1
|
Zhang H, Duan L, Li S, Gao Q, Li M, Xing F, Zhao Y. Simultaneous Wastewater Treatment and Resources Recovery by Forward Osmosis Coupled with Microbial Fuel Cell: A Review. MEMBRANES 2024; 14:29. [PMID: 38392656 PMCID: PMC10890705 DOI: 10.3390/membranes14020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Osmotic microbial fuel cells (OsMFCs) with the abilities to simultaneously treat wastewater, produce clean water, and electricity provided a novel approach for the application of microbial fuel cell (MFC) and forward osmosis (FO). This synergistic merging of functions significantly improved the performances of OsMFCs. Nonetheless, despite their promising potential, OsMFCs currently receive inadequate attention in wastewater treatment, water reclamation, and energy recovery. In this review, we delved into the cooperation mechanisms between the MFC and the FO. MFC facilitates the FO process by promoting water flux, reducing reverse solute flux (RSF), and degrading contaminants in the feed solution (FS). Moreover, the water flux based on the FO principle contributed to MFC's electricity generation capability. Furthermore, we summarized the potential roles of OsMFCs in resource recovery, including nutrient, energy, and water recovery, and identified the key factors, such as configurations, FO membranes, and draw solutions (DS). We prospected the practical applications of OsMFCs in the future, including their capabilities to remove emerging pollutants. Finally, we also highlighted the existing challenges in membrane fouling, system expansion, and RSF. We hope this review serves as a useful guide for the practical implementation of OsMFCs.
Collapse
Affiliation(s)
- Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Xing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Salamanca M, Peña M, Hernandez A, Prádanos P, Palacio L. Forward Osmosis Application for the Removal of Emerging Contaminants from Municipal Wastewater: A Review. MEMBRANES 2023; 13:655. [PMID: 37505021 PMCID: PMC10384920 DOI: 10.3390/membranes13070655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Forward osmosis (FO) has attracted special attention in water and wastewater treatment due to its role in addressing the challenges of water scarcity and contamination. The presence of emerging contaminants in water sources raises concerns regarding their environmental and public health impacts. Conventional wastewater treatment methods cannot effectively remove these contaminants; thus, innovative approaches are required. FO membranes offer a promising solution for wastewater treatment and removal of the contaminants in wastewater. Several factors influence the performance of FO processes, including concentration polarization, membrane fouling, draw solute selection, and reverse salt flux. Therefore, understanding and optimizing these factors are crucial aspects for improving the efficiency and sustainability of the FO process. This review stresses the need for research to explore the potential and challenges of FO membranes to meet municipal wastewater treatment requirements, to optimize the process, to reduce energy consumption, and to promote scalability for potential industrial applications. In conclusion, FO shows promising performance for wastewater treatment, dealing with emerging pollutants and contributing to sustainable practices. By improving the FO process and addressing its challenges, we could contribute to improve the availability of water resources amid the global water scarcity concerns, as well as contribute to the circular economy.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, 47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
3
|
Wu X, Zhang X, Wang H, Xie Z. Smart utilisation of reverse solute diffusion in forward osmosis for water treatment: A mini review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162430. [PMID: 36842573 DOI: 10.1016/j.scitotenv.2023.162430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Forward osmosis (FO) has been widely studied as a promising technology in wastewater treatment, but undesirable reverse solute diffusion (RSD) is inevitable in the FO process. The RSD is generally regarded as a negative factor for the FO process, resulting in the loss of draw solutes and reduced FO efficiency. Conventional strategies to address RSD focus on reducing the amount of reverse draw solutes by fabricating high selective FO membranes and/or selecting the draw solute with low diffusion. However, since RSD is inevitable, doubts have been raised about the strategies to cope with the already occurring reverse draw solutes in the feed solution, and the feasibility to positively utilise the RSD phenomenon to improve the FO process. Herein, we review the state-of-the-art applications of RSD and their benefits such as improving selectivity and maintaining the stability of the feed solution for both independent FO processes and FO integrated processes. We also provide an outlook and discuss important considerations, including membrane fouling, membrane development and draw/feed solution properties, in RSD utilisation for water and wastewater treatment.
Collapse
Affiliation(s)
- Xing Wu
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia
| | - Xiwang Zhang
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Clayton South, Victoria 3169, Australia.
| |
Collapse
|
4
|
Al-Juboori RA, Al-Shaeli M, Aani SA, Johnson D, Hilal N. Membrane Technologies for Nitrogen Recovery from Waste Streams: Scientometrics and Technical Analysis. MEMBRANES 2022; 13:15. [PMID: 36676822 PMCID: PMC9864344 DOI: 10.3390/membranes13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The concerns regarding the reactive nitrogen levels exceeding the planetary limits are well documented in the literature. A large portion of anthropogenic nitrogen ends in wastewater. Nitrogen removal in typical wastewater treatment processes consumes a considerable amount of energy. Nitrogen recovery can help in saving energy and meeting the regulatory discharge limits. This has motivated researchers and industry professionals alike to devise effective nitrogen recovery systems. Membrane technologies form a fundamental part of these systems. This work presents a thorough overview of the subject using scientometric analysis and presents an evaluation of membrane technologies guided by literature findings. The focus of nitrogen recovery research has shifted over time from nutrient concentration to the production of marketable products using improved membrane materials and designs. A practical approach for selecting hybrid systems based on the recovery goals has been proposed. A comparison between membrane technologies in terms of energy requirements, recovery efficiency, and process scale showed that gas permeable membrane (GPM) and its combination with other technologies are the most promising recovery techniques and they merit further industry attention and investment. Recommendations for potential future search trends based on industry and end users' needs have also been proposed.
Collapse
Affiliation(s)
- Raed A. Al-Juboori
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muayad Al-Shaeli
- Department of Engineering, University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Saif Al Aani
- The State Company of Energy Production-Middle Region, Ministry of Electricity, Baghdad 10013, Iraq
| | - Daniel Johnson
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nidal Hilal
- NYUAD Water Research Centre, New York University, Abu Dhabi Campus, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
5
|
Nasr M, Alfryyan N, Ali SS, Abd El-Salam HM, Shaban M. Preparation, characterization, and performance of PES/GO woven mixed matrix nanocomposite forward osmosis membrane for water desalination. RSC Adv 2022; 12:25654-25668. [PMID: 36199339 PMCID: PMC9455770 DOI: 10.1039/d2ra03832c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/13/2022] [Indexed: 12/07/2022] Open
Abstract
Mixed matrix woven forward osmosis (MMWFO) membranes made of polyethersulfone (PES)/graphene oxide nanosheets (GO NSs) were made by inserting varying wt% ratios of GO NSs (zero to 0.1 wt%) into the PES matrix. A coated woven fabric material was used to cast the membrane polymer solution. The physical characteristics and chemical structures of the produced PES/GO MMWFO membranes were studied, including contact angle, hydrophilicity, porosity, tortuosity, function groups, chemical and crystallographic structures, nanomorphologies, and surface roughness. The performance of the prepared PES/GO FO membranes for water desalination was evaluated in terms of pure water flux (J w), reverse salt flux (J s), and salt rejection (SR). The hydrophilicity and porosity of the FO membrane improved with the addition of GO NSs, as did water permeability due to the development of multiple skin-layer structures with greater GO NS loading. These GO NSs establish shortcut pathways for water molecules to move through, reducing support layer tortuosity by three times, lowering support layer structural features, and minimizing internal concentration polarization (ICP). The PES/0.01 wt% GO MMWFO membrane with a total casting thickness of 215 μm and 1 M NaCl concentration had the best performance, with the highest J w (114.7 LMH), lowest J s (0.03 GMH), and lowest specific reverse solute flux (J s/J w = 0.00026 g L-1), as well as a more favorable structural parameter (S = 149 μm). The performance of our optimized membrane is significantly better than that of the control woven commercial cellulose triacetate (CTA) FO membrane under optimal FO conditions. As the NaCl concentration increased from 0.6 to 2 M, J w increased from 105 to 127 LMH which is much higher than the J w of the commercial one (7.2 to 15 LMH). Our FO membranes have an SR of 99.2%@0.65 M NaCl, which is significantly greater than that of the CTA membrane.
Collapse
Affiliation(s)
- Mervat Nasr
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Sahar S Ali
- Chemical Engineering and Pilot-Plant Department, National Research Center P.O. Box 12622, Dokki Cairo Egypt
| | - Hanafy M Abd El-Salam
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah Al-Madinah Al-Munawarah 42351 Saudi Arabia
| |
Collapse
|
6
|
Li Y, Xie X, Yin R, Dong Q, Wei Q, Zhang B. Effects of Different Draw Solutions on Biogas Slurry Concentration in Forward Osmosis Membrane: Performance and Membrane Fouling. MEMBRANES 2022; 12:membranes12050476. [PMID: 35629802 PMCID: PMC9143607 DOI: 10.3390/membranes12050476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Biogas slurry poses a severe challenge to the sustainable management of livestock farms. The technology of the forward osmosis (FO) membrane has a good application prospect in the field of biogas slurry concentration. Further research is needed to verify the effects of different draw solutions on FO membranes in biogas slurry treatment and the related membrane fouling characteristics. In this study, three different draw solutions were selected to evaluate the performance of FO membranes for biogas slurry concentration. Membrane fouling was investigated by characterization after FO membrane treatment to identify fouling contaminants. The result showed that FO membrane treatment can realize the concentration of biogas slurry and MgCl2 as the draw solution has the best effect on the concentration of biogas slurry. The different draw solutions all contributed to the efficient retention of most organics and TP while each treatment was ineffective at retaining nitrogen. The cake layer that appeared after the biogas slurry was concentrated covered the surface of the FO membrane. Some functional groups were detected on the surface after membrane fouling, such as C–O and C=C. Moreover, the C element accounts for 57% of the main components of the cake layer after the membrane fouling. Membrane fouling is caused by both organic fouling and inorganic fouling, of which organic fouling is the main reason. This study provides a technical reference for the high-value utilization of biogas slurry.
Collapse
Affiliation(s)
- Yun Li
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Q.D.)
| | - Xiaomin Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Rongxiu Yin
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Qingzhao Dong
- College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Q.D.)
| | - Quanquan Wei
- Institute of Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
| | - Bangxi Zhang
- Institute of Agricultural Resources and Environment, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
- Correspondence:
| |
Collapse
|
7
|
Enhancing ammonium rejection in forward osmosis for wastewater treatment by minimizing cation exchange. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Salamanca M, López-Serna R, Palacio L, Hernandez A, Prádanos P, Peña M. Ecological Risk Evaluation and Removal of Emerging Pollutants in Urban Wastewater by a Hollow Fiber Forward Osmosis Membrane. MEMBRANES 2022; 12:293. [PMID: 35323768 PMCID: PMC8949913 DOI: 10.3390/membranes12030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Forward osmosis (FO) is a promising technology for the treatment of urban wastewater. FO can produce high-quality effluents and preconcentrate urban wastewater for subsequent anaerobic treatment. This membrane technology makes it possible to eliminate the pollutants present in urban wastewater, which can cause adverse effects in the ecosystem even at low concentrations. In this study, a 0.6 m2 hollow fiber aquaporin forward osmosis membrane was used for the treatment of urban wastewater from the Valladolid wastewater treatment plant (WWTP). A total of 51 Contaminants of Emerging Concern (CECs) were investigated, of which 18 were found in the target urban wastewater. They were quantified, and their ecotoxicological risk impact was evaluated. Different salts with different concentrations were tested as draw solutions to evaluate the membrane performances when working with pretreated urban wastewater. NaCl was found to be the most appropriate salt since it leads to higher permeate fluxes and lower reverse saline fluxes. The membrane can eliminate or significantly reduce the pollutants present in the studied urban wastewater, producing water without ecotoxicological risk or essentially free of pollutants. In all cases, good recovery was achieved, which increased with molecular weight, although chemical and electrostatic interactions also played a role.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| |
Collapse
|
9
|
Temperature Effects of MD on Municipal Wastewater Treatment in an Integrated Forward Osmosis and Membrane Distillation Process. Processes (Basel) 2022. [DOI: 10.3390/pr10020355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An integrated forward osmosis (FO)-membrane distillation (MD) process is promising for the treatment and resource recovery from municipal wastewater. As higher temperature is applied in MD, it could affect the performance of both FO and MD units. This study aimed to investigate the effects of the type of draw solution (DS) and feed solution (FS) such as ammonium solution or municipal wastewater containing ammonium at higher temperatures on membrane treatment performance. It is found that higher FS and DS temperatures resulted in a higher water flux and a higher RSF with either NaCl or glucose as DS due to the increased diffusivity and reduced viscosity of DS. However, the water flux increased by 23–35% at elevated temperatures with glucose as DS, higher than that with NaCl as DS (8–19%), while the reverse solute flux (RSF) increase rate with NaCl as DS was two times higher than that with glucose as DS. In addition, the use of NaCl as DS at higher temperatures such as 50 and FS at 42 °C resulted in increased forward ammonium permeation from the FS to the DS, whereas ammonium was completely rejected with glucose as DS at all operating temperatures. Reducing pH or lowering the temperature of DS could improve ammonium rejection and minimize ammonia escape to the recovered water, but extra cost or reduced MD performance could be led to. Therefore, the results suggest that in an integrated FO-MD process with DS at higher temperatures such as 50 °C, glucose is better than NaCl as DS. Furthermore, a simplified heat balance estimation suggests that internal heat recovery in the FO-MD system is very necessary for treating municipal wastewater treatment. This study sheds light on the selection of DS in an integrated FO-MD process with elevated temperature of both FS and DS for the treatment of wastewater containing ammonium. In addition, this study highlights the necessity of internal heat recovery in the integrated FO-MD system.
Collapse
|
10
|
Manzoor K, Khan SJ, Khan A, Abbasi H, Zaman WQ. Woven-fiber microfiltration coupled with anaerobic forward osmosis membrane bioreactor treating textile wastewater: Use of fertilizer draw solutes for direct fertigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ye Y, Ngo HH, Guo W, Chang SW, Nguyen DD, Varjani S, Liu Q, Bui XT, Hoang NB. Bio-membrane integrated systems for nitrogen recovery from wastewater in circular bioeconomy. CHEMOSPHERE 2022; 289:133175. [PMID: 34875297 DOI: 10.1016/j.chemosphere.2021.133175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Wastewater contains a significant amount of recoverable nitrogen. Hence, the recovery of nitrogen from wastewater can provide an option for generating some revenue by applying the captured nitrogen to producing bio-products, in order to minimize dangerous or environmental pollution consequences. The circular bio-economy can achieve greater environmental and economic sustainability through game-changing technological developments that will improve municipal wastewater management, where simultaneous nitrogen and energy recovery are required. Over the last decade, substantial efforts were undertaken concerning the recovery of nitrogen from wastewater. For example, bio-membrane integrated system (BMIS) which integrates biological process and membrane technology, has attracted considerable attention for recovering nitrogen from wastewater. In this review, current research on nitrogen recovery using the BMIS are compiled whilst the technologies are compared regarding their energy requirement, efficiencies, advantages and disadvantages. Moreover, the bio-products achieved in the nitrogen recovery system processes are summarized in this paper, and the directions for future research are suggested. Future research should consider the quality of recovered nitrogenous products, long-term performance of BMIS and economic feasibility of large-scale reactors. Nitrogen recovery should be addressed under the framework of a circular bio-economy.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, PR China.
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Ngoc Bich Hoang
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
12
|
Raulerson CR, Popat SC, Husson SM. Water Recovery from Bioreactor Mixed Liquors Using Forward Osmosis with Polyelectrolyte Draw Solutions. MEMBRANES 2021; 12:61. [PMID: 35054587 PMCID: PMC8779258 DOI: 10.3390/membranes12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
This paper reports on the use of forward osmosis (FO) with polyelectrolyte draw solutions to recover water from bioreactor mixed liquors. The work was motivated by the need for new regenerative water purification technologies to enable long-duration space missions. Osmotic membrane bioreactors may be an option for water and nutrient recovery in space if they can attain high water flux and reverse solute flux selectivity (RSFS), which quantifies the mass of permeated water per mass of draw solute that has diffused from the draw solution into a bioreactor. Water flux was measured in a direct flow system using wastewater from a municipal wastewater treatment plant and draw solutions prepared with two polyelectrolytes at different concentrations. The direct flow tests displayed a high initial flux (>10 L/m2/h) that decreased rapidly as solids accumulated on the feed side of the membrane. A test with deionized water as the feed revealed a small mass of polyelectrolyte crossover from the draw solution to the feed, yielding an RSFS of 80. Crossflow filtration experiments demonstrated that steady state flux above 2 L/m2·h could be maintained for 70 h following an initial flux decline due to the formation of a foulant cake layer. This study established that FO could be feasible for regenerative water purification from bioreactors. By utilizing a polyelectrolyte draw solute with high RSFS, we expect to overcome the need for draw solute replenishment. This would be a major step towards sustainable operation in long-duration space missions.
Collapse
Affiliation(s)
- Calen R. Raulerson
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA;
| | - Sudeep C. Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, SC 29625, USA;
| | - Scott M. Husson
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC 29634, USA;
| |
Collapse
|
13
|
Abbasi H, Khan SJ, Manzoor K, Adnan M. Optimization of nutrient rich solution for direct fertigation using novel side stream anaerobic forward osmosis process to treat textile wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113691. [PMID: 34530367 DOI: 10.1016/j.jenvman.2021.113691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The current study focused on the performance of a lab scale side stream anaerobic fertilizer drawn forward osmosis (An-FDFO) setup and optimization of nutrient rich solution to achieve sustainable water reuse from high strength synthetic textile wastewater. Three fertilizer draw solutes including Mono Ammonium Phosphate (MAP), Ammonium Sulphate (SOA) and Mono Potassium Phosphate (MKP) were blended in six different ratios with total molar concentration not exceeding 1 M. Among six blended draw solutions (DS), combination with high concentration of SOA have shown highest flux and combination with high concentration of MKP have shown highest reverse solute flux, while those with high concentration of MAP remain moderate both in flux and RSF. During long term runs, SOA: MKP (0.75: 0.25 M) showed longest filtration duration of 217 h in Run 1, with highest initial flux of 8.29 LMH and minimum dilution factor to achieve final nutrients concentration fit for direct fertigation, followed by Run 3 MAP: SOA: MKP (0.2: 0.6: 0.2 M) and then Run 2 MAP: MKP (0.75: 0.25). Moreover, deterioration of mixed liquor characteristics occurs in membrane tank due to high RSF. Similarly, the same inhibitory effect of reverse salt on biogas production was also assessed through Bio-Methane Potential experiments. However, Anaerobic Continuous Stirring Tank Reactor exhibited high performance efficacy, highlighting the importance of side stream submerged configuration in forward osmosis (FO) process.
Collapse
Affiliation(s)
- Hassam Abbasi
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Kamran Manzoor
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Muhammad Adnan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
14
|
Sun PF, Yang Z, Song X, Lee JH, Tang CY, Park HD. Interlayered Forward Osmosis Membranes with Ti 3C 2T x MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13219-13230. [PMID: 34314168 DOI: 10.1021/acs.est.1c01968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of Ti3C2Tx MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.
Collapse
Affiliation(s)
- Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea
| |
Collapse
|
15
|
Li X, Shen S, Xu Y, Guo T, Dai H, Lu X. Application of membrane separation processes in phosphorus recovery: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144346. [PMID: 33422961 DOI: 10.1016/j.scitotenv.2020.144346] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
The depletion of phosphorus resources and the excess discharge of phosphorus into waste streams are contrasting problems. The key to solving both problems is to recover phosphorus from the waste streams. Current phosphorus recovery technologies require high phosphorus concentrations and lack the ability to separate toxic substances from recovered phosphorus products. Membrane separation processes such as nanofiltration, forward osmosis, and electrodialysis are examples of effective methods for solving some of these issues. In this paper, the mechanisms, performance, and influential factors affect phosphorus recovery from membrane separation are reviewed. Membrane fouling, energy consumption, and the selectivity of toxic substances in membrane separation processes were evaluated. This work will serve as a basis for future research and development of phosphorus recovery by membrane separation processes and as a response to the increasingly pressing issues of eutrophication and the growing depletion of phosphorus resources.
Collapse
Affiliation(s)
- Xiang Li
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| | - Shuting Shen
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Yuye Xu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Ting Guo
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Hongliang Dai
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, PR China.
| | - Xiwu Lu
- Southeast University, School Energy & Environment, 2 Sipailou Rd, Nanjing 210096, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| |
Collapse
|
16
|
Mahto A, Aruchamy K, Meena R, Kamali M, Nataraj SK, Aminabhavi TM. Forward osmosis for industrial effluents treatment – sustainability considerations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Yang YL, Wu Y, Lu YX, Cai Y, He Z, Yang XL, Song HL. A comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 320:124300. [PMID: 33129093 DOI: 10.1016/j.biortech.2020.124300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 05/26/2023]
Abstract
Hybrid osmotic membrane bioreactor (OMBR) takes advantage of the cooperation of varying biological or desalination processes and can achieve NEWS (nutrient-energy-water-solute) recovery from wastewater. However, a lack of universal parameters hinders our understanding. Herein, system configurations and new parameters are systematically investigated to help better evaluate recovery performance. High-quality water can be produced in reverse osmosis/membrane distillation-based OMBRs, but high operation cost limits their application. Although bioelectrochemical system (BES)/electrodialysis-based OMBRs can effectively achieve solute recovery, operation parameters should be optimized. Nutrients can be recovered from various wastewater by porous membrane-based OMBRs, but additional processes increase operation cost. Electricity recovery can be achieved in BES-based OMBRs, but energy balances are negative. Although anaerobic OMBRs are energy-efficient, salinity accumulation limits methane productions. Additional efforts must be made to alleviate membrane fouling, control salinity accumulation, optimize recovery efficiency, and reduce operation cost. This review will accelerate hybrid OMBR development for real-world applications.
Collapse
Affiliation(s)
- Yu-Li Yang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - You Wu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Yun Cai
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
18
|
Xu Z, Song X, Xie M, Wang Y, Huda N, Li G, Luo W. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Vinardell S, Astals S, Jaramillo M, Mata-Alvarez J, Dosta J. Anaerobic membrane bioreactor performance at different wastewater pre-concentration factors: An experimental and economic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141625. [PMID: 32871369 DOI: 10.1016/j.scitotenv.2020.141625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the performance of a lab-scale anaerobic membrane bioreactor (AnMBR) treating municipal sewage pre-concentrated by forward osmosis (FO). The organic loading rate (OLR) and sodium concentrations of the synthetic sewage stepwise increased from 0.3 to 2.0 g COD L-1 d-1 and from 0.28 to 2.30 g Na+ L-1 to simulate pre-concentration factors of 1, 2, 5 and 10. No major operational problems were observed during AnMBR operation, with COD removal efficiencies ranging between 90 and 96%. The methane yield progressively increased from 214 ± 79 to 322 ± 60 mL CH4 g-1 COD as the pre-concentration factor increased from 1 to 10. This was mainly attributed to the lower fraction of methane dissolved lost in the permeate at higher OLRs. Interestingly, at the highest pre-concentration factor (2.30 g Na+ L-1) the difference between the permeate and the digester soluble COD indicated that membrane biofilm also played a role in COD removal. Finally, a preliminary energy and economic analysis showed that, at a pre-concentration factor of 10, the AnMBR temperature could be increased 10 °C and achieve a positive net present value (NPV) of 4 M€ for a newly constructed AnMBR treating 10,000 m3 d-1 of pre-concentrated sewage with an AnMBR lifetime of 20 years.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain.
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Marta Jaramillo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, C/Martí i Franquès 1, 6th floor, 08028 Barcelona, Spain; Water Research Institute, University of Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
20
|
Fujioka T, Tra Ngo MT, Mochochoko T, Boivin S, Ohkuma N, Yasui H, Terashima M. Biofouling control of a forward osmosis membrane during single-pass pre-concentration of wastewater. CHEMOSPHERE 2020; 257:127263. [PMID: 32512337 DOI: 10.1016/j.chemosphere.2020.127263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Pre-concentration of wastewater using a forward osmosis (FO) membrane prior to processing by an anaerobic digester can enhance biogas production. However, biofouling caused by microbes in wastewater remains a challenge. The study aimed to evaluate the efficacy of chloramination in mitigating the biofouling of an FO membrane during a single-pass concentration of primary wastewater effluent. Pre-disinfection at a chloramine dose of 22-121 mg/L successfully alleviated membrane fouling. Bacterial cell counts in the feed and concentrate showed that most of the bacterial cells in the wastewater were trapped on the membrane surface or spacer. The FO membrane surfaces in non-chloraminated/chloraminated systems were fully-covered by intact/damaged bacterial cells, respectively, indicating that chloramination effectively mitigated biofouling. However, due to high permeate-recovery and low cross-flow velocity in a single-pass concentration process, organic fouling on the membrane surface (and possibly on the interior wall of the membrane-pores) appeared to cause a gradual reduction in permeate-flux. This study demonstrated successful biofouling control using chloramination during a single-pass and high-recovery pre-concentration of primary wastewater effluent.
Collapse
Affiliation(s)
- Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - My Thi Tra Ngo
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Tanki Mochochoko
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Sandrine Boivin
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoki Ohkuma
- Water Reuse Promotion Center, 4-5 Nihonbashiyokoyamacho, Tokyo, 103-0003, Japan
| | - Hidenari Yasui
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Mitsuharu Terashima
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
21
|
Luján-Facundo M, Mendoza-Roca J, Soler-Cabezas J, Bes-Piá A, Vincent-Vela M, Cuartas-Uribe B, Pastor-Alcañiz L. Management of table olive processing wastewater by an osmotic membrane bioreactor process. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Gao Y, Fang Z, Chen C, Zhu X, Liang P, Qiu Y, Zhang X, Huang X. Evaluating the performance of inorganic draw solution concentrations in an anaerobic forward osmosis membrane bioreactor for real municipal sewage treatment. BIORESOURCE TECHNOLOGY 2020; 307:123254. [PMID: 32247274 DOI: 10.1016/j.biortech.2020.123254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Sewage can become a valuable source if its treatment is re-oriented for recovery. An anaerobic forward osmosis membrane bioreactor (AnOMBR) was developed for real municipal sewage treatment to investigate performance, biogas production, flux change and mixed liquor characteristics. The AnOMBR had a good treatment capacity with removal ratio of chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus more than 96%, 88%, 89% and almost 100%. Although high DS concentration increased the initial flux, it caused rapid decline and poor recoverability of FO membrane flux. Low DS concentration led to too long hydraulic retention time, thus resulting in a low reactor efficiency. Additionally, it was observed that salt, protein, polysaccharide and humic acid were all accumulated in the reactor, which was not conducive to stable long-term operation. Based on the characteristics of membrane fouling, salt accumulation and AnOMBR performance, the optimal DS of 1 M NaCl solution was selected.
Collapse
Affiliation(s)
- Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Zhou Fang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Cheng Chen
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xianzheng Zhu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yong Qiu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Up-concentration of succinic acid, lactic acid, and ethanol fermentations broths by forward osmosis. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
|
25
|
Fujioka T, Nguyen KH, Hoang AT, Ueyama T, Yasui H, Terashima M, Nghiem LD. Biofouling Mitigation by Chloramination during Forward Osmosis Filtration of Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2124. [PMID: 30261685 PMCID: PMC6210331 DOI: 10.3390/ijerph15102124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 11/16/2022]
Abstract
Pre-concentration is essential for energy and resource recovery from municipal wastewater. The potential of forward osmosis (FO) membranes to pre-concentrate wastewater for subsequent biogas production has been demonstrated, although biofouling has also emerged as a prominent challenge. This study, using a cellulose triacetate FO membrane, shows that chloramination of wastewater in the feed solution at 3⁻8 mg/L residual monochloramine significantly reduces membrane biofouling. During a 96-h pre-concentration, flux in the chloraminated FO system decreased by only 6% and this flux decline is mostly attributed to the increase in salinity (or osmotic pressure) of the feed due to pre-concentration. In contrast, flux in the non-chloraminated FO system dropped by 35% under the same experimental conditions. When the feed was chloraminated, the number of bacterial particles deposited on the membrane surface was significantly lower compared to a non-chloraminated wastewater feed. This study demonstrated, for the first time, the potential of chloramination to inhibit bacteria growth and consequently biofouling during pre-concentration of wastewater using a FO membrane.
Collapse
Affiliation(s)
- Takahiro Fujioka
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan.
| | - Kha H Nguyen
- R&D Division, Kyowakiden Industry Co., Ltd., 10-2 Kawaguchi-Machi, Nagasaki 852-8108, Japan.
| | - Anh Tram Hoang
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan.
| | - Tetsuro Ueyama
- Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan.
- R&D Division, Kyowakiden Industry Co., Ltd., 10-2 Kawaguchi-Machi, Nagasaki 852-8108, Japan.
| | - Hidenari Yasui
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Mitsuharu Terashima
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan.
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo NSW 2007, Australia.
| |
Collapse
|
26
|
Khan SJ, Siddique MS, Shahzad HMA. Performance evaluation of hybrid OMBR-MD using organic and inorganic draw solutions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:776-785. [PMID: 30252655 DOI: 10.2166/wst.2018.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The performance of two inorganic divalent salts (CaCl2, and MgCl2) and two organic salts (CH3COONa and Mg(CH3COO)2) was compared with commonly used NaCl in an osmotic membrane bioreactor (OMBR) integrated with a membrane distillation (MD) system. The system was investigated in terms of salinity buildup, flux stability, draw solution (DS) recovery and contaminants removal efficiency. Results indicated that organic DSs not only lessen the salt accumulation within the bioreactor but also increase the pollutant removal efficiency by improving biological treatment. Of all the draw solutions, NaCl and CaCl2 produced rapid declines in water flux because of the high salt accumulation in the bio-tank as compared to other salts. The DCMD system successfully recovered all organic and inorganic draw solute concentrations as per OMBR requirements. Membrane flushing frequency for the MD system followed the order Mg(CH3COO)2 > CH3COONa > CaCl2 > MgCl2 > NaCl. More than 90% removal of chemical oxygen demand (COD), NH4 +-N, and PO4 3--P was achieved in the permeate for each salt because of the dual barriers of high-retention membranes i.e., forward osmosis and MD.
Collapse
Affiliation(s)
- Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), National University of Science and Technology (NUST), Islamabad, Pakistan E-mail: ;
| | - Muhammad Saboor Siddique
- Institute of Environmental Sciences and Engineering (IESE), National University of Science and Technology (NUST), Islamabad, Pakistan E-mail: ;
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering (IESE), National University of Science and Technology (NUST), Islamabad, Pakistan E-mail: ;
| |
Collapse
|
27
|
Pathak N, Li S, Kim Y, Chekli L, Phuntsho S, Jang A, Ghaffour N, Leiknes T, Shon HK. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system. BIORESOURCE TECHNOLOGY 2018; 262:98-106. [PMID: 29702422 DOI: 10.1016/j.biortech.2018.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxicanoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100%) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100%) revealed highest removal followed by atenolol (89-96%) and atrazine (16-40%) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Youngjin Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Laura Chekli
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia.
| |
Collapse
|
28
|
Song X, Xie M, Li Y, Li G, Luo W. Salinity build-up in osmotic membrane bioreactors: Causes, impacts, and potential cures. BIORESOURCE TECHNOLOGY 2018; 257:301-310. [PMID: 29500063 DOI: 10.1016/j.biortech.2018.02.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with biological treatment, has been developed to advance wastewater treatment and reuse. OMBR is superior to conventional MBR, particularly in terms of higher effluent quality, lower membrane fouling propensity, and higher membrane fouling reversibility. Nevertheless, advancement and future deployment of OMBR are hindered by salinity build-up in the bioreactor (e.g., up to 50 mS/cm indicated by the mixed liquor conductivity), due to high salt rejection of the FO membrane and reverse diffusion of the draw solution. This review comprehensively elucidates the relative significance of these two mechanisms towards salinity build-up and its associated effects in OMBR operation. Recently proposed strategies to mitigate salinity build-up in OMBR are evaluated and compared to highlight their potential in practical applications. In addition, the complementarity of system optimization and modification to effectively manage salinity build-up are recommended for sustainable OMBR development.
Collapse
Affiliation(s)
- Xiaoye Song
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Yun Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Siddique MS, Khan SJ, Shahzad MA, Nawaz MS, Hankins NP. Insight into the effect of organic and inorganic draw solutes on the flux stability and sludge characteristics in the osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 249:758-766. [PMID: 29136930 DOI: 10.1016/j.biortech.2017.10.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
In this study, chloride based (CaCl2 and MgCl2) and acetate based (NaOAc and MgOAc) salts in comparison with NaCl were investigated as draw solutions (DS) to evaluate their viability in the osmotic membrane bioreactor (OMBR). Membrane distillation was coupled with an OMBR setup to develop a hybrid OMBR-MD system, for the production of clean water and DS recovery. Results demonstrate that organic DS were able to mitigate the salinity buildup in the bioreactor as compared to inorganic salts. Prolonged filtration runs were observed with MgCl2 and MgOAc in contrast with other draw solutes at the same molar concentration. Significant membrane fouling was observed with NaOAc while rapid flux decline due to increased salinity build-up was witnessed with NaCl and CaCl2. Improved characteristics of mixed liquor in terms of sludge filterability, particle size, and biomass growth along with the degradation of soluble microbial products (SMP) were found with organic DS.
Collapse
Affiliation(s)
- Muhammad Saboor Siddique
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | | | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
30
|
Li S, Kim Y, Phuntsho S, Chekli L, Shon HK, Leiknes T, Ghaffour N. Methane production in an anaerobic osmotic membrane bioreactor using forward osmosis: Effect of reverse salt flux. BIORESOURCE TECHNOLOGY 2017; 239:285-293. [PMID: 28531853 DOI: 10.1016/j.biortech.2017.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the impact of reverse salt flux (RSF) on microbe community and bio-methane production in a simulated fertilizer driven FO-AnMBR system using KCl, KNO3 and KH2PO4 as draw solutes. Results showed that KH2PO4 exhibited the lowest RSF in terms of molar concentration 19.1mM/(m2.h), while for KCl and KNO3 it was 32.2 and 120.8mM/(m2.h), respectively. Interestingly, bio-methane production displayed an opposite order with KH2PO4, followed by KCl and KNO3. Pyrosequencing results revealed the presence of different bacterial communities among the tested fertilizers. Bacterial community of sludge exposed to KH2PO4 was very similar to that of DI-water and KCl. However, results with KNO3 were different since the denitrifying bacteria were found to have a higher percentage than the sludge with other fertilizers. This study demonstrated that RSF has a negative effect on bio-methane production, probably by influencing the sludge bacterial community via environment modification.
Collapse
Affiliation(s)
- Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Youngjin Kim
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia; School of Civil, Environmental and Architectural Engineering, Korea University, 1-5 Ga, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Laura Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
31
|
Law JY, Mohammad AW. Multiple-solute salts as draw solution for osmotic concentration of succinate feed by forward osmosis. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Chekli L, Kim Y, Phuntsho S, Li S, Ghaffour N, Leiknes T, Shon HK. Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:137-145. [PMID: 27889657 DOI: 10.1016/j.jenvman.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/01/2016] [Accepted: 11/12/2016] [Indexed: 05/26/2023]
Abstract
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH2PO4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased.
Collapse
Affiliation(s)
- Laura Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Youngjin Kim
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW 2007, Australia; School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Sheng Li
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW 2007, Australia.
| |
Collapse
|
34
|
Lim S, Park MJ, Phuntsho S, Tijing LD, Nisola GM, Shim WG, Chung WJ, Shon HK. Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.066] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Ansari AJ, Hai FI, Guo W, Ngo HH, Price WE, Nghiem LD. Factors governing the pre-concentration of wastewater using forward osmosis for subsequent resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:559-566. [PMID: 27236621 DOI: 10.1016/j.scitotenv.2016.05.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
This study demonstrated a technique using forward osmosis (FO) to pre-concentrate the organic matter in raw wastewater, thereby transforming low strength wastewater into an anaerobically digestible solution. The chemical oxygen demand (COD) of raw wastewater was concentrated up to approximately eightfold at a water recovery of 90%. Thus, even low strength wastewater could be pre-concentrated by FO to the range suitable for biogas production via anaerobic treatment. Excessive salinity accumulation in pre-concentrated wastewater was successfully mitigated by adopting ionic organic draw solutes, namely, sodium acetate, and EDTA-2Na. These two draw solutes are also expected to benefit the digestibility of the pre-concentrated wastewater compared to the commonly used draw solute sodium chloride. Significant membrane fouling was observed when operating at 90% water recovery using raw wastewater. Nevertheless, membrane fouling was reversible and was effectively controlled by optimising the hydrodynamic conditions of the cross-flow FO system.
Collapse
Affiliation(s)
- Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
36
|
Song X, McDonald J, Price WE, Khan SJ, Hai FI, Ngo HH, Guo W, Nghiem LD. Effects of salinity build-up on the performance of an anaerobic membrane bioreactor regarding basic water quality parameters and removal of trace organic contaminants. BIORESOURCE TECHNOLOGY 2016; 216:399-405. [PMID: 27262094 DOI: 10.1016/j.biortech.2016.05.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The effects of elevated inorganic salt concentration on anaerobic membrane bioreactor (AnMBR) treatment regarding basic biological performance and trace organic contaminant (TrOC) removal were investigated. A set of 33 TrOCs were selected to represent pharmaceuticals, steroids, and pesticides in municipal wastewater. Results show potential adverse effects of increase in the bioreactor salinity to 15g/L (as NaCl) on the performance of AnMBR with respect to chemical oxygen demand removal, biogas production, and the removal of most hydrophilic TrOCs. Furthermore, a decrease in biomass production was observed as salinity in the bioreactor increased. The removal of most hydrophobic TrOCs was high and was not significantly affected by salinity build-up in the bioreactor. The accumulation of a few persistent TrOCs in the sludge phase was observed, but such accumulation did not vary significantly as salinity in the bioreactor increased.
Collapse
Affiliation(s)
- Xiaoye Song
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James McDonald
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
37
|
Luo W, Hai FI, Price WE, Elimelech M, Nghiem LD. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Nguyen NC, Nguyen HT, Chen SS, Ngo HH, Guo W, Chan WH, Ray SS, Li CW, Hsu HT. A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse. BIORESOURCE TECHNOLOGY 2016; 209:8-15. [PMID: 26946435 DOI: 10.1016/j.biortech.2016.02.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
A novel approach was designed to simultaneously enhance nutrient removal and reduce membrane fouling for wastewater treatment using an attached growth biofilm (AGB) integrated with an osmosis membrane bioreactor (OsMBR) system for the first time. In this study, a highly charged organic compound (HEDTA(3-)) was employed as a novel draw solution in the AGB-OsMBR system to obtain a low reverse salt flux, maintain a healthy environment for the microorganisms. The AGB-OsMBR system achieved a stable water flux of 3.62L/m(2)h, high nutrient removal of 99% and less fouling during a 60-day operation. Furthermore, the high salinity of diluted draw solution could be effectively recovered by membrane distillation (MD) process with salt rejection of 99.7%. The diluted draw solution was re-concentrated to its initial status (56.1mS/cm) at recovery of 9.8% after 6h. The work demonstrated that novel multi-barrier systems could produce high quality potable water from impaired streams.
Collapse
Affiliation(s)
- Nguyen Cong Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan, ROC; Faculty of Environment and Natural Resources, Da Lat University, Viet Nam
| | - Hau Thi Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan, ROC; Faculty of Environment and Natural Resources, Da Lat University, Viet Nam
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan, ROC.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wen Hao Chan
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan, ROC
| | - Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan, ROC
| | - Chi-Wang Li
- Department of Water Resources and Environmental Engineering, TamKang University, 151 Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan, ROC
| | - Hung-Te Hsu
- Department of Environmental Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| |
Collapse
|
39
|
Kim Y, Chekli L, Shim WG, Phuntsho S, Li S, Ghaffour N, Leiknes T, Shon HK. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system. BIORESOURCE TECHNOLOGY 2016; 210:26-34. [PMID: 26898159 DOI: 10.1016/j.biortech.2016.02.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
In this study, a protocol for selecting suitable fertilizer draw solute for anaerobic fertilizer-drawn forward osmosis membrane bioreactor (AnFDFOMBR) was proposed. Among eleven commercial fertilizer candidates, six fertilizers were screened further for their FO performance tests and evaluated in terms of water flux and reverse salt flux. Using selected fertilizers, bio-methane potential experiments were conducted to examine the effect of fertilizers on anaerobic activity due to reverse diffusion. Mono-ammonium phosphate (MAP) showed the highest biogas production while other fertilizers exhibited an inhibition effect on anaerobic activity with solute accumulation. Salt accumulation in the bioreactor was also simulated using mass balance simulation models. Results showed that ammonium sulfate and MAP were the most appropriate for AnFDFOMBR since they demonstrated less salt accumulation, relatively higher water flux, and higher dilution capacity of draw solution. Given toxicity of sulfate to anaerobic microorganisms, MAP appears to be the most suitable draw solution for AnFDFOMBR.
Collapse
Affiliation(s)
- Youngjin Kim
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia; School of Civil, Environmental and Architectural Engineering, Korea University, 1-5 Ga, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Laura Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Wang-Geun Shim
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Enviromental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Enviromental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Enviromental Science & Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Post Box 129, Broadway, NSW 2007, Australia.
| |
Collapse
|
40
|
|
41
|
Wang Z, Zheng J, Tang J, Wang X, Wu Z. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications. Sci Rep 2016; 6:21653. [PMID: 26898640 PMCID: PMC4761944 DOI: 10.1038/srep21653] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/28/2016] [Indexed: 11/25/2022] Open
Abstract
Recovery of nutrients and energy from municipal wastewater has attracted much attention in recent years; however, its efficiency is significantly limited by the low-strength properties of municipal wastewater. Herein, we report a pilot-scale forward osmosis (FO) system using a spiral-wound membrane module to concentrate real municipal wastewater. Under active layer facing feed solution mode, the critical concentration factor (CCF) of this FO system was determined to be 8 with 0.5 M NaCl as draw solution. During long-term operation at a concentration factor of 5, (99.8 ± 0.6)% of chemical oxygen demand and (99.7 ± 0.5)% of total phosphorus rejection rates could be achieved at a flux of 6 L/(m(2) h) on average. In comparison, only (48.1 ± 10.5)% and (67.8 ± 7.3)% rejection of ammonium and total nitrogen were observed. Cake enhanced concentration polarization is a major contributor to the decrease of water fluxes. The fouling also led to the occurrence of a cake reduced concentration polarization effect, improving ammonium rejection rate with the increase of operation time in each cycle. This work demonstrates the applicability of using FO process for wastewater concentrating and also limitations in ammonium recovery that need further improvement in future.
Collapse
Affiliation(s)
- Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Junjian Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Jixu Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Xinhua Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| |
Collapse
|