1
|
Huang W, Tan Z, Xiao Q, Liu X, Liu K, Li Z, Zhou X, Bai L, Luo K. QpmH esterase from cotton rhizosphere bacteria: A novel approach for degrading quizalofop-p-ethyl herbicide. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138037. [PMID: 40147131 DOI: 10.1016/j.jhazmat.2025.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Within the rhizosphere, a rich population of biocontrol bacteria serves as a valuable resource for the biodegradation of environmental herbicides. This study aimed to evaluate rhizospheric microorganisms for their potential to degrade Quizalofop-p-ethyl, a widely used herbicide to control annual and perennial weeds in a variety of crops. A bacterial strain, MJ-8, isolated from cotton rhizosphere soil, demonstrated significant degradation activity. Based on morphological characteristics and 16S rRNA sequencing, the strain was identified as Priestia megaterium. Strain MJ-8 achieved a degradation rate of 90.65 % for Quizalofop-p-ethyl. Genomic analysis and amino acid sequence alignment revealed a key gene, designated QpmH, encoding a 30 kDa protein with strong biodegradation activity. Heterologous expression of the QpmH gene confirmed its role in Quizalofop-p-ethyl degradation. Molecular docking studies and structural modeling further elucidated the enzymatic mechanisms, supported by the analysis of their degradation products. Additionally, when QpmH gene was introduced into rice plants through Agrobacterium-mediated transformation, the resultant transformant conferred resistance to Quizalofop-p-ethyl at the recommended application dose. These findings highlight Priestia megaterium strain MJ-8 as a promising biological agent for sustainable herbicide management and position the QpmH gene as a potential new target for developing herbicide-resistant crops.
Collapse
Affiliation(s)
- Wenjing Huang
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zebao Tan
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Qin Xiao
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiangying Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Kailin Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zuren Li
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Kun Luo
- College of plant protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Zhu YM, Yao G, Shao S, Liu XY, Xu J, Chen C, Zhang XW, Huang ZR, Xu CZ, Zhang L, Wu XM. Mechanistic Insight into the Enantioselective Degradation of Esterase QeH to ( R)/( S)-Quizalofop-Ethyl with Molecular Dynamics Simulation Using a Residue-Specific Force Field. Int J Mol Sci 2024; 25:9964. [PMID: 39337452 PMCID: PMC11432306 DOI: 10.3390/ijms25189964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzyme-substrate interactions in the catalytic kinetics. The equilibrium processes of enzyme-substrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-(R)/(S)-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the (R)-QE structure can simultaneously form anion-π and cation-π interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-(R)-QE complex, resulting in (R)-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of (R)-QE of 7.39 Å, compared to the 8.87 Å for (S)-QE, whereas the (S)-QE structure can only form an anion-π interaction with the side chain of Glu328 in the QeH-(S)-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the π-π stacking interaction between the indole ring of Trp351 and the benzene ring of (R)/(S)-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-(R)/(S)-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.
Collapse
Affiliation(s)
- Yu-Meng Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Song Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jun Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Xing-Wang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zhuo-Ran Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Cheng-Zhen Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
- School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China
| | - Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Min Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
3
|
Gao Y, Guo Y, Wang Q, Zhang B, Wu X. Efficient Biodegradation of Multiple Aryloxyphenoxypropionate Herbicides by Corynebacterium sp. Z-1 and the Proposed Degradation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39038232 DOI: 10.1021/acs.jafc.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Esterases are crucial for aryloxyphenoxypropionate herbicide (AOPP) biodegradation. However, the underlying molecular mechanisms of AOPP biodegradation by esterases are poorly understood. In the current work, Corynebacterium sp. Z-1 was isolated and found to degrade multiple AOPPs, including quizalofop-p-ethyl (QPE), haloxyfop-p-methyl (HPM), fenoxaprop-p-ethyl (FPE), cyhalofop-butyl (CYB), and clodinafop-propargyl (CFP). A novel esterase, QfeH, which catalyzes the cleavage of ester bonds in AOPPs to form AOPP acids, was identified from strain Z-1. The catalytic activities of QfeH toward AOPPs decreased in the following order: CFP > FPE > CYB > QPE > HPM. Molecular docking, computational analyses, and site-directed mutagenesis indicated the catalytic mechanisms of QfeH-mediated degradation of different AOPPs. Notably, the key residue S159 is essential for the activity of QfeH. Moreover, V222Y, T227M, T227A, A271R, and M275K mutants, exhibiting 2.9-5.0 times greater activity than QfeH, were constructed. This study facilitates the mechanistic understanding of AOPPs bioremediation by esterases.
Collapse
Affiliation(s)
- Yongsheng Gao
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yurui Guo
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qingyuan Wang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Baoyu Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Liu S, Ni J, Guan Y, Tao J, Wu L, Hou M, Wu S, Xu W, Zhang C, Ye J. Changes in physiology, antioxidant system, and gene expression in Microcystis aeruginosa under fenoxaprop-p-ethyl stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28754-28763. [PMID: 38558345 DOI: 10.1007/s11356-024-32927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.
Collapse
Affiliation(s)
- Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ying Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA, 90013, USA
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shichao Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenwu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chu Zhang
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
5
|
Zhao Y, Wei HM, Yuan JL, Xu L, Sun JQ. A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Front Microbiol 2023; 14:1177951. [PMID: 37138596 PMCID: PMC10149724 DOI: 10.3389/fmicb.2023.1177951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acinetobacter is ubiquitous, and it has a high species diversity and a complex evolutionary pattern. To elucidate the mechanism of its high ability to adapt to various environment, 312 genomes of Acinetobacter strains were analyzed using the phylogenomic and comparative genomics methods. It was revealed that the Acinetobacter genus has an open pan-genome and strong genome plasticity. The pan-genome consists of 47,500 genes, with 818 shared by all the genomes of Acinetobacter, while 22,291 are unique genes. Although Acinetobacter strains do not have a complete glycolytic pathway to directly utilize glucose as carbon source, most of them harbored the n-alkane-degrading genes alkB/alkM (97.1% of tested strains) and almA (96.7% of tested strains), which were responsible for medium-and long-chain n-alkane terminal oxidation reaction, respectively. Most Acinetobacter strains also have catA (93.3% of tested strains) and benAB (92.0% of tested strains) genes that can degrade the aromatic compounds catechol and benzoic acid, respectively. These abilities enable the Acinetobacter strains to easily obtain carbon and energy sources from their environment for survival. The Acinetobacter strains can manage osmotic pressure by accumulating potassium and compatible solutes, including betaine, mannitol, trehalose, glutamic acid, and proline. They respond to oxidative stress by synthesizing superoxide dismutase, catalase, disulfide isomerase, and methionine sulfoxide reductase that repair the damage caused by reactive oxygen species. In addition, most Acinetobacter strains contain many efflux pump genes and resistance genes to manage antibiotic stress and can synthesize a variety of secondary metabolites, including arylpolyene, β-lactone and siderophores among others, to adapt to their environment. These genes enable Acinetobacter strains to survive extreme stresses. The genome of each Acinetobacter strain contained different numbers of prophages (0-12) and genomic islands (GIs) (6-70), and genes related to antibiotic resistance were found in the GIs. The phylogenetic analysis revealed that the alkM and almA genes have a similar evolutionary position with the core genome, indicating that they may have been acquired by vertical gene transfer from their ancestor, while catA, benA, benB and the antibiotic resistance genes could have been acquired by horizontal gene transfer from the other organisms.
Collapse
Affiliation(s)
- Yang Zhao
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua-Mei Wei
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jia-Li Yuan
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lian Xu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ji-Quan Sun
- Lab for Microbial Resources, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Ji-Quan Sun,
| |
Collapse
|
6
|
Biodegradation of Alachlor by a Newly Isolated Bacterium: Degradation Pathway and Product Analysis. Processes (Basel) 2022. [DOI: 10.3390/pr10112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl]acetamide] is a chloroacetanilide herbicide and has been widely used as a selective pre-emergent and post-emergent herbicide to control weeds and grass. Due to its wide usage, direct application on the ground, high solubility in water, and moderate persistence, alachlor and its metabolites have been detected in various environments. Therefore, there is an increasing concern about the environmental fate of alachlor and its metabolites. Microbial biodegradation is a main method of removal of alachlor in the natural environment. In this study, we isolated new alachlor degrading bacterium and proposed a novel alachlor-degrading pathway. The alachlor-degrading bacterial strain, GC-A6, was identified as Acinetobacter sp. using 16S rRNA gene sequence analysis. Acinetobacter sp. GC-A6 utilized alachlor as its sole carbon source and degraded 100 mg L−1 of alachlor within 48 h, which was the highest alachlor degradation efficiency. The degradation pathway of alachlor was studied using GC-MS analysis. Alachlor was initially degraded to 2-chloro-N-(2,6-diethylphenyl) acetamide, which was further degraded to 2,6-diethylaniline and 7-ethylindoline, respectively. 2,6-Diethylaniline was transformed into N-(2,6-diethylphenyl) formamide. N-(2,6-diethylphenyl) formamide was a first-reported intermediate during the degrading pathway of alachlor by single isolate.
Collapse
|
7
|
Zaouak A, Chouchane H, Jelassi H. Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl. ENVIRONMENTAL TECHNOLOGY 2022; 43:4147-4155. [PMID: 34182888 DOI: 10.1080/09593330.2021.1944325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-ethyl (QPE) was explored under different experimental conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, respectively, in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favour of a pseudo-first-order kinetic of QPE degradation. The resulting apparent rate constant value is approximately kapp = (0.012 ± 0.001) min-1. Finally, several by-products such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatography-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the molecule involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| |
Collapse
|
8
|
Liu J, Zhou X, Wang T, Fan L, Liu S, Wu N, Xu A, Qian X, Li Z, Jiang M, Zhou J, Dong W. Construction and comparison of synthetic microbial consortium system (SMCs) by non-living or living materials immobilization and application in acetochlor degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129460. [PMID: 35803189 DOI: 10.1016/j.jhazmat.2022.129460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The microbial degradation of pesticides by pure or mixed microbial cultures has been thoroughly explored, however, they are still difficult to apply in real environmental remediation. Here, we constructed a synthetic microbial consortium system (SMCs) through the immobilization technology by non-living or living materials to improve the acetochlor degradation efficiency. Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1 were isolated for the SMCs construction. The free-floating consortium with the composition ratio of 1:2:2 (Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1) demonstrated 94.8% degradation of acetochlor, and the accumulation of intermediate metabolite 2-methyl-6-ethylaniline was decreased by 3 times. The immobilized consortium using composite materials showed synergistic effects on the acetochlor degradation with maximum degradation efficiency of 97.81%. In addition, a novel immobilization method with the biofilm of Myxococcus xanthus DK1622 as living materials was proposed. The maximum 96.62% degradation was obtained in non-trophic media. Furthermore, the immobilized SMCs showed significantly enhanced environmental robustness, reusability and stability. The results indicate the promising application of the immobilization methods using composite and living materials in pollutant-contaminated environments.
Collapse
Affiliation(s)
- Jingyuan Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoli Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Tong Wang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Shixun Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Nan Wu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Anming Xu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiujuan Qian
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Li
- Key Laboratory of Agriculture Environmental Microbiology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, PR China
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
9
|
Liu Wei, Yun G, Hongjian P, Xiaodong W. Experimental Measurement and Correlation of Solubilities of R-2[4-(6-Chloro-2-Benzoxazolyloxy)phenoxy]propanoic Acid in Methanol, Ethanol, and Methanol–Ethanol Mixed Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li X, Wang J, Wu W, Jia Y, Fan S, Hlaing TS, Khokhar I, Yan Y. Cometabolic biodegradation of quizalofop-p-ethyl by Methylobacterium populi YC-XJ1 and identification of QPEH1 esterase. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
11
|
Li X, Wang J, Jia Y, Reheman A, Yan Y. The Genome Analysis of Methylobacterium populi YC-XJ1 with Diverse Xenobiotics Biodegrading Capacity and Degradation Characteristics of Related Hydrolase. Int J Mol Sci 2020; 21:ijms21124436. [PMID: 32580446 PMCID: PMC7352507 DOI: 10.3390/ijms21124436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Methylobacterium populi YC-XJ1 isolated from desert soil exhibited a diverse degrading ability towards aromatic oxyphenoxypropionic acid esters (AOPPs) herbicide, phthalate esters (PAEs), organophosphorus flame retardants (OPFRs), chlorpyrifos and phoxim. The genome of YC-XJ1 was sequenced and analyzed systematically. YC-XJ1 contained a large number of exogenous compounds degradation pathways and hydrolase resources. The quizalofop-p-ethyl (QPE) degrading gene qpeh2 and diethyl phthalate (DEP) degrading gene deph1 were cloned and expressed. The characteristics of corresponding hydrolases were investigated. The specific activity of recombinant QPEH2 was 0.1 ± 0.02 U mg-1 for QPE with kcat/Km values of 1.8 ± 0.016 (mM-1·s-1). The specific activity of recombinant DEPH1 was 0.1 ± 0.02 U mg-1 for DEP with kcat/Km values of 0.8 ± 0.02 (mM-1·s-1). This work systematically illuminated the metabolic versatility of strain YC-XJ1 via the combination of genomics analysis and laboratory experiments. These results suggested that strain YC-XJ1 with diverse xenobiotics biodegrading capacity was a promising candidate for the bioremediation of polluted sites.
Collapse
Affiliation(s)
- Xianjun Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Aikebaier Reheman
- Key Laboratory of Toxicology, Ningde Normal University, Ningde 352100, China
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| |
Collapse
|
12
|
Liang Q, Yan Z, Li X. Influence of the herbicide haloxyfop-R-methyl on bacterial diversity in rhizosphere soil of Spartina alterniflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110366. [PMID: 32126413 DOI: 10.1016/j.ecoenv.2020.110366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Haloxyfop-R-methyl (haloxyfop) can efficiently control Spartina alterniflora in coastal ecosystems, but its effect on soil microbial communities is not known. In the present study, the impact of the haloxyfop on rhizosphere soil bacterial communities of S. alterniflora over the dissipation process of the herbicide has been studied in a coastal wetland. The response of the bacterial community in the rhizoplane (iron plaque) of S. alterniflora subjected to haloxyfop treatment was also investigated. Results showed that the persistence of haloxyfop in the rhizosphere soil followed an exponential decay with a half-life of 2.6-4.9 days, and almost all of the haloxyfop dissipated on Day 30. The diversity of rhizosphere soil bacteria was decreased at the early stages (Days 1, 3 & 7) and recovered at late stages (Days 15 & 30) of the haloxyfop treatment. Application of haloxyfop treatment increased the relative abundance of the genera Pseudomonas, Acinetobacter, Pontibacter, Shewanella and Aeromonas. Strains isolated from these genera can degrade herbicides efficiently, which possibly played a role in the degradation of haloxyfop. The rhizoplane bacterial diversity was reduced on Day 15 while being vastly enhanced on Day 30. Soil variables, including the electric conductivity, redox potential, and soil moisture, along with the soil haloxyfop residue, jointly shape the bacterial community in rhizosphere soil.
Collapse
Affiliation(s)
- Qiuyao Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| |
Collapse
|
13
|
Xu Y, Jing X, Zhai W, Li X. The enantioselective enrichment, metabolism, and toxicity of fenoxaprop‐ethyl and its metabolites in zebrafish. Chirality 2020; 32:990-997. [DOI: 10.1002/chir.23222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Yangguang Xu
- Department of Fire Control and CommandChina People's Police University Langfang China
| | - Xu Jing
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| | - Xuefeng Li
- Department of Applied Chemistry, College of ScienceChina Agricultural University Beijing China
| |
Collapse
|
14
|
Zhou Q, Zhang X. Impact of biosolids, ZnO, ZnO/biosolids on bacterial community and enantioselective transformation of racemic-quizalofop-ethyl in agricultural soil. J Environ Sci (China) 2020; 87:163-172. [PMID: 31791489 DOI: 10.1016/j.jes.2019.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
The effects of biosolids, ZnO, and ZnO/biosolids on soil microorganism and the environmental fate of coexisting racemic-quizalofop-ethyl (rac-QE) were investigated. Microbial biomass carbon in native soil, soil/biosolids decreased by 62% and 52% in the presence of ZnO (2‰, weight ratio). The soil bacterial community structure differed significantly among native soil, soil/biosolids, soil/ZnO, and soil/biosolids/ZnO based on a principal co-ordinate analysis (PCoA) of OTUs and one-way ANOVA test of bacterial genera. Chemical transformation caused by ZnO only contributed 4% and 3% of the overall transformation of R-quizalofop-ethyl (R-QE) and S-quizalofop-ethyl (S-QE) in soil/ZnO. The inhibition effect of ZnO on the initial transformation rate of R-QE (rR-QE) and S-QE (rR-QE) in soil only observed when enantiomer concentration was larger than 10 mg/kg. Biosolids embedded with ZnO (biosolids/ZnO) caused a 17%-42% and 22%-38% decrease of rR-QE and rS-QE, although rR-QE and rS-QE increased by 0%-17% and 22%-58% by the addition of biosolids. The results also demonstrated that the effects of biosolids on agricultural soil microorganism and enantioselective transformation of chiral pesticide was altered by the embedded nanoparticles.
Collapse
Affiliation(s)
- Qing Zhou
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China. E-mail:
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China. E-mail: .
| |
Collapse
|
15
|
Yao Xinding, Jinju M, Ruina F, Qishan Y, Wei L. Measurement and Correlation of the Solubility, Dissolution Enthalpy, and Entropy of R-2[4-(6-Chloro-2-benzoxazolyloxy)phenoxy]propanoic Acid in Different Pure Solvents. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
He YT, Wang W, Shen W, Sun QY, Yin S. Melatonin protects against Fenoxaprop-ethyl exposure-induced meiotic defects in mouse oocytes. Toxicology 2019; 425:152241. [DOI: 10.1016/j.tox.2019.152241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
|
17
|
Xu X, Wang J, Yu T, Nian H, Zhang H, Wang G, Li F. Characterization of a novel aryloxyphenoxypropionate herbicide-hydrolyzing carboxylesterase with R-enantiomer preference from Brevundimonas sp. QPT-2. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Sun L, Huang D, Zhu L, Zhang B, Peng C, Ma T, Deng X, Wu J, Wang W. Novel thermostable enzymes from Geobacillus thermoglucosidasius W-2 for high-efficient nitroalkane removal under aerobic and anaerobic conditions. BIORESOURCE TECHNOLOGY 2019; 278:73-81. [PMID: 30682639 DOI: 10.1016/j.biortech.2019.01.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
In this study, a thermophilic facultative anaerobic strain Geobacillus thermoglucosidasius W-2 was found to degrade nitroalkane under both aerobic and anaerobic conditions. Bioinformatical analysis revealed three putative nitroalkane-oxidizing enzymes (Gt-NOEs) genes from the W-2 genome. The three identified proteins Gt2929, Gt1378, and Gt1208 displayed optimal activities at high temperatures (70, 70, and 80 °C, respectively). Among these, Gt2929 exhibited excellent degradation capability, pH stability, and metal ion tolerance for nitronates under aerobic condition. Interestingly, under anaerobic condition, only Gt1378 still maintained high activity for 2-nitropropane and nitroethane, indicating that the W-2 strain utilized various pathways to degrade nitronates under aerobic and anaerobic conditions, respectively. Taken together, the first revelation of thermophilic nitroalkane-degrading mechanism under both aerobic and anaerobic conditions provides guidance and platform for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Lin Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Junli Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China.
| |
Collapse
|
19
|
Zhang H, Yu T, Li J, Wang YR, Wang GL, Li F, Liu Y, Xiong MH, Ma YQ. Two dcm Gene Clusters Essential for the Degradation of Diclofop-methyl in a Microbial Consortium of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12217-12226. [PMID: 30375865 DOI: 10.1021/acs.jafc.8b05382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The metabolism of widely used aryloxyphenoxypropionate herbicides has been extensively studied in microbes. However, the information on the degradation of diclofop-methyl (DCM) is limited, with no genetic and biochemical investigation reported. The consortium L1 of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was able to degrade DCM through a synergistic metabolism. To elaborate the molecular mechanism of DCM degradation, the metabolic pathway for DCM was first investigated. DCM was initially transformed by strain JT-3 to diclofop acid and then by strain JT-9 to 2-(4-hydroxyphenoxy) propionic acid as well as 2,4-dichlorophenol. Subsequently, the two dcm gene clusters, dcmAE and dcmB1B2CD, involved in further degradation of 2,4-dichlorophenol, were successfully cloned from strain JT-3, and the functions of each gene product were identified. DcmA, a glutathione-dependent dehalogenase, was responsible for catalyzing the reductive dehalogenation of 2,4-dichlorophenol to 4-chlorophenol, which was then converted by the two-component monooxygenase DcmB1B2 to 4-chlorocatechol as the ring cleavage substrate of the dioxygenase DcmC. In this study, the overall DCM degradation pathway of the consortium L1 was proposed and, particularly, the lower part on the DCP degradation was characterized at the genetic and biochemical levels.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ting Yu
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Jie Li
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Yi-Ran Wang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Guang-Li Wang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Feng Li
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Yuan Liu
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ming-Hua Xiong
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ying-Qun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , 1 Cleantech Loop , Singapore 637141 , Singapore
| |
Collapse
|
20
|
Jiang Y, Zhou J, Wu R, Xin F, Zhang W, Fang Y, Ma J, Dong W, Jiang M. Heterologous expression of cyclodextrin glycosyltransferase from Paenibacillus macerans in Escherichia coli and its application in 2-O-α-D-glucopyranosyl-L-ascorbic acid production. BMC Biotechnol 2018; 18:53. [PMID: 30170578 PMCID: PMC6119282 DOI: 10.1186/s12896-018-0463-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclodextrin glucanotransferase (CGTase) can transform L-ascorbic acid (L-AA, vitamin C) to 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), which shows diverse applications in food, cosmetic and pharmaceutical industries. RESULTS In this study, the cgt gene encoding α-CGTase from Paenibacillus macerans was codon-optimized (opt-cgt) and cloned into pET-28a (+) for intracellular expression in E. coli BL21 (DE3). The Opt-CGT was purified by Ni2+-NTA resin with a 55% recovery, and specific activity was increased significantly from 1.17 to 190.75 U·mg- 1. In addition, the enzyme was adopted to transform L-AA into 9.1 g/L of AA-2G. Finally, more economic substrates, including β-cyclodextrin, soluble starch, corn starch and cassava starch could also be used as glycosyl donors, and 4.9, 3.5, 1.3 and 1.5 g/L of AA-2G were obtained, respectively. CONCLUSIONS N-terminal amino acid is critical to the activity of CGTase suggested by its truncation study. Furthermore, when the Opt-CGT was flanked by His6-tags on the C- and N-terminal, the recovery of purification by Ni2+-NTA resin is appreciably enhanced. α-cyclodextrin was the ideal glycosyl donor for AA-2G production. In addition, the selection of low cost glycosyl donors would make the process of AA-2G production more economically competitive.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Ruofan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
21
|
Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides: microbial resources, metabolic pathways and catabolic enzymes. World J Microbiol Biotechnol 2018; 34:117. [DOI: 10.1007/s11274-018-2503-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
|
22
|
Liu W, Ma J, Yao X, Fang R, Cheng L. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418050217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Wang M, Cai C, Zhang B, Liu H. Characterization and mechanism analysis of lincomycin biodegradation with Clostridium sp. strain LCM-B isolated from lincomycin mycelial residue (LMR). CHEMOSPHERE 2018; 193:611-617. [PMID: 29169137 DOI: 10.1016/j.chemosphere.2017.11.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/31/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Lincomycin mycelial residue (LMR) is the restricted resource because it contains residual lincomycin, which is producing potential risks to the environment and human health. In this study, lincomycin-degrading strain LCM-B was isolated and identified as Clostridium sp. in the LMR. Strain LCM-B was able to degrade 62.03% of lincomycin at the initial concentration of 100 mg L-1 after incubation for 10 d, while only 15.61% of lincomycin was removed at the initial concentration of 500 mg L-1. The removal efficiency of lincomycin by strain LCM-B decreased as the initial concentration increased. Gene lnuB (which encodes the nucleotidyl transferase) was detected in the isolated strain, and it was proven to participate in lincomycin biodegradation based on the analysis of degradation products and pathway. The results provide a relatively complete understanding of lincomycin biodegradation mechanism. Strain LCM-B is promising to eliminate lincomycin from the LMR.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bo Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiling Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
24
|
Dong W, Liu K, Liu J, Shi Z, Xin F, Zhang W, Ma J, Wu H, Wang F, Jiang M. Expression and characterization of the key enzymes involved in 2-benzoxazolinone degradation by Pigmentiphaga sp. DL-8. BIORESOURCE TECHNOLOGY 2018; 248:153-159. [PMID: 28684178 DOI: 10.1016/j.biortech.2017.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
In this study, the key enzymes involved in 2-benzoxazolinone (BOA) degradation by Pigmentiphaga sp. DL-8 were further verified and characterized in Escherichia coli. By codon optimization and co-expression of molecular chaperones in a combined strategy, recombinant BOA amidohydrolase (rCbaA) and 2-aminophenol (2-AP) 1,2-dioxygenase (rCnbCαCβ) were expressed and purified with the highest activity of 1934.6U·mgprotein-1 and 32.80U·mgprotein-1, respectively. BOA could be hydrolyzed to 2AP by rCbaA, which was further transformed to picolinic acid by rCnbCαCβ based on identified catalytic product. The optimal pH and temperature for rCbaA are 9.0 and 55°C with excellent stability for catalytic environments, and the residual activity was >50% after incubation at temperatures <45°C or at pH between 6.0 and 10.0 for 24h. On the contrary, rCnbCαCβ composed of α-subunit (33kDa) and β-subunit (38kDa) showed poor stability against environmental factors, including temperature, pH, metal ions and chemicals.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Zhoukun Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
25
|
Jing X, Yao G, Liu D, Liu C, Wang F, Wang P, Zhou Z. Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. CHEMOSPHERE 2017; 186:832-838. [PMID: 28826131 DOI: 10.1016/j.chemosphere.2017.07.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/25/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Pesticides have long been considered to a risk factor of amphibian population declines. The bioaccumulation and elimination of fenoxaprop-ethyl (FE) in frogs and tadpoles were studied and the main metabolites fenoxaprop (FA) and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB) were monitored. The acute toxicity and genotoxicity of the enantiomers to tadpoles was also studied. After both oral administration and aqueous solution exposure, FE was not found in frogs, while FA was formed and accumulated in liver, kidney, brain, eggs, skin, thigh muscle and blood with preferential accumulation of R-FA. The presence of FA in frog eggs suggested maternal transfer in females and potential impacts to offsprings. The elimination of FA in frog tissues was also enantioselective with a preferential metabolism of R-FA (kidney) or S-FA (liver, eggs, skin, muscle and whole blood). FE and FA were hardly detectable in tadpoles after aqueous solution exposure, while CDHB was accumulated and eliminated as first-order kinetics with half-life of 37.1 h. Mortality of tadpoles and micronucleus rate in peripheral blood erythrocytes of tadpoles were used to evaluate the enantioselective acute toxicity and genotoxicity. Only CDHB induced significant acute toxicity to tadpole with 96-h LC50 value of 30.4 μg/mL, and rac-FA, S-FA and CDHB showed genotoxicity.
Collapse
Affiliation(s)
- Xu Jing
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Guojun Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Chang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Fang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
26
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
27
|
Fang Y, Zhang LS, Wang J, Zhou Y, Ye BC. Identification of the di-n-butyl phthalate-biodegrading strains and the biodegradation pathway in strain LMB-1. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s000368381703005x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Zhang H, Li M, Li J, Wang G, Liu Y. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2. Microb Cell Fact 2017; 16:80. [PMID: 28490371 PMCID: PMC5424357 DOI: 10.1186/s12934-017-0695-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
Quizalofop-p-ethyl (QPE) is a post-emergence herbicide that effectively controls grass weeds and is often detected in the environment. However, the biochemical and molecular mechanisms of QPE degradation in the environment remains unclear. In this study, a highly effective QPE-degrading bacterial strain J-2 was isolated from acclimated activated sludge and identified as a Pseudomonas sp., containing the QPE breakdown metabolite quizalofop acid (QA) identified by Liquid Chromatography-Ion Trap-Mass Spectrometry (LC-IT-MSn) analysis. A novel QPE hydrolase esterase-encoding gene qpeH was cloned from strain J-2 and functionally expressed in Escherichia coli BL21 (DE3). The specific activity of recombinant QpeH was 198.9 ± 2.7 U mg−1 for QPE with Km and Kcat values of 41.3 ± 3.6 μM and 127.3 ± 4.5 s−1. The optimal pH and temperature for the recombinant QpeH were 8.0 and 30 °C, respectively and the enzyme was activated by Ca2+, Cd2+, Li+, Fe3+ and Co2+ and inhibited by Ni2+, Fe2+, Ag+, DEPC, SDS, Tween 80, Triton X, β-mercaptoethanol, PMSF, and pCMB. In addition, the catalytic efficiency of QpeH toward different AOPP herbicides in descending order was as follows: fenoxaprop-P-ethyl > quizalofop-P-tefuryl > QPE > haloxyfop-P-methyl > cyhalofopbutyl > clodinafop-propargyl. On the basis of the phylogenetic analysis and multiple sequence alignment, the identified enzyme QpeH, was clustered with esterase family V, suggesting a new member of this family because of its low similarity of amino acid sequence with esterases reported previously.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mengya Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jie Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Guangli Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yuan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
29
|
Zhang H, Li M, Li J, Wang G, Li F, Xu D, Liu Y, Xiong M. A key esterase required for the mineralization of quizalofop-p-ethyl by a natural consortium of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:1-10. [PMID: 28027504 DOI: 10.1016/j.jhazmat.2016.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
A natural consortium, named L1, of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was obtained from quizalofop-p-ethyl (QE) polluted soil. The consortium was able to use QE as a sole carbon source for growth and degraded 100mgL-1 of QE in 60h. Strain JT-3 initiated the catabolism of QE to quizalofop acid (QA), which was used by strain JT-9 as carbon source for growth and to simultaneously feed strain JT-3. A novel esterase EstS-JT, which was responsible for the transformation of QE to QA and essential for the mineralization of QE by the consortium, was cloned from strain JT-3. EstS-JT showed low amino acid identity to other reported esterases from esterase family VIII and represents a new member of this family. The deduced amino acid sequence contained the esterase family VIII conserved motifs S-X-X-K, YSV and WAG. The purified recombinant EstS-JT displayed maximal esterase activity at 35°C and pH 7.5. An inhibitor assay, site-directed mutagenesis and 3D modeling analysis revealed that S64, K67 and Y175 were essential for catalysis and probably comprised the catalytic center of EstS-JT. Additionally, EstS-JT had broad substrate specificity and was capable of hydrolyzing p-nitrophenyl esters (C2-C8) and various AOPP herbicides.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mengya Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jie Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Guangli Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yuan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Minghua Xiong
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
30
|
Dong W, Liu K, Wang F, Xin F, Zhang W, Zhang M, Wu H, Ma J, Jiang M. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 2017; 28:181-194. [PMID: 28265780 DOI: 10.1007/s10532-017-9787-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
31
|
Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides. Biotechnol Lett 2017; 39:553-560. [PMID: 28058522 DOI: 10.1007/s10529-016-2276-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To identify and characterize a novel aryloxyphenoxypropionate (AOPP) herbicide-hydrolyzing carboxylesterase from Aquamicrobium sp. FPB-1. RESULTS A carboxylesterase gene, fpbH, was cloned from Aquamicrobium sp. FPB-1. The gene is 798 bp long and encodes a protein of 265 amino acids. FpbH is smaller than previously reported AOPP herbicide-hydrolyzing carboxylesterases and shares only 21-35% sequence identity with them. FpbH was expressed in Escherichia coli BL21(DE3) and the product was purified by Ni-NTA affinity chromatography. The purified FpbH hydrolyzed a wide range of AOPP herbicides with catalytic efficiency in the order: haloxyfop-P-methyl > diclofop-methyl > fenoxaprop-P-ethyl > quizalofop-P-ethyl > fluazifop-P-butyl > cyhalofop-butyl. The optimal temperature and pH for FpbH activity were 37 °C and 7, respectively. CONCLUSIONS FpbH is a novel AOPP herbicide-hydrolyzing carboxylesterase; it is a good candidate for mechanistic study of AOPP herbicide-hydrolyzing carboxylesterases and for bioremediation of AOPP herbicide-contaminated environments.
Collapse
|
32
|
Metabolic Pathway Involved in 6-Chloro-2-Benzoxazolinone Degradation by Pigmentiphaga sp. Strain DL-8 and Identification of the Novel Metal-Dependent Hydrolase CbaA. Appl Environ Microbiol 2016; 82:4169-4179. [PMID: 27208123 DOI: 10.1128/aem.00532-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.
Collapse
|
33
|
Gu Q, Wu Q, Zhang J, Guo W, Wu H, Sun M. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters. Front Microbiol 2016; 7:495. [PMID: 27148185 PMCID: PMC4828441 DOI: 10.3389/fmicb.2016.00495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/27/2016] [Indexed: 11/13/2022] Open
Abstract
Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.
Collapse
Affiliation(s)
- Qihui Gu
- School of Bioscience and Bioengineering, South China University of TechnologyGuangzhou, China; Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied MicrobiologyGuangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Weipeng Guo
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Huiqing Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| | - Ming Sun
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology Guangzhou, China
| |
Collapse
|
34
|
Silambarasan S, Vangnai AS. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:426-436. [PMID: 26489917 DOI: 10.1016/j.jhazmat.2015.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 05/21/2023]
Abstract
4-nitroaniline (4-NA) is one of the major priority pollutants generated from industrial productions and pesticide transformation; however very limited biodegradation details have been reported. This work is the first to report 4-NA biodegradation kinetics and toxicity reduction using a newly isolated plant-growth promoting bacterium, Acinetobacter sp. AVLB2. The 4-NA-dependent growth kinetics parameters: μmax, Ks and Ki, were determined to be 0.039 h(-1), 6.623 mg L(-1) and 25.57 mg L(-1), respectively using Haldane inhibition model, while the maximum biodegradation rate (Vmax) of 4-NA was at 0.541 mg L(-1) h(-1) and 0.551 mg L(-1) h(-1), following Michaelis-Menten and Hanes-Woolf models, respectively. Biodegradation pathway of 4-NA by Acinetobacter sp. AVLB2 was proposed, and successfully led to the reduction of 4-NA toxicity according to the following toxicity assessments: microbial toxicity using Escherichia coli DH5α, phytotoxicity with Vigna radiata and Crotalaria juncea, and cytogenotoxicity with Allium cepa root-tip cells. In addition, Acinetobacter sp. AVLB2 possess important plant-growth promoting traits, both in the presence and absence of 4-NA. This study has provided a new insight into 4-NA biodegradation ability and concurrent plant-growth promoting activities of Acinetobacter sp. AVLB2, which may indicate its potential role for rhizoremediation, while sustaining crop production even under 4-NA stressed environment.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|