1
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Jeon JM, Yoon JJ, Joo JC, Yang YH. Evaluation of Blended Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Properties Containing Various 3HHx Monomers. Polymers (Basel) 2024; 16:3077. [PMID: 39518289 PMCID: PMC11548210 DOI: 10.3390/polym16213077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Polyhydroxyalkanoate (PHA), specifically poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx), PHBHHx) with physical properties governed by the 3-hydroxyhexanoate (3HHx) mole fraction, is a promising bioplastic. Although engineered strains used to produce P(3HB-co-3HHx) with various 3HHx mole contents and fermentation techniques have been studied, mass production with specific 3HHx fractions and monomers depends on the batch, supply of substrates, and strains, resulting in the time-consuming development of strains and complex culture conditions for P(3HB-co-3HHx). To overcome these limitations, we blended poly(3-hydroxybutyrate) [(P(3HB), produced from C. necator H16] and P(3HB-co-20 mol%3HHx) [from C. necator 2668/pCB81] to prepare films with various 3HHx contents. We evaluated the molecular weight and physical, thermal, and mechanical properties of these films and confirmed the influence of the 3HHx monomer content on the mechanical and thermal properties as well as degradability of the blended P(3HB-co-3HHx) films containing various 3HHx mole fractions, similar to that of original microbial-based P(3HB-co-3HHx). Moreover, the degradation rate analyzed via Microbulbifer sp. was >76% at all blending ratios within 2 days, whereas a weaker effect of the 3HHx mole fraction of the blended polymer on degradation was observed. P(3HB-co-3HHx) could be produced via simple blending using abundantly produced P(3HB) and P(3HB-co-20 mol%HHx), and the resulting copolymer is applicable as a biodegradable plastic.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea; (J.-M.J.); (J.-J.Y.)
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; (N.S.); (S.H.K.); (J.O.); (S.K.); (Y.L.); (Y.S.); (S.C.); (S.K.B.)
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Liu Y, Wu B, Cui X, Ren Q, Ren T, Zhou Y. Distribution and dynamics of antibiotic resistance genes in a three-dimensional multifunctional biofilm during greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121533. [PMID: 36997145 DOI: 10.1016/j.envpol.2023.121533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Antibiotic resistance genes (ARGs) have been identified as serious threats to public health. Despite the widespread in various systems, dynamics of ARGs in three-dimensional multifunctional biofilm (3D-MFB) treating greywater are largely undefined. This work tracked the distributions and dynamics of eight target genes (intI1, korB, sul1, sul2, tetM, ermB, blaCTX-M and qnrS) in a 3D-MFB during greywater treatment. Results showed that hydraulic retention times at 9.0 h achieved the highest linear alkylbenzene sulfonate (LAS) and total nitrogen removal rates at 99.4% and 79.6%, respectively. ARGs presented significant liquid-solid distribution feature, but non-significant with biofilm position. Intracellular ARGs (predominant by intI1, korB, sul1 and sul2) at bottom biofilm were 210- to 4.2 × 104- fold higher than that in cell-free liquid. Extracellular polymeric substances (EPS)-attached LAS showed linear relationship with most of ARGs (R2 > 0.90, P < 0.05). Sphingobacteriales, Chlamydiales, Microthrixaceae, SB-1, Cryomorphaceae, Chitinophagaceae, Leadbetterella and Niabella were tightly bound up with target ARGs. Key is that EPS-attached LAS considerably determines the occurrence of ARGs, and microbial taxa play an important role in the dissemination of ARGs in the 3D-MFB.
Collapse
Affiliation(s)
- Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Clagnan E, Adani F. Influence of feedstock source on the development of polyhydroxyalkanoates-producing mixed microbial cultures in continuously stirred tank reactors. N Biotechnol 2023; 76:90-97. [PMID: 37220837 DOI: 10.1016/j.nbt.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are the new frontier of bioplastic production; however, research is needed to develop and characterise efficient mixed microbial communities (MMCs) for their application with a multi-feedstock approach. Here, the performance and composition of six MMCs developed from the same inoculum on different feedstocks were investigated through Illumina sequencing to understand community development and identify possible redundancies in terms of genera and PHA metabolism. High PHA production efficiencies (>80% mg CODPHA mg-1 CODOA-consumed) were seen across all samples, but differences in the organic acids (OAs) composition led to different ratios of the monomers poly(3-hydroxybutyrate) (3HB) to poly(3-hydroxyvalerate) (3HV). Communities differed across all feedstocks, with enrichments in specific PHA-producing genera, but analysis of potential enzymatic activity identified a certain degree of functional redundancy, possibly leading to the general high efficiency seen in PHA production from all feedstocks. Leading PHAs producers across all feedstocks were identified in genera such as Thauera, Leadbetterella, Neomegalonema and Amaricoccus.
Collapse
Affiliation(s)
- Elisa Clagnan
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| | - Fabrizio Adani
- Gruppo Ricicla labs., Department of Agricultural and Environmental Sciences - Production, Territory, Agroenergy (DiSAA), University of Milan (Università degli studi di Milano), Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
4
|
Vermeer CM, Depaz L, van den Berg E, Koelmans T, Kleerebezem R. Production of medium-chain-length PHA in octanoate-fed enrichments dominated by Sphaerotilus sp. Biotechnol Bioeng 2023; 120:687-701. [PMID: 36515096 DOI: 10.1002/bit.28306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by using microbial enrichments is a promising but largely unexplored approach to obtain elastomeric biomaterials from secondary resources. In this study, several enrichment strategies were tested to select a community with a high mcl-PHA storage capacity when feeding octanoate. On the basis of analysis of the metabolic pathways, the hypothesis was formulated that mcl-PHA production is more favorable under oxygen-limited conditions than short-chain-length PHA (scl-PHA). This hypothesis was confirmed by bioreactor experiments showing that oxygen limitation during the PHA accumulation experiments resulted in a higher fraction of mcl-PHA over scl-PHA (i.e., a PHA content of 76 wt% with an mcl fraction of 0.79 with oxygen limitation, compared to a PHA content of 72 wt% with an mcl-fraction of 0.62 without oxygen limitation). Physicochemical analysis revealed that the extracted PHA could be separated efficiently into a hydroxybutyrate-rich fraction with a higher Mw and a hydroxyhexanoate/hydroxyoctanoate-rich fraction with a lower Mw . The ratio between the two fractions could be adjusted by changing the environmental conditions, such as oxygen availability and pH. Almost all enrichments were dominated by Sphaerotilus sp. This is the first scientific report that links this genus to mcl-PHA production, demonstrating that microbial enrichments can be a powerful tool to explore mcl-PHA biodiversity and to discover novel industrially relevant strains.
Collapse
Affiliation(s)
- Chris M Vermeer
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lena Depaz
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Emily van den Berg
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Koelmans
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Li D, Gao M, Qiu Y, Su Y, Ma X, Wang F, Li J, Yu L. Strategy for economical and enhanced polyhydroxyalkanoate production from synergistic utilization of palm oil and derived wastewater by activated sludge. BIORESOURCE TECHNOLOGY 2023; 370:128581. [PMID: 36608857 DOI: 10.1016/j.biortech.2023.128581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The potential of palm oil and derived wastewater pretreated by enzyme as co-substrates to accumulate polyhydroxyalkanoate (PHA) rich in short and medium-chain-length monomers under two feeding strategies was evaluated batchwise through mixed microbial cultures (MMCs) in activated sludge. A terpolymer with the maximum PHA content of 30.5 wt%, volumetric yield of 0.372 g COD/g COD and composition of ca. 84.7 ∼ 97.4/0.5 ∼ 1.6/2.1 ∼ 13.7 (3-hydroxybutyrate/ 3-hydroxyvalerate/ 3-hydroxyoctanoate, %) was achieved as a result of co-substrate incorporation. From the perspective of economic benefits, PHA accumulated via adopting strategy of supplementing carbon source to the same initial concentration per cycle saved 42.7 % of carbon consumption, along with a reduction in culture time (72 h). The above discoveries signify that the combination of palm oil and derived wastewater plus MMCs provides an alternative to the plastics industries for a more sustainable and efficient utilization of biological resources and an economic PHA accumulation approach.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Miao Gao
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yuhang Su
- College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; College of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuqing 350300, PR China.
| | - Fei Wang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jianing Li
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resource Utilization of Rubber Tree/State Key Laboratory Breeding Base of Cultivation & Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Lili Yu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
6
|
Arslan AK, Çelik E, Alkan F, Demirbilek M. GO containing PHBHX bone scaffold: GO concentration and in vitro osteointegration. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Eraslan K, Aversa C, Nofar M, Barletta M, Gisario A, Salehiyan R, Alkan Goksu Y. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH): synthesis, properties, and applications - A Review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Li D, Ma X, Yin F, Qiu Y, Yan X. Creating biotransformation of volatile fatty acids and octanoate as co-substrate to high yield medium-chain-length polyhydroxyalkanoate. BIORESOURCE TECHNOLOGY 2021; 331:125031. [PMID: 33798859 DOI: 10.1016/j.biortech.2021.125031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Using mixed microbial consortium (MMC) to accumulate polyhydroxyalkanoate (PHA) is an effective strategy to solve high production cost and reduce the amount of excess sludge. In this study, a process for the production of short-chain-length and medium-chain-length PHA using volatile fatty acids (VFAs) from pretreated wood hydrolysate synergistic with octanoate as co-substrate was proposed. The effects of co-substrate ratios on PHA accumulation ability and physical properties were investigated. The incorporation of co-substrate accelerated the time of PHA and 3-hydroxyoctanoate reaching the maximum production (1834 and 280 mg COD/L). The highest PHA content was 53.0% (w/w), which was equivalent to that reported previously. The biopolymer films possessed high tensile strength, Young's modulus, and could be used in the field of water vapor barrier requirements. The accumulation strategy applied for converting fermentation products VFAs and octanoate co-substrate into high value and yield PHA could potentially demonstrate the valuable for low-cost large-scale production.
Collapse
Affiliation(s)
- Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China.
| | - Fen Yin
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| | - Xu Yan
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300222, PR China
| |
Collapse
|
9
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
10
|
Luo Z, Wu YL, Li Z, Loh XJ. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications. Biotechnol J 2019; 14:e1900283. [PMID: 31469496 DOI: 10.1002/biot.201900283] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/20/2019] [Indexed: 12/16/2022]
Abstract
In recent years, naturally biodegradable polyhydroxyalkanoate (PHA) monopolymers have become focus of public attentions due to their good biocompatibility. However, due to its poor mechanical properties, high production costs, and limited functionality, its applications in materials, energy, and biomedical applications are greatly limited. In recent years, researchers have found that PHA copolymers have better thermal properties, mechanical processability, and physicochemical properties relative to their homopolymers. This review summarizes the synthesis of PHA copolymers by the latest biosynthetic and chemical modification methods. The modified PHA copolymer could greatly reduce the production cost with elevated mechanical or physicochemical properties, which can further meet the practical needs of various fields. This review further summarizes the broad applications of modified PHA copolymers in biomedical applications, which might shred lights on their commercial applications.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key, Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zibiao Li
- Institute of Materials Science and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| |
Collapse
|
11
|
Chen Z, Zhang C, Shen L, Li H, Peng Y, Wang H, He N, Li Q, Wang Y. Synthesis of Short-Chain-Length and Medium-Chain-Length Polyhydroxyalkanoate Blends from Activated Sludge by Manipulating Octanoic Acid and Nonanoic Acid as Carbon Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11043-11054. [PMID: 30265532 DOI: 10.1021/acs.jafc.8b04001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The effects of octanoic acid/nonanoic acid and acclimation time on the synthesis of short-chain-length and medium-chain-length PHA blends from activated sludge were investigated. An increased concentration (847-1366 mg/L) of PHAs resulted from 4-month acclimation compared with the concentration derived from 2-month acclimation (450-1126 mg/L). The content of octanoic acid had a positive linear relationship with the content of even-numbered carbon monomers among the PHAs. The blending products were identified mainly with scl-PHAs during the 2-month acclimation period and were thereafter dominated by mcl-PHAs until 4 months of acclimation. Thermal properties analysis demonstrated that the products derived from 4-month acclimation were a mixture of scl-PHAs and mcl-PHAs rather than a copolymer of scl-PHAs and mcl-PHAs. High-throughput sequencing results indicated that Pseudofulvimonas, Paracoccus, and Blastocatella were the dominant genera that might be responsible for scl-PHAs production during the 2-month acclimation period, whereas Comamonas and Pseudomonas that were responsible for mcl-PHAs production then became the dominant genera after 4-months acclimation.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
- Zhejiang Provincial Key Laboratory of Watershed Science and Health , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
- Key Laboratory of Measurement and Control System for Coastal Environment , Fuqing Branch of Fujian Normal University , Fuqing 350300 , People's Republic of China
| | - Chuanpan Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Heng Li
- Department of Environmental Science, School of Environmental Science and Engineering, Tan Kah Kee College , Xiamen University , Zhangzhou 363105 , People's Republic of China
| | - Yajuan Peng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
- College of Food and Biological Engineering , Jimei University , Xiamen 361021 , People's Republic of China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361001 , People's Republic of China
| |
Collapse
|
12
|
Highly complex substrates lead to dynamic bacterial community for polyhydroxyalkanoates production. ACTA ACUST UNITED AC 2017; 44:1215-1224. [DOI: 10.1007/s10295-017-1951-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/05/2017] [Indexed: 01/03/2023]
Abstract
Abstract
Mixed microbial cultures (MMC) and waste/surplus substrates, as hardwood spent sulfite liquor, are being used to decrease polyhydroxyalkanoates’ (PHA) production costs. The process involves two or three steps, being the selection step a crucial one. For the industrial implementation of this strategy, reactor stability in terms of both performance and microbial community presence has to be considered. A long-term operation of a sequencing batch reactor under feast/famine conditions was performed along with microbial community identification/quantification using FISH and DGGE. The community was found to be extremely dynamic, dominated by Alphaproteobacteria, with Paracoccus and Rhodobacter present, both PHA-storing microorganisms. 16S rRNA gene clone library further revealed that side populations’ non-PHA accumulators were able to strive (Agrobacterium, Flavobacteria, and Brachymonas). Nevertheless, reactor performance in terms of PHA storage was stable during operation time. The monitoring of the MMC population evolution provided information on the relation between community structure and process operation.
Collapse
|
13
|
Cui YW, Shi YP, Gong XY. Effects of C/N in the substrate on the simultaneous production of polyhydroxyalkanoates and extracellular polymeric substances by Haloferax mediterranei via kinetic model analysis. RSC Adv 2017. [DOI: 10.1039/c7ra02131c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A study of the effect of extracellular carbon source distribution on polyhydroxyalkanoates and extracellular polymeric substances byHaloferax mediterranei viakinetic model analysis.
Collapse
Affiliation(s)
- You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Yun-Peng Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| | - Xiao-Yu Gong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology
- Beijing University of Technology
- Beijing 100124
- China
| |
Collapse
|