1
|
Xiong Y, Li W, Qin Z, Su T, Xie X, Ji H. A green extraction technology of lignocellulose from cassava residue by mechanical activation-assisted ternary deep eutectic solvent. Int J Biol Macromol 2024; 281:136339. [PMID: 39383909 DOI: 10.1016/j.ijbiomac.2024.136339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Lignocellulose (LC) is a natural polymer material that holds immense potential for various applications. However, extracting LC from biomass wastes with high-starch content has been challenging due to low selectivity and yield. In this study, LC was prepared from cassava residue (CR) via a combination of mechanical activation pretreatment and a citric acid (CA)-enhanced ternary deep eutectic solvent (TDES) consisting of choline chloride (ChCl), lactic acid (LA), and CA. The mechanical activation reduces the size of CR, greatly promoting the removal ability for starch, lignin and hemicellulose using TDES, and thus improving yield and selectivity of LC through this method. The CA esterified LC to prevent its excessive hydrolysis and increased a significantly higher LC content (82.52 wt%) compared to mechanical activation only and DES without CA, increasing by 6.97 times and 1.26 times, respectively. The extraction temperature significantly affected the structure, composition, thermal stability of LC and the properties of recovered TDES. The LC extracted at 90 °C (LC-90) had the highest cellulose content (82.52 wt%), crystallinity index (44.82 %), and higher degradation temperature (339.7 °C). The properties of the recovered TDES and extraction mechanism were analyzed. This study provides a strategy for the high-value utilization of biomass waste.
Collapse
Affiliation(s)
- Yujia Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Wang Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Tongming Su
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
| | - Xinling Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China.
| | - Hongbing Ji
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Xiao D, Jiang H, Zhou Y, Imran A, Zhao H, Bi Y. Preparation of smart magnetic fluids and application in sewage treatment: Copper adsorption, kinetic and isotherm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120142. [PMID: 38306855 DOI: 10.1016/j.jenvman.2024.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 02/04/2024]
Abstract
The effective removal of heavy metal ions from sewage remains a critical issue, and applying the operability of magnetic materials to large volume wastewater treatment has been a significant challenge. In this paper, metal ions adsorption induced aggregation strategy is proposed to solve this contradiction. The intelligent magnetic fluid designed in this study is a well-dispersed fluid state when treating sewage, and can efficiently adsorb heavy metal ions in wastewater with high adsorption capacity and ultra-fast adsorption kinetics. More importantly, after saturation of adsorption, the magnetic fluid will transform from a well-dispersed fluid state to an agglomeration state which is easy to precipitate and separate via external magnetic field. In a simple and effective way, the particles size of magnetic nanoparticles was precisely controlled by cellulose derivatives modification to obtain a stable magnetic fluid in water. The Freundlich model best described Cu2+ adsorption on magnetite nanoparticles, the correlation coefficients from the Cu2+ adsorption on the two magnetic fluids are 0.9554 and 0.9336, n are 1.868 and 2.117, revealing a favorable adsorption of Cu2+ onto magnetic fluids. The pseudo second-order model fitted the adsorption kinetic data better, the qe are 0.1948 and 0.1315 mmol/g and the R2 are 0.9999, indicating that the adsorption of Cu2+ onto the magnetic fluid was dominated by chemisorption. Moreover, the removal rate of Cu2+ in tap water and lake water was more than 97.1%, and the removal rate of large volume sewage was 81.7%. The synthetic magnetic fluid has high adsorption capacity, ultra-fast adsorption kinetics, reusability and easy separation, indicating its potential application for the removal of heavy metal ions from large-volume sewage.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing, 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yunlin Zhou
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Alhassan Imran
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongyan Zhao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 210009, China.
| | - Yanping Bi
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'An, Shandong, 271016, China.
| |
Collapse
|
3
|
Lim CSS, Chan EWC, Wong CW. Acetic acid as a protic solvent for reducing sulphuric acid concentrations in the production of cellulose nanocrystals alongside transition metal co-catalysts. Int J Biol Macromol 2024; 259:129303. [PMID: 38216018 DOI: 10.1016/j.ijbiomac.2024.129303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/08/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Cellulose nanocrystals (CNC) conventionally involve highly concentrated sulphuric acid, which typically resulted in the formation of undesirable by-products. Although less corrosive mineral acids have been explored as alternatives, high concentrations are still required. In this study, CNC was successfully isolated from Leucaena leucocephala wood using mild sulphuric acid with acetic acid as protic solvent, and it was further studied with the addition of Lewis acids in the form of multivalent transition metal salts as co-catalyst. Selected divalent and trivalent transition metal salts including (Cr(NO3)3, Fe(NO3)3, Co(NO3)2, and Ni(NO3)2) were investigated. The morphology, chemical structure, particle size, and physicochemical properties of the CNCs were determined. Controlled depolymerization of cellulose was observed using transmission electron microscopy (TEM). Rod-like morphology for all CNCs was obtained during the hydrolysis process with the smallest CNC particles found at an average length of 278.1 ± 35.1 nm and a diameter of 13.4 ± 3.0 nm. The results showed that higher valence state metal ions resulted in better cellulose hydrolysis efficiency. In addition, the use of transition metal salt as a co-catalyst improved production efficiency and minimised carbonization of CNC while maintaining desired crystallinity and thermal properties.
Collapse
Affiliation(s)
- Carine Shu Shien Lim
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Eric Wei Chiang Chan
- Department of Food Science with Nutrition, Faculty of Applied Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia
| | - Chen Wai Wong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Xu D, Ma C, Wu M, Deng Y, He YC. Improved production of adipic acid from a high loading of corn stover via an efficient and mild combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 382:129196. [PMID: 37207697 DOI: 10.1016/j.biortech.2023.129196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Adipic acid is one kind of important organic dibasic acid, which has crucial role in manufacturing plastics, lubricants, resins, fibers, etc. Using lignocellulose as feedstock for producing adipic acid can reduce production cost and improve bioresource utilization. After pretreated in the mixture of 7 wt% NaOH and 8 wt% ChCl-PEG10000 at 25 oC for 10 min, the surface of corn stover became loose and rough. The specific surface area was increased after the removal of lignin. A high loading of pretreated corn stover was enzymatically hydrolyzed by cellulase (20 FPU/g substrate) and xylanase (15 U/g substrate), and the yield of reducing sugars was as high as 75%. Biomass-hydrolysates obtained by enzymatic hydrolysis were efficiently fermented to produce adipic acid, and the yield was 0.45 g adipic acid per g reducing sugar. A sustainable approach for manufacturing adipic acid from lignocellulose via a room temperature pretreatment has great potential in future.
Collapse
Affiliation(s)
- Daozhu Xu
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Mengjia Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China.
| |
Collapse
|
5
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
6
|
Zheng Y, Zhang Q, Zhang Z, Jing Y, Hu J, He C, Lu C. A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. BIORESOURCE TECHNOLOGY 2022; 347:126595. [PMID: 34953992 DOI: 10.1016/j.biortech.2021.126595] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Hydrogen has become a research highlight by virtue of its clean energy production technology and high energy content. The technology of biohydrogen production from biological waste via fermentation has lower costs, provides environment-friendly methods regarding energy balance, and creates a pathway for sustainable utilization of massive agricultural waste. However, biohydrogen production is generally limited by lower productivity. Many studies have been conducted aimed at improving biohydrogen production efficiency. Hence, this review is intended to describe improving routes for biohydrogen production from agricultural waste and highlights recent advances in these approaches. In addition, the critical factors affecting biohydrogen production, including the pretreatment method, substrate resource, fermentation conditions, and bioreactor design, were also comprehensively discussed along with challenges and future prospects.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Collaborative Innovation Center of Biomass Energy, Henan Province, Zhengzhou 450002, China
| |
Collapse
|
7
|
Du J, Liang J, Zhang X, Wang J, Li W, Song P, Feng X. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover. BIORESOURCE TECHNOLOGY 2022; 343:126113. [PMID: 34648965 DOI: 10.1016/j.biortech.2021.126113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Soluble compounds produced during the enzymatic hydrolysis of lignocelluloses hampers cellulose conversion. Cellobiose and vanillin most severely inhibited the effect of cellobiohydrolase I. A concentration-dependent negative cooperative effect was found between cellobiose and vanillin. The combined inhibitory effect was about 83.5% of the cellobiose and 88.1% of the vanillin when their concentration was 20 mg/ml. However, the negative synergy could be eliminated by excessive enzyme loading. Differences in their binding sites on the catalytic domain of cellobiohydrolase I lead to negative synergistic inhibition, which should be considered in devising strategies to alleviate this effect. Combined β-glucosidase and PEG addition at an appropriate dose was feasible to balance cost and hydrolytic efficiency. To achieve efficient hydrolysis, especially at high solid concentrations, it is important to understand the synergistic inhibition between these inhibitors.
Collapse
Affiliation(s)
- Jian Du
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Jingrui Liang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Xiujun Zhang
- College of Biological Science and Technology, Jinan University, Jinan 250024, China
| | - Jinglong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Wei Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Peixue Song
- College of City and Architectural Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Xiaohui Feng
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
8
|
Wu M, Gong L, Ma C, He YC. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. BIORESOURCE TECHNOLOGY 2021; 340:125695. [PMID: 34364087 DOI: 10.1016/j.biortech.2021.125695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen bond donor (HBD) in ChCl-based deep eutectic solvent (DESs) had significant influence on the Sorghum straw (SS) pretreatment. Lactic acid (LAC) was chosen as the appropriate HBD for preparing ChCl-based DES to pretreat Sorghum straw (SS). Furthermore, sequential pretreatment with dilute sodium hydroxide (0.75 wt%) for 1 h at 121 °C and ChCl:LAC soaking at 140 °C for 40 min was applied to pretreat SS for removing lignin (78.4%) and xylan (67.6%). Hydrolysis for 72 h, the reducing sugar yield reached 94.9%. Moreover, relationships of delignification and xylan removal with saccharification were explored after pretreatment. Finally, the fermentability of SS-hydrolysates was verified by bioethanol fermentation by S. cerevissiae with the yield of 0.45 g ethanol/g glucose. No significant inhibition was observed on ethanol fermentation. Obviously, establishment of high-efficient combination pretreatment with alkali extraction and ChCl:LAC soaking was successfully demonstrated for enhancing enzymatic saccharification of SS.
Collapse
Affiliation(s)
- Mengjia Wu
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China
| | - Lei Gong
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province 430062, PR China
| | - Yu-Cai He
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei Province 430062, PR China.
| |
Collapse
|
9
|
Enhancement of hydrothermal carbonization of chitin by combined pretreatment of mechanical activation and FeCl 3. Int J Biol Macromol 2021; 189:242-250. [PMID: 34425120 DOI: 10.1016/j.ijbiomac.2021.08.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023]
Abstract
In this work, a combined mechanical activation and FeCl3 (MA + FeCl3) method was applied to pretreat chitin to enhance the degree of hydrothermal carbonization. MA + FeCl3 pretreatment significantly disrupt the crystalline region of chitin and Fe3+ entered into the molecular chain, resulting in the destruction of the stable structure of chitin. The chemical and structural properties of hydrochars were characterized by EA, SEM, FTIR, XRD, XPS, 13C solid state NMR, and N2 adsorption-desorption analyses. The results showed that the H/C and O/C atomic ratios of HC-MAFCT/230 (the hydrochar derived from MA + FeCl3 pretreated chitin with hydrothermal reaction temperature of 230 °C) were 0.96 and 0.34, respectively. Van Krevelen diagram indicated that the hydrothermal carbonization of chitin underwent a series of reactions such as dehydration, decarboxylation, and aromatization. HC-MAFCT/230 had abundant oxygen- and nitrogen-containing functional groups. HC-MAFCT/230 exhibited a porous structure, with the specific surface area of 128 m2 g-1, which was a promising carbon material.
Collapse
|
10
|
Zhang Y, Zhao M, Wang H, Hu H, Liu R, Huang Z, Chen C, Chen D, Feng Z. Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: Improved catalytic performance and efficient reusability. BIORESOURCE TECHNOLOGY 2019; 288:121532. [PMID: 31146077 DOI: 10.1016/j.biortech.2019.121532] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
To develop an efficient heterogeneous catalyst with good stability and reusability for catalytic conversion of cellulose to platform compounds, carbon foam (CF) was used to immobilize phosphotungstic acid (HPW) to prepare CF-supported HPW (HPW/CF) catalyst. Three-dimensional CF was prepared by carbonization of bread (precursor of CF) with mechanical activation (MA)-damaged starch, gluten protein, and yeast as materials. CF30 (30 wt% of gluten protein) exhibited good mechanical strength, relatively high specific surface area, and desired hierarchical porous structure. HPW was successfully anchored onto CF30 by grafting to prepare HPW/CF30 catalyst, which could effectively catalyze the hydrolysis of cellulose to produce glucose, especially for the hydrolysis of MA-pretreated cellulose with small granules and amorphous structure. The affinity between free hydroxyl groups of MA-pretreated cellulose and oxygen-containing groups of CF30 enhanced the catalytic efficiency of HPW/CF30. In addition, HPW/CF30 catalyst exhibited good reusability and was easily separated from reaction system for recycling.
Collapse
Affiliation(s)
- Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengyao Zhao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Rong Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Congjin Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Li Q, Shen F, Zhang Y, Huang Z, Muhammad Y, Hu H, Zhu Y, Yu C, Qin Y. Graphene incorporated poly(vinyl chloride) composites prepared by mechanical activation with enhanced electrical and thermo–mechanical properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qinghua Li
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Fang Shen
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University Nanning 530004 China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Yaseen Muhammad
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi University Nanning 530004 China
- Institute of Chemical Sciences University of Peshawar 25120 KP Pakistan
| | - Huayu Hu
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Yunpeng Zhu
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Cong Yu
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| | - Yuben Qin
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
12
|
A comparative analysis of the preparation of cellulose acetate butyrate and the characteristics of applying in pearlescent coating film. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02886-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Piras CC, Fernández-Prieto S, De Borggraeve WM. Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. NANOSCALE ADVANCES 2019; 1:937-947. [PMID: 36133214 PMCID: PMC9419839 DOI: 10.1039/c8na00238j] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/29/2018] [Indexed: 05/14/2023]
Abstract
Ball milling is a simple, fast, cost-effective green technology with enormous potential. One of the most interesting applications of this technology in the field of cellulose is the preparation and the chemical modification of cellulose nanocrystals and nanofibers. Although a number of studies have been reported in the literature, the potential of this technique in the field of cellulose nanoparticles has not been fully exploited. This minireview aims at putting existing work into perspective, highlighting the significance and the potential of this green, sustainable technique to facilitate the identification of areas of future development.
Collapse
Affiliation(s)
- Carmen C Piras
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven Celestijnenlaan 200F, Box 2404 B-3001 Leuven Belgium
| | | | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven - University of Leuven Celestijnenlaan 200F, Box 2404 B-3001 Leuven Belgium
| |
Collapse
|
14
|
In Situ Synthesis of a Stable Fe₃O₄@Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue. NANOMATERIALS 2019; 9:nano9020275. [PMID: 30781498 PMCID: PMC6410190 DOI: 10.3390/nano9020275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
To rapidly obtain a stable Fe₃O₄@cellulose heterogeneous Fenton catalyst, a novel in situ chemical co-precipitation method was developed. Compared with mechanical activation (MA)-pretreated cellulose (MAC), MA + FeCl₃ (MAFC)-pretreated cellulose (MAFCC) was more easily dissolved and uniformly distributed in NaOH/urea solvent. MAFCC and MAC solutions were used as precipitators to prepare Fe₃O₄@MAFCC and Fe₃O₄@MAC nanocomposites, respectively. MAFCC showed stronger interaction and more uniform combination with Fe₃O₄ nanoparticles than MAC, implying that MAFC pretreatment enhanced the accessibility, reactivity, and dissolving capacity of cellulose thus, provided reactive sites for the in situ growth of Fe₃O₄ nanoparticles on the regenerated cellulose. Additionally, the catalytic performance of Fe₃O₄@MAFCC nanocomposite was evaluated by using for catalytic degradation of methylene blue (MB), and Fe₃O₄@MAC nanocomposite and Fe₃O₄ nanoparticles were used for comparative studies. Fe₃O₄@MAFCC nanocomposite exhibited superior catalytic activity for the degradation and mineralization of MB in practical applications. After ten cycles, the structure of Fe₃O₄@MAFCC nanocomposite was not significantly changed owing to the strong interaction between MAFCC and Fe₃O₄ nanoparticles. This study provides a green pathway to the fabrication of a stable nanocomposite catalyst with high catalytic performance and reusability for the degradation of organic pollutants.
Collapse
|
15
|
Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, Chen D, Wu J, Feng Z. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:12. [PMID: 30647772 PMCID: PMC6327530 DOI: 10.1186/s13068-019-1354-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to biomass recalcitrance, including complexity of lignocellulosic matrix, crystallinity of cellulose, and inhibition of lignin, the bioconversion of lignocellulosic biomass is difficult and inefficient. The aim of this study is to investigate an effective and green pretreatment method for overcoming biomass recalcitrance of lignocellulose. RESULTS An effective mechanical activation (MA) + metal salt (MAMS) technology was applied to pretreat sugarcane bagasse (SCB), a typical kind of lignocellulosic biomass, in a stirring ball mill. Chlorides and nitrates of Al and Fe showed better synergistic effect with MA, especially AlCl3, ascribing to the interaction between metal salt and oxygen-containing groups induced by MA. Comparative studies showed that MAMS pretreatment effectively changed the recalcitrant structural characteristics of lignocellulosic matrix and reduced the inhibitory action of lignin on enzymatic conversion of SCB. The increase in hydroxyl and carboxyl groups of lignin induced by MAMS pretreatment led to the increase of its hydrophilicity, which could weaken the binding force between cellulase and lignin and reduce the nonproductive binding of cellulase enzymes to lignin. CONCLUSIONS MAMS pretreatment significantly enhanced the enzymatic digestibility of polysaccharides substrate by overcoming biomass recalcitrance without the removal of lignin from enzymatic hydrolysis system.
Collapse
Affiliation(s)
- Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Min Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Jianmei Su
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Mei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007 China
| | - Juan Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004 China
| |
Collapse
|
16
|
Hasanin MS, Mostafa AM, Mwafy EA, Darwesh OM. Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The evolution from petroleum-based products to the bio-based era by using renewable resources is one of the main research challenges in the coming years. Lignocellulosic biomass, consisting of inedible plant material, has emerged as a potential alternative for the production of biofuels, biochemicals, and nanocellulose-based advanced materials. The lignocellulosic biomass, which consists mainly of carbohydrate-based polysaccharides (hemicellulose and cellulose), is a green intermediate for the synthesis of bio-based products. In recent years, the re-engineering of biomass into a variety of commodity chemicals and liquid fuels by using Lewis acid catalysts has attracted much attention. Much research has been focused on developing new chemical strategies for the valorization of different biomass components. Homogeneous Lewis acid catalysts seem to be one of the most promising catalysts due to their astonishing features such as being less corrosive to equipment and being friendlier to the environment, as well as having the ability to disrupt the bonding system effectively and having high selectivity. Thus, these catalysts have emerged as important tools for the highly selective transformation of biomass components into valuable chemicals and fuels. This review provides an insightful overview of the most important recent developments in homogeneous Lewis acid catalysis toward the production and upgrading of biomass. The chemical valorization of the main components of lignocellulosic biomass (hemicellulose and cellulose), the reaction conditions, and process mechanisms are reviewed.
Collapse
|
18
|
Lv X, Lin J, Luo L, Zhang D, Lei S, Xiao W, Xu Y, Gong Y, Liu Z. Enhanced enzymatic saccharification of sugarcane bagasse pretreated by sodium methoxide with glycerol. BIORESOURCE TECHNOLOGY 2018; 249:226-233. [PMID: 29045926 DOI: 10.1016/j.biortech.2017.09.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Sodium methoxide (CH3ONa) with glycerol pretreatment (CWGP) was performed to improve the enzymatic digestibility of sugarcane bagasse (SCB). Response surface methodology was utilized to optimize the CWGP parameters for pretreating SCB from the perspective of total fermentable sugar yield (TFSY) and total fermentable sugar concentration (TFSC). Under the optimal CWGP conditions, 0.5666g/g of TFSY (0.82% CH3ONa, 1.11h, 150°C) and 17.75g/L of TFSC (0.87% CH3ONa, 1.38h, 149.27°C) were achieved, corresponding to delignification of 79.05% and 79.34%, respectively. Compared the pretreatment using glycerol or CH3ONa alone, the CWGP has significant synergies to enhance the enzymatic efficiency of SCB. The physical and chemical characteristics of untreated and pretreated SCBs were analyzed using FT-IR, XRD, and SEM, and the results suggest that CWGP significantly increased the susceptibility of the substrates to enzymatic digestibility. Ultimately, CWGP might be a prospective candidate for the pretreatment process of enzyme-based lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Liang Luo
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Dou Zhang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Senlin Lei
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yingxue Gong
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
19
|
Investigation of optimal conditions for production of highly crystalline nanocellulose with increased yield via novel Cr(III)-catalyzed hydrolysis: Response surface methodology. Carbohydr Polym 2017; 178:57-68. [DOI: 10.1016/j.carbpol.2017.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/20/2022]
|
20
|
Diesen V, Forsberg K, Jonsson M. Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:384-389. [PMID: 28735181 DOI: 10.1016/j.jhazmat.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The deep repository for low and intermediate level radioactive waste SFR in Sweden will contain large amounts of cellulosic waste materials contaminated with radionuclides. Over time the repository will be filled with water and alkaline conditions will prevail. In the present study degradation of cellulosic materials and the ability of cellulosic degradation products to solubilize and thereby mobilise Eu(III) under repository conditions has been investigated. Further, the possible immobilization of Eu(III) by sorption onto cement in the presence of degradation products has been investigated. The cellulosic material has been degraded under anaerobic and aerobic conditions in alkaline media (pH: 12.5) at ambient temperature. The degradation was followed by measuring the total organic carbon (TOC) content in the aqueous phase as a function of time. After 173days of degradation the TOC content is highest in the anaerobic artificial cement pore water (1547mg/L). The degradation products are capable of solubilising Eu(III) and the total europium concentration in the aqueous phase was 900μmol/L after 498h contact time under anaerobic conditions. Further it is shown that Eu(III) is adsorbed to the hydrated cement to a low extent (<9μmol Eu/g of cement) in the presence of degradation products.
Collapse
Affiliation(s)
- Veronica Diesen
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kerstin Forsberg
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Mats Jonsson
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Chen YW, Lee HV. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective. Int J Biol Macromol 2017; 107:78-92. [PMID: 28860064 DOI: 10.1016/j.ijbiomac.2017.08.143] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/27/2017] [Indexed: 11/25/2022]
Abstract
In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H2O2/Cr(NO3)3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development.
Collapse
Affiliation(s)
- You Wei Chen
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Liang X, Zheng L, Li S, Fan X, Shen S, Hu D. Electrochemical removal of stains from paper cultural relics based on the electrode system of conductive composite hydrogel and PbO 2. Sci Rep 2017; 7:8865. [PMID: 28821778 PMCID: PMC5562847 DOI: 10.1038/s41598-017-08907-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022] Open
Abstract
Constructing methods for cleaning stains on paper artworks that meet the requirements of preservation of cultural relics are still challenging. In response to this problem, a novel electrochemical cleaning method and the preparation of corresponding electrodes were proposed. For this purpose, the conductive graphene (rGO)/polyacryamide (PAM)/montmorillonite (MMT) composite hydrogel as cathode and PbO2-based material as anode were prepared and characterized. The electrochemical cleaning efficiencies of real sample and mimicking paper artifacts were evaluated, and the effects of the electrochemical cleaning on paper itself were detected. Based on the above experiments, the following results were obtained. The composite hydrogel with attractive mechanical properties is mainly based on the hydrogen bond interactions between PAM chains and MMT. The results of cleaning efficiency revealed that the black mildew stains together with the yellowish foxing stains were almost completely eliminated within 6 min at 8 mA/cm2, and various stains formed by tideline, foxing, organic dyes and drinks could be thoroughly removed at 4 mA/cm2 within 5 min. In addition, the proposed cleaning method has advantages in local selectivity, easy control of cleaning course, and reusability, which represents a potential utility of this approach.
Collapse
Affiliation(s)
- Xingtang Liang
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
- School of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou, 535000, China
| | - Lizhen Zheng
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Shirong Li
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyu Fan
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Shukun Shen
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Daodao Hu
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
23
|
Du L, Wang J, Zhang Y, Qi C, Wolcott MP, Yu Z. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods. BIORESOURCE TECHNOLOGY 2017; 238:254-262. [PMID: 28437643 DOI: 10.1016/j.biortech.2017.03.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 05/27/2023]
Abstract
This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW80, BMW120) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW120 was achieved, which was three times as high as the conversion of BMW80. The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR80 and HR120, and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose.
Collapse
Affiliation(s)
- Lanxing Du
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China; Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA
| | - Jinwu Wang
- Forest Products Laboratory, US Forest Service, Madison, WI 53726, USA
| | - Yang Zhang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chusheng Qi
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Michael P Wolcott
- Composite Materials and Engineering Center, Washington State University, Pullman, WA 99163, USA
| | - Zhiming Yu
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
24
|
Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach. Carbohydr Polym 2017; 157:1511-1524. [DOI: 10.1016/j.carbpol.2016.11.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022]
|
25
|
Chong GG, He YC, Liu QX, Kou XQ, Qing Q. Sequential Aqueous Ammonia Extraction and LiCl/N,N-Dimethyl Formamide Pretreatment for Enhancing Enzymatic Saccharification of Winter Bamboo Shoot Shell. Appl Biochem Biotechnol 2017; 182:1341-1357. [DOI: 10.1007/s12010-017-2402-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/10/2017] [Indexed: 11/30/2022]
|
26
|
Chen YW, Tan TH, Lee HV, Abd Hamid SB. Easy Fabrication of Highly Thermal-Stable Cellulose Nanocrystals Using Cr(NO₃)₃ Catalytic Hydrolysis System: A Feasibility Study from Macro- to Nano-Dimensions. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E42. [PMID: 28772403 PMCID: PMC5344559 DOI: 10.3390/ma10010042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/24/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022]
Abstract
This study reported on the feasibility and practicability of Cr(NO₃)₃ hydrolysis to isolate cellulose nanocrystals (CNCCr(NO3)3) from native cellulosic feedstock. The physicochemical properties of CNCCr(NO3)3 were compared with nanocellulose isolated using sulfuric acid hydrolysis (CNCH2SO4). In optimum hydrolysis conditions, 80 °C, 1.5 h, 0.8 M Cr(NO₃)₃ metal salt and solid-liquid ratio of 1:30, the CNCCr(NO3)3 exhibited a network-like long fibrous structure with the aspect ratio of 15.7, while the CNCH2SO4 showed rice-shape structure with an aspect ratio of 3.5. Additionally, Cr(NO₃)₃-treated CNC rendered a higher crystallinity (86.5% ± 0.3%) with high yield (83.6% ± 0.6%) as compared to the H₂SO₄-treated CNC (81.4% ± 0.1% and 54.7% ± 0.3%, respectively). Furthermore, better thermal stability of CNCCr(NO3)3 (344 °C) compared to CNCH2SO4 (273 °C) rendered a high potential for nanocomposite application. This comparable effectiveness of Cr(NO₃)₃ metal salt provides milder hydrolysis conditions for highly selective depolymerization of cellulosic fiber into value-added cellulose nanomaterial, or useful chemicals and fuels in the future.
Collapse
Affiliation(s)
- You Wei Chen
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Thean Heng Tan
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Sharifah Bee Abd Hamid
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
27
|
Jin S, Zhang G, Zhang P, Li F, Wang S, Fan S, Zhou S. Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. BIORESOURCE TECHNOLOGY 2016; 221:26-30. [PMID: 27631890 DOI: 10.1016/j.biortech.2016.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 05/27/2023]
Abstract
Catalpa sawdust, a promising biofuel production biomass, was pretreated by microwave-water, -NaOH, and -Ca(OH)2 to enhance enzymatic digestibility. After 48h enzymatic hydrolysis, microwave-Ca(OH)2 pretreated sample showed the highest reducing sugar yield. The content of hemicellulose and lignin in catalpa sawdust decreased after microwave-alkali pretreatment. SEM observation showed that the catalpa sawdust surface with microwave-Ca(OH)2 pretreatment suffered the most serious erosion. Crystallinity index of catalpa sawdust increased after all three kinds of pretreatment. The optimum conditions of microwave-Ca(OH)2 pretreatment were particle size of 40mesh, Ca(OH)2 dosage of 2.25% (w/v), microwave power of 400W, pretreatment time of 6min, enzyme loading of 175FPU/g, and hydrolysis time of 96h, and the reducing sugar yield of microwave-Ca(OH)2 pretreated catalpa sawdust reached 402.73mg/g, which increased by 682.15% compared with that of raw catalpa sawdust. The catalpa sawdust with microwave-Ca(OH)2 pretreatment is promising for biofuel production with great potential.
Collapse
Affiliation(s)
- Shuguang Jin
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing 100872, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Fan Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Siqi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Shiyang Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China.
| | - Shuqiong Zhou
- ShenZhen Techand Ecology & Environment CO. LTD., Shenzhen 518040, China.
| |
Collapse
|
28
|
Healey AL, Lee DJ, Lupoi JS, Papa G, Guenther JM, Corno L, Adani F, Singh S, Simmons BA, Henry RJ. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa. FRONTIERS IN PLANT SCIENCE 2016; 7:1705. [PMID: 27917179 PMCID: PMC5114311 DOI: 10.3389/fpls.2016.01705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production.
Collapse
Affiliation(s)
- Adam L. Healey
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt. Lucia, QLD, Australia
| | - David J. Lee
- Forest Industries Research Centre, University of the Sunshine CoastMaroochydore, QLD, Australia
- Forestry & Biosciences, Agri-Science Queensland, Department of Agriculture and FisheriesGympie, QLD, Australia
| | | | - Gabriella Papa
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
| | - Joel M. Guenther
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Luca Corno
- Gruppo Ricicla – Biomass and Bioenergy Laboratory, DiSAA, University of MilanMilan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla – Biomass and Bioenergy Laboratory, DiSAA, University of MilanMilan, Italy
| | - Seema Singh
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National LaboratoryEmeryville, CA, USA
- Biological and Engineering Sciences Center, Sandia National LaboratoriesLivermore, CA, USA
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
29
|
Amarasekara AS, Wiredu B. The effect of manganese(II) chloride as a co-catalyst on cellobiose hydrolysis in dilute aqueous sulfuric acid and acidic ionic liquid mediums. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Wang G, Tan X, Lv H, Zhao M, Wu M, Zhou J, Zhang X, Zhang L. Highly Selective Conversion of Cellobiose and Cellulose to Hexitols by Ru-Based Homogeneous Catalyst under Acidic Conditions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guozhen Wang
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Xuefeng Tan
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Hui Lv
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Mengmeng Zhao
- Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Min Wu
- Technical Institute
of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jinping Zhou
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Xumu Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Lina Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| |
Collapse
|
31
|
Qin X, Zhou J, Huang A, Guan J, Zhang Q, Huang Z, Hu H, Zhang Y, Yang M, Wu J, Qin Y, Feng Z. A green technology for the synthesis of cellulose succinate for efficient adsorption of Cd(ii) and Pb(ii) ions. RSC Adv 2016. [DOI: 10.1039/c5ra27280g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellulose succinate, directly prepared by a simple and green mechanical activation-assisted solid-phase synthesis method in a stirring ball mill, was used as environmental-friendly adsorbent for efficient adsorption of heavy metals.
Collapse
|
32
|
Mu B, Xu H, Yang Y. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling. BIORESOURCE TECHNOLOGY 2015; 196:332-338. [PMID: 26253917 DOI: 10.1016/j.biortech.2015.07.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 06/04/2023]
Abstract
In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature.
Collapse
Affiliation(s)
- Bingnan Mu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Helan Xu
- Department of Textiles, Merchandising and Fashion Design, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Nebraska Center for Materials and Nanoscience, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
33
|
He YC, Ding Y, Xue YF, Yang B, Liu F, Wang C, Zhu ZZ, Qing Q, Wu H, Zhu C, Tao ZC, Zhang DP. Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. BIORESOURCE TECHNOLOGY 2015; 193:324-30. [PMID: 26142999 DOI: 10.1016/j.biortech.2015.06.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/21/2023]
Abstract
In this study, an effective method by the sequential Fenton pretreatment and dilute NaOH extraction (FT-AE) was chosen for pretreating corn stover. Before dilute NaOH (0.75 wt%) extraction at 90 °C for 1h, Fenton reagent (0.95 g/L of FeSO4 and 29.8 g/L of H2O2) was employed to pretreat CS at a solid/liquid ratio of 1/20 (w/w) at 35 °C for 30 min. The changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated solid residue were correlated with the enhancement of enzymatic saccharification. After being enzymatically hydrolyzed for 72 h, the reducing sugars and glucose from the hydrolysis of 60 g/L FT-AE-CS pretreated could be obtained at 40.96 and 23.61 g/L, respectively. Finally, the recovered hydrolyzates containing glucose had no inhibitory effects on the ethanol fermenting microorganism. In conclusion, the sequential Fenton pretreatment and dilute NaOH extraction has high potential application in future.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yu-Feng Xue
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Bin Yang
- Department of Biological Systems Engineering, Bioproducts, Sciences and Engineering Laboratory, Washington State University, Richland, WA 99354, USA
| | - Feng Liu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cheng Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zheng-Zhong Zhu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Qing Qing
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Hao Wu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cheng Zhu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Dan-Ping Zhang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Laboratory of Biocatalysis and Bioprocessing, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
34
|
A Newly Isolated Penicillium oxalicum 16 Cellulase with High Efficient Synergism and High Tolerance of Monosaccharide. Appl Biochem Biotechnol 2015; 178:173-83. [PMID: 26410224 DOI: 10.1007/s12010-015-1866-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Compared to Trichoderma reesei RUT-C30 cellulase (Trcel), Penicillium oxalicum 16 cellulase (P16cel) from the fermentation supernatant produced a 2-fold higher glucose yield when degrading microcrystalline cellulose (MCC), possessed a 10-fold higher β-glucosidase (BGL) activity, but obtained somewhat lower other cellulase component activities. The optimal temperature and pH of β-1,4-endoglucanase, cellobiohydrolase, and filter paperase from P16cel were 50-60 °C and 4-5, respectively, but those of BGL reached 70 °C and 5. The cellulase cocktail of P16cel and Trcel had a high synergism when solubilizing MCC and generated 1.7-fold and 6.2-fold higher glucose yields than P16cel and Trcel at the same filter paperase loading, respectively. Additional low concentration of fructose enhanced the glucose yield during enzymatic hydrolysis of MCC; however, additional high concentration of monosaccharide (especially glucose) reduced cellulase activities and gave a stronger monosaccharide inhibition on Trcel. These results indicate that P16cel is a more excellent cellulase than Trcel.
Collapse
|
35
|
Wiredu B, Amarasekara AS. The effect of metal ions as co-catalysts on acidic ionic liquid catalyzed single-step saccharification of corn stover in water. BIORESOURCE TECHNOLOGY 2015; 189:405-408. [PMID: 25911191 DOI: 10.1016/j.biortech.2015.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/05/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
The effects of adding Cr(3+), Mn(2+), Fe(3+), Co(2+) Ni(2+), Cu(2+), Zn(2+) and La(3+) chlorides as co-catalysts to 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed saccharification of corn stover in aqueous medium was studied at 140-170 °C, by measuring the total reducing sugar (TRS) and glucose yields. The samples with Mn(2+), Fe(3+), Co(2+) as co-catalysts produced higher TRS yields compared to the sample without the metal ions. The Mn(2+) produced the highest catalytic effect enhancements and produced TRS yields of 68.0%, 72.9%, 90.2% and 87.9% at 140, 150, 160 and 170 °C respectively; whereas the corn stover samples without the Mn(2+) produced TRS yields of 42.9%, 52.3%, 54.4% and 53.5% at the same four temperatures. At higher temperatures of 160 and 170 °C, all metal ions studied produced significant enhancements in glucose yields, except Cr(3+). The addition of La(3+) as a co-catalyst produced the highest glucose yield improvement.
Collapse
Affiliation(s)
- Bernard Wiredu
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Ananda S Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| |
Collapse
|
36
|
Bioethanol from lignocellulosic biomass: current findings determine research priorities. ScientificWorldJournal 2014; 2014:298153. [PMID: 25614881 PMCID: PMC4295598 DOI: 10.1155/2014/298153] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022] Open
Abstract
“Second generation” bioethanol, with lignocellulose material as feedstock, is a promising alternative for first generation bioethanol. This paper provides an overview of the current status and reveals the bottlenecks that hamper its implementation. The current literature specifies a conversion of biomass to bioethanol of 30 to ~50% only. Novel processes increase the conversion yield to about 92% of the theoretical yield. New combined processes reduce both the number of operational steps and the production of inhibitors. Recent advances in genetically engineered microorganisms are promising for higher alcohol tolerance and conversion efficiency. By combining advanced systems and by intensive additional research to eliminate current bottlenecks, second generation bioethanol could surpass the traditional first generation processes.
Collapse
|