/L and the immobilised xylanase can be recycled up to six enzymatic treatment cycles. The solid residue generated from the xylan extraction was further treated with mild concentration of bleaching agents of 20% (v/v) formic acid and 5% (v/v) hydrogen peroxide at 85 °C. The Fourier transform infrared spectroscopy (FTIR) analysis showed that the products obtained have the standard cellulose structure and functional group. Further analyses on the properties of the extracted cellulose in terms of crystallinity, thermal stability and morphology were conducted. The integrated process to produce XOs from OPEFB and recover cellulose from its byproduct is sustainable to extract fine chemicals from OPEFB.
Collapse
|
22
|
Life Cycle Assessment for Bioethanol Production from Oil Palm Frond Juice in an Oil Palm Based Biorefinery. SUSTAINABILITY 2019. [DOI: 10.3390/su11246928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A study was conducted to estimate the possible environmental impacts arising from the generation of bioethanol from oil palm frond sugar juice in a theoretical oil palm based biorefinery model. A life cycle assessment (LCA) with the gate-to-gate approach was performed with the aid of SimaPro version 8.0 whereby ten impact categories were evaluated. The scope included frond collection and transportation, frond sugar juice extraction, and bioethanol fermentation and purification. Evaluation on the processes involved indicated that fermentation contributed to the environmental problems the most, with a contribution range of 52% to 97% for all the impact categories. This was due to a substantial usage of nutrient during this process, which consumes high energy for its production thus contributing a significant burden to the surrounding. Nevertheless, the present system offers a great option for biofuel generation as it utilizes sugar juice from the readily available oil palm waste. Not only solving the issue of land utilization for feedstock cultivation, the enzymatic saccharification step, which commonly necessary for lignocellulosic sugar recovery could also be eliminated.
Collapse
|
23
|
Rapid Processing of Abandoned Oil Palm Trunks into Sugars and Organic Acids by Sub-Critical Water. Processes (Basel) 2019. [DOI: 10.3390/pr7090593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abandoned oil palm trunk (OPT) is among the most abundant left-over biomass in Malaysia and is allowed to decompose naturally in the field. However, the recycling of OPT is less considered although OPT is a bioresource that has a high potential for conversion into value-added products. In this study, waste OPT was rapidly converted by hydrolysis using subcritical water (sub-CW). This work is the first attempt to explore the utilization of waste OPT based on the differences in moisture, cellulose and hemicellulose contents in the top and bottom segments, and from various ages of the waste OPT. 21- and 35-year-old OPTs were divided into top and bottom sections. The OPTs was subjected to sub-CW at a heating rate of 3.8 °C/s at various temperatures and times. The 21-year-old OPT was superior to the 35-year-old OPT for conversion into sugar and organic acid. The yield of the total sugar was between 0.41 and 0.77 kg/kg-OPT in the bottom and top sections. The excellent correlation between the sugar yield and sub-CW ion product (Kw) signified that the sub-CW facilitated the hydrolysis of hemicellulose and cellulose in the OPT. In the bottom segment, fructose had a higher yield, while in the top part glucose was dominant. Sugar degradation from the sub-CW treatment of OPT produced 0.2 kg/kg-OPT organic acids. The treatment of OPT using sub-CW showed promising results in producing sugars and organic acids.
Collapse
|
24
|
Wen H, Wachemo AC, Zhang L, Zuo X, Yuan H, Li X. A novel strategy for efficient anaerobic co-digestion based on the pretreatment of corn stover with fresh vinegar residue. BIORESOURCE TECHNOLOGY 2019; 288:121412. [PMID: 31200345 DOI: 10.1016/j.biortech.2019.121412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
A novel method was advanced for efficient anaerobic co-digestion by using fresh vinegar residue (FVR) as acidifier for pretreating corn stover (CS). FVR acted as one substrate as well as an acidifier by the acids contained in FVR. It was found that the organic acids in FVR could efficiently enhance the hydrolysis of lignocellulose in CS. The biomethane production from co-digestion of FVR and CS pretreated reached 140.48 L/kg VS, which was 35.7% higher than that of unpretreated mixture substrates. The highest biomethane production was obtained when pretreatment was conducted at 150 °C. The increase of biomethane production was contributed to the improved hydrolysis of CS due to the acidic pretreatment. Pretreatment and co-digestion could improve the asynchronism and generate synergistic effect. The study provides one novel method for efficient biomethane conversion from FVR and CS.
Collapse
Affiliation(s)
- HongLiang Wen
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - Akiber Chufo Wachemo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China; Department of Water Supply and Environmental Engineering, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia
| | - Liang Zhang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiaoYu Zuo
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - HaiRong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China
| | - XiuJin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, PR China.
| |
Collapse
|
25
|
Luo J, Xu Y. Comparison of Biological and Chemical Pretreatment on Coproduction of Pectin and Fermentable Sugars from Apple Pomace. Appl Biochem Biotechnol 2019; 190:129-137. [PMID: 31304561 DOI: 10.1007/s12010-019-03088-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022]
Abstract
Apple pomace, an abundant accessible source of carbohydrate platform chemicals, is refractory to cellulase degradation because of the main barrier problem of pectin constitute. A rapid and portable method for the coproduction of pectin and fermentable sugars was developed using the pretreatment of acetic acid, followed by enzymatic hydrolysis. Compared with pectinase, acetic acid pretreatment provided the highest pectin yield of 19.1% and the highest enzymatic hydrolysis yield from apple pomace. The acidic pretreated apple pomace cellulose was easily and completely hydrolyzed into fermentable sugars. More than 98.2% conversion of cellulose was achieved in a batch hydrolysis using a cellulase loading of 25 FPU/g cellulose and 10% total solids without any special strategies. A mass balance analysis showed that 95.5 g pectin and 110.2 g fermentable sugars were produced from 500-g oven-dried apple pomace. The integrated process is suggestive of environment-friendly and recyclable methods for the industrial utilization of apple pomace.
Collapse
Affiliation(s)
- Jing Luo
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 201137, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China.
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 201137, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
26
|
Mohd-Nor D, Ramli N, Sharuddin SS, Hassan MA, Mustapha NA, Ariffin H, Sakai K, Tashiro Y, Shirai Y, Maeda T. Dynamics of Microbial Populations Responsible for Biodegradation during the Full-Scale Treatment of Palm Oil Mill Effluent. Microbes Environ 2019; 34:121-128. [PMID: 30905894 PMCID: PMC6594745 DOI: 10.1264/jsme2.me18104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite efforts to address the composition of the microbial community during the anaerobic treatment of palm oil mill effluent (POME), its composition in relation to biodegradation in the full-scale treatment system has not yet been extensively examined. Therefore, a thorough analysis of bacterial and archaeal communities was performed in the present study using MiSeq sequencing at the different stages of the POME treatment, which comprised anaerobic as well as facultative anaerobic and aerobic processes, including the mixed raw effluent (MRE), mixing pond, holding tank, and final discharge phases. Based on the results obtained, the following biodegradation processes were suggested to occur at the different treatment stages: (1) Lactobacillaceae (35.9%) dominated the first stage, which contributed to high lactic acid production; (2) the higher population of Clostridiaceae in the mixing pond (47.7%) and Prevotellaceae in the holding tank (49.7%) promoted acetic acid production; (3) the aceticlastic methanogen Methanosaetaceae (0.6–0.8%) played a role in acetic acid degradation in the open digester and closed reactor for methane generation; (4) Syntrophomonas (21.5–29.2%) appeared to be involved in the degradation of fatty acids and acetic acid by syntrophic cooperation with the hydrogenotrophic methanogen, Methanobacteriaceae (0.6–1.3%); and (5) the phenols and alcohols detected in the early phases, but not in the final discharge phase, indicated the successful degradation of lignocellulosic materials. The present results contribute to a better understanding of the biodegradation mechanisms involved in the different stages of the full-scale treatment of POME.
Collapse
Affiliation(s)
- Diana Mohd-Nor
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia.,Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
| | - Siti Suhailah Sharuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia
| | - Nurul Asyifah Mustapha
- Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia.,Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University
| | - Yoshihito Shirai
- Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| | - Toshinari Maeda
- Department of Biological Function and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
| |
Collapse
|
27
|
Ahmad FB, Zhang Z, Doherty WO, O’Hara IM. The prospect of microbial oil production and applications from oil palm biomass. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Catalytic potency of ionic liquid-stabilized metal nanoparticles towards greening biomass processing: Insights, limitations and prospects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Luthfi AAI, Tan JP, Harun S, Manaf SFA, Jahim JM. Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess Biosyst Eng 2018; 42:117-130. [DOI: 10.1007/s00449-018-2019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/23/2018] [Indexed: 01/22/2023]
|
30
|
Ibrahim MF, Kim SW, Abd-Aziz S. Advanced bioprocessing strategies for biobutanol production from biomass. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2018; 91:1192-1204. [DOI: 10.1016/j.rser.2018.04.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
31
|
Santos TM, Alonso MV, Oliet M, Domínguez JC, Rigual V, Rodriguez F. Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydr Polym 2018; 194:285-293. [DOI: 10.1016/j.carbpol.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/11/2018] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
|
32
|
Rizal NFAA, Ibrahim MF, Zakaria MR, Abd-Aziz S, Yee PL, Hassan MA. Pre-treatment of Oil Palm Biomass for Fermentable Sugars Production. Molecules 2018; 23:E1381. [PMID: 29880760 PMCID: PMC6099572 DOI: 10.3390/molecules23061381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.
Collapse
Affiliation(s)
- Nur Fatin Athirah Ahmad Rizal
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Rafein Zakaria
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Phang Lai Yee
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Mohd Yusoff MZ, Akita H, Hassan MA, Fujimoto S, Yoshida M, Nakashima N, Hoshino T. Production of acetoin from hydrothermally pretreated oil mesocarp fiber using metabolically engineered Escherichia coli in a bioreactor system. BIORESOURCE TECHNOLOGY 2017; 245:1040-1048. [PMID: 28946206 DOI: 10.1016/j.biortech.2017.08.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/25/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Acetoin is used in the biochemical, chemical and pharmaceutical industries. Several effective methods for acetoin production from petroleum-based substrates have been developed, but they all have an environmental impact and do not meet sustainability criteria. Here we describe a simple and efficient method for acetoin production from oil palm mesocarp fiber hydrolysate using engineered Escherichia coli. An optimization of culture conditions for acetoin production was carried out using reagent-grade chemicals. The final concentration reached 29.9gL-1 with a theoretical yield of 79%. The optimal pretreatment conditions for preparing hydrolysate with higher sugar yields were then determined. When acetoin was produced using hydrolysate fortified with yeast extract, the theoretical yield reached 97% with an acetoin concentration of 15.5gL-1. The acetoin productivity was 10-fold higher than that obtained using reagent-grade sugars. This approach makes use of a compromise strategy for effective utilization of oil palm biomass towards industrial application.
Collapse
Affiliation(s)
- Mohd Zulkhairi Mohd Yusoff
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan.
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shinji Fujimoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Masaru Yoshida
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan; Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tamotsu Hoshino
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
34
|
Sindhu R, Binod P, Mathew AK, Abraham A, Gnansounou E, Ummalyma SB, Thomas L, Pandey A. Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. BIORESOURCE TECHNOLOGY 2017; 242:146-151. [PMID: 28286012 DOI: 10.1016/j.biortech.2017.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
A novel ultrasound-assisted alkali pretreatment strategy was developed which could effectively remove lignin and hemicelluloses and improve the sugar yield from chili post harvest residue. Operational parameters that affect the pretreatment efficiency were studied and optimized. Inhibitor analysis of the hydrolyzate revealed that major fermentation inhibitors like furfural, 5-hydroxymethyl furfural as well as organic acids like citric acid, succinic acid and propionic acid were absent. Hence fermentation can be carried out without detoxification of the hydrolyzate. Changes in structural properties of the biomass were studied in relation to the pretreatment process using Scanning Electron Microscopy (SEM) and the changes in chemical composition were also monitored. The biomass pretreated with the optimized novel method could yield 0.428g/g of reducing sugars upon enzymatic hydrolysis. The hydrolyzate obtained by this novel pretreatment strategy was found to be suitable for bioethanol and xylanase production.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Anil Kuruvilla Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Amith Abraham
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, Institute of Urban and Regional Sciences, GC A3, Station 18, CH-1015 Lausanne, Switzerland
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), Imphal 795001, Manipur, India
| | - Leya Thomas
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Center of Innovative and Applied Bioprocessing, C-127, II Floor, Phase 8, Industrial Area, SAS Nagar, Mohali 160 071, Punjab, India
| |
Collapse
|
35
|
Zhang H, Xu Y, Yu S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. BIORESOURCE TECHNOLOGY 2017; 234:343-349. [PMID: 28340439 DOI: 10.1016/j.biortech.2017.02.094] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/11/2023]
Abstract
A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob.
Collapse
Affiliation(s)
- Hongyu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Shiyuan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
36
|
Shi X, Li T, Wang M, Wu W, Li W, Wu Q, Wu F, Wang J. Converting defatted silkworm pupae by
Yarrowia lipolytica
for enhanced lipid production. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin‐Yi Shi
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
| | - Tai‐Ying Li
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
| | - Min Wang
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
| | - Wei‐Wei Wu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
| | - Wen‐Jing Li
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
| | - Qiong‐Ying Wu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangP. R. China
| | - Fu‐An Wu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangP. R. China
| | - Jun Wang
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangP. R. China
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangP. R. China
| |
Collapse
|
37
|
Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 2017; 101:3055-3075. [PMID: 28280869 DOI: 10.1007/s00253-017-8210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
Collapse
|
38
|
Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification. Appl Biochem Biotechnol 2016; 181:1123-1139. [DOI: 10.1007/s12010-016-2273-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
39
|
Zakaria MR, Hirata S, Fujimoto S, Ibrahim I, Hassan MA. Soluble inhibitors generated during hydrothermal pretreatment of oil palm mesocarp fiber suppressed the catalytic activity of Acremonium cellulase. BIORESOURCE TECHNOLOGY 2016; 200:541-547. [PMID: 26524253 DOI: 10.1016/j.biortech.2015.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Oil palm mesocarp fiber was subjected to hydrothermal pretreatment under isothermal and non-isothermal conditions. The pretreated slurries were separated by filtration, pretreated liquids and solids were characterized. An enzymatic digestibility study was performed for both pretreated slurries and solids to understand the effect of soluble inhibitors generated during the pretreatment process. The highest glucose yield obtained from pretreated slurries was 70.1%, and gradually decreased with higher pretreatment severities. The highest glucose yield obtained in pretreated solids was 100%, after pretreatment at 210°C for 20min. In order to study the inhibitory effects of compounds generated during pretreatment with cellulase, technical grade solutions that mimic the pretreated liquid were prepared and their effect on Acremonium cellulase activity was monitored using Avicel. Xylo-oligomers and tannic acid were identified as powerful inhibitors of Acremonium cellulase, and the lowest hydrolysis rate of Avicel of 0.18g/g-glucose released/L/h was obtained from tannic acid.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shinji Fujimoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Izzudin Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
40
|
Jeong SY, Lee JW. Sequential Fenton oxidation and hydrothermal treatment to improve the effect of pretreatment and enzymatic hydrolysis on mixed hardwood. BIORESOURCE TECHNOLOGY 2016; 200:121-127. [PMID: 26476172 DOI: 10.1016/j.biortech.2015.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Sequential Fenton oxidation (FO) and hydrothermal treatment were performed to improve the effect of pretreatment and enzymatic hydrolysis of mixed hardwood. The molar ratio of the Fenton reagent (FeSO4·7H2O and H2O2) was 1:25, and the reaction time was 96h. During the reaction, little or no weight loss of biomass was observed. The concentration of Fe(2+) was determined and was found to increase continuously during FO. Hydrothermal treatment at 190-210°C for 10-80min was performed following FO. Sequential FO and hydrothermal treatment showed positive effects on pretreatment and enzymatic hydrolysis. Xylose concentration in the hydrolysate was as high as 14.16g/L when FO-treated biomass was treated at 190°C, while its concentration in the raw material was 3.72g/L. After 96h of enzymatic hydrolysis, cellulose conversion in the biomass obtained following sequential treatment was 69.58-79.54%. In contrast, the conversion in the raw material (without FO) was 64.41-67.92%.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Won Lee
- Department of Forest Products and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
41
|
Wang Q, Hu J, Shen F, Mei Z, Yang G, Zhang Y, Hu Y, Zhang J, Deng S. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes. BIORESOURCE TECHNOLOGY 2016; 199:245-257. [PMID: 26264398 DOI: 10.1016/j.biortech.2015.07.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 05/25/2023]
Abstract
Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Forest Products Biotechnology, Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Zili Mei
- Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan 610041, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
42
|
Sharip NS, Ariffin H, Hassan MA, Nishida H, Shirai Y. Characterization and application of bioactive compounds in oil palm mesocarp fiber superheated steam condensate as an antifungal agent. RSC Adv 2016. [DOI: 10.1039/c6ra13292h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lignocellulosic degradation products from superheated steam (SHS) pretreatment of oil palm mesocarp fiber (OPMF) at 190 °C to 240 °C for 1 hour were recovered as a condensate.
Collapse
Affiliation(s)
- Nur Sharmila Sharip
- Department of Bioprocess Technology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Mohd Ali Hassan
- Department of Bioprocess Technology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- Serdang
- Malaysia
| | - Haruo Nishida
- Department of Biological Functions and Engineering
- Graduate School of Life Sciences and Systems Engineering
- Kyushu Institute of Technology
- Kitakyushu
- Japan
| | - Yoshihito Shirai
- Department of Biological Functions and Engineering
- Graduate School of Life Sciences and Systems Engineering
- Kyushu Institute of Technology
- Kitakyushu
- Japan
| |
Collapse
|
43
|
Two-phase modelling and simulation of the hydrothermal fractionation of holm oak in a packed bed reactor with hot pressurized water. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Xu JK, Chen JH, Sun RC. Hydrothermal microwave valorization of eucalyptus using acidic ionic liquid as catalyst toward a green biorefinery scenario. BIORESOURCE TECHNOLOGY 2015; 193:119-127. [PMID: 26119053 DOI: 10.1016/j.biortech.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
The application of the acidic ionic liquid (IL), 1-butyl-3-methylimidazolium hydrogensulfate ([bmim]HSO4), as a catalyst in the hydrothermal microwave treatment (HMT) and green upgradation of eucalyptus biomass has been investigated. The process was carried out in a microwave reactor system at different temperatures (140-200°C) and evaluated for severities. The xylooligosaccharides (XOS, refers to a DP of 2-6) yield up to 5.04% (w/w) of the initial biomass and 26.72% (w/w) of xylan were achieved. Higher temperature resulted in lower molecular weight product, and enhanced the concentration of monosaccharides and byproducts. The morphology and structure of the solid residues were performed using an array of techniques, such as SEM, XRD, FTIR, BET surface area, and CP/MAS (13)C NMR, by which the increase of crystallinity, the destruction of surface structure, and the changes in functional groups and compositions were studied after the pretreatment, thus significantly enhancing the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Ji-Kun Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing-Huan Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
45
|
Zakaria MR, Hirata S, Fujimoto S, Hassan MA. Combined pretreatment with hot compressed water and wet disk milling opened up oil palm biomass structure resulting in enhanced enzymatic digestibility. BIORESOURCE TECHNOLOGY 2015; 193:128-134. [PMID: 26125612 DOI: 10.1016/j.biortech.2015.06.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Combined pretreatment with hot compressed water and wet disk milling was performed with the aim to reduce the natural recalcitrance of oil palm biomass by opening its structure and provide maximal access to cellulase attack. Oil palm empty fruit bunch and oil palm frond fiber were first hydrothermally pretreated at 150-190° C and 10-240 min. Further treatment with wet disk milling resulted in nanofibrillation of fiber which caused the loosening of the tight biomass structure, thus increasing the subsequent enzymatic conversion of cellulose to glucose. The effectiveness of the combined pretreatments was evaluated by chemical composition changes, power consumption, morphological alterations by SEM and the enzymatic digestibility of treated samples. At optimal pretreatment process, approximately 88.5% and 100.0% of total sugar yields were obtained from oil palm empty fruit bunch and oil palm frond fiber samples, which only consumed about 15.1 and 23.5 MJ/kg of biomass, respectively.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Satoshi Hirata
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shinji Fujimoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
46
|
Zakaria MR, Norrrahim MNF, Hirata S, Hassan MA. Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber. BIORESOURCE TECHNOLOGY 2015; 181:263-9. [PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 05/23/2023]
Abstract
Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
Collapse
Affiliation(s)
- Mohd Rafein Zakaria
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohd Nor Faiz Norrrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Satoshi Hirata
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Krátký L, Jirout T. Effect of rapid batch decompression on hydrolysate quality after hydrothermal pretreatment of wheat straw. CHEMICAL PAPERS 2015. [DOI: 10.1515/chempap-2015-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe subject of this paper was to study the effect of rapid batch decompression on hydrolysate quality and on biogas yield after the hydrothermal pretreatment of wheat straw. An aqueous batch containing 5 mass % total solids of wheat straw was thermally and thermally-expansionary treated in parallel at the process temperature of 170-200°C and the residence time of 0-60 min. An analysis of the thermal and thermal-expansionary hydrolysate provided identical results in the dependences and values of chemical oxygen demand, acidities, and glucose yields of both treatments based on severity factors including the combined effects of temperature and residence time. Increases in the methane content of 33 % for thermally and of 34 % for thermally-expansionary treated wheat straw were reached in comparison to the methane yield from an untreated sample. This means that the polysaccharide cell wall was dissolved because of the high process temperature and residence time. From this it follows that all its nutrients were subsequently washed out of the cell into liquid where they caused changes in its chemical oxygen demand, glucose content, and acidities. There was therefore no rapid decompression effect on the hydrothermally treated wheat straw.
Collapse
|