1
|
Ma R, Shi Y, Chen Y. The alleviation of Cr(Ⅵ) stress on simultaneous nitrification and denitrification process of Acinetobacter haemolyticus RH19. WATER RESEARCH 2025; 273:122968. [PMID: 39693716 DOI: 10.1016/j.watres.2024.122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Bioremediation of Cr(Ⅵ) and ammonia is considered as a promising and cost-effective alternative to chemical and physical methods. However, Cr(Ⅵ) could inhibit nitrogen removal by inhibiting intra-/extracellular electron (IET/EET) transfer or nitrifying and denitrifying enzymes activity due to its higher solubility. In this study, we isolated a simultaneous nitrification and denitrification (SND) microorganism Acinetobacter haemolyticus RH19, capable of outcompeting oxygen to take nitrogen oxides/ammonia as electron acceptors, and studied a combined accelerant (cysteine, biotin and cytokinin) to relive the Cr(Ⅵ) stress. Respiratory chain inhibited experiments and intermediates showed that strain RH19 had the intact intracellular respiratory chain. Despite the inhibited complex Ⅳ favoring the electrons transfer to NOx--N, the SND process was still greatly inhibited with Cr(Ⅵ), likely attributed to lower electron flow to the electron acceptors (nitration/nitrition/denitrification enzyme). Instead, the accelerant detoxified Cr(Ⅵ) mainly at CoQ site responsible for electron transfer to AMO and NAP, as well as complex Ⅳ (related with aerobic denitrification), favoring the shortcut SND (SSND, NH4+-N→NH2ON→NO2--N→N2) process by directly converting nitrite to nitrogen gases. Additionally, accelerant could stimulate the secretion of c-Cyts and flavin mononucleotide (FMN) to improve the electron transfer. Overall, this study highlighted the accelerant-alleviated mechanism in the SND process under Cr(Ⅵ) stress, and deepened the theoretical SND basis for the treatment of co-existing pollutants.
Collapse
Affiliation(s)
- Ruhui Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuqi Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Jiao T, Zhao C, Zhang M, Han F, Han Y, Zhang S, Zhou W. Recovery of ammonia assimilating microbiome after Cr (VI) shock by bio-accelerators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123020. [PMID: 39454390 DOI: 10.1016/j.jenvman.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The pretreatment process is often unable to completely intercept heavy metals in wastewater, facing a huge risk of leakage, increasing the difficulty of treating pollutants in the subsequent biochemical process or even leading to the collapse of the system, and facing the difficulty of inoperability and rehabilitation. Heterotrophic ammonia assimilation has the potential to maintain some stability after heavy metal shock, thanks to its rapid microbial proliferation, robust resistance to high loads, remarkable environmental adaptability, and inherent stability. Bio-accelerators dosing strategies could strengthen the performance recovery ability of traditional bio-system after heavy metal impact. However, no recovery strategies for inhibiting HAA have been reported. Herein, three bio-accelerants, specifically, vitamin A, 6-benzylaminopurine, and α-ketoglutaric acid, were investigated for their potential to restore the HAA system impacted by 20 mg/L Cr (VI). The three bio-accelerants effectively mitigated the toxicity of the HAA system, resulting in a 60.4% increase in NH4+-N removal efficiency within just 6 days with cytokinin. During toxicity remediation, three bio-accelerants facilitated the production of extracellular protein components in soluble microbial products and stimulated the secretion of extracellular polymeric substances. The three bio-accelerants enhanced competition among genera and influenced community assembly processes to regulate community structure and enhance functional gene expression. This study offers a practical approach to enhancing the HAA process and remediating microbial toxicity.
Collapse
Affiliation(s)
- Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Yufei Han
- Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Jiang Y, Zhao Y, Liu Y, Ban Y, Li K, Li X, Zhang X, Xu Z. Removal of sulfamethoxazole and Cu, Cd compound pollution by arbuscular mycorrhizal fungi enhanced vertical flow constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 245:117982. [PMID: 38142732 DOI: 10.1016/j.envres.2023.117982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
The combined pollution of antibiotics and heavy metals (HMs) has a serious impact on the water ecological environment. Previous researches mainly focused on the removal of antibiotics or HMs as single pollutants, with limited investigation into the treatment efficiencies and underlying mechanisms associated with their co-occurring pollution. In this study, 16 micro vertical flow constructed wetlands (MVFCWs) were constructed to treat composite wastewater consisting of sulfamethoxazole (SMX), copper (Cu) and cadmium (Cd), involving two different inoculation treatments (arbuscular mycorrhizal fungi (AMF) inoculated and uninoculated) and eight kinds of pollutant exposure (Control Check (CK), SMX, Cu, Cd, SMX + Cu, SMX + Cd, Cu + Cd, SMX + Cu + Cd). The findings of this study demonstrated that the inoculation of AMF in MVFCWs resulted in removal efficiencies of SMX, Cu, and Cd ranging from 18.70% to 80.52%, 75.18% to 96.61%, and 40.50% to 89.23%, respectively. Cu and CuCd promoted the degradation of SMX in the early stage and inhibited the degradation of SMX in the later stage. Cd did not demonstrate a comparable promotive impact on SMX degradation, and its addition hindered Cu removal. However, comparatively, the presence of Cu exerted a more pronounced inhibitory effect on Cd removal. Furthermore, the addition of Cu augmented the abundances of Proteobacteria, Bacteroidetes (at the phylum level) and Rhodobacter, Lacunisphaera and Flavobacterium (at the genus level), and Cu exposure showed a substantially stronger influence on the microbial community than that of Cd and SMX. AMF might confer protection to plants against HMs and antibiotics by enriching Nakamurella and Lacunisphaera. These findings proved that AMF-C. indica MVFCW was a promising system, and the inoculation of AMF effectively enhanced the simultaneous removal of compound pollution.
Collapse
Affiliation(s)
- Yinghe Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yinqi Zhao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yubo Liu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Kaiguo Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiaomei Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiangling Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
4
|
Recovery Strategies for Heavy Metal-Inhibited Biological Nitrogen Removal from Wastewater Treatment Plants: A Review. Microorganisms 2022; 10:microorganisms10091834. [PMID: 36144435 PMCID: PMC9506541 DOI: 10.3390/microorganisms10091834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Biological nutrient removal is an integral part of a wastewater treatment plant. However, the microorganism responsible for nutrient removal is susceptible to inhibition by external toxicants such as heavy metals which have the potential to completely inhibit biological nutrient removal. The inhibition is a result of the interaction between heavy metals with the cell membrane and the deoxyribonucleic acid (DNA) of the cell. Several attempts, such as the addition of pretreatment steps, have been made to prevent heavy metals from entering the biological wastewater systems. However, the unexpected introduction of heavy metals into wastewater treatment plants result in the inhibition of the biological wastewater treatment systems. This necessitates the recovery of the biological process. The biological processes may be recovered naturally. However, the natural recovery takes time; additionally, the biological process may not be fully recovered under natural conditions. Several methods have been explored to catalyze the recovery process of the biological wastewater treatment process. Four methods have been discussed in this paper. These include the application of physical methods, chelating agents, external field energy, and biological accelerants. These methods are compared for their ability to catalase the process, as well as their environmental friendliness. The application of bio-accelerant was shown to be superior to other recovery strategies that were also reviewed in this paper. Furthermore, the application of external field energy has also been shown to accelerate the recovery process. Although EDTA has been gaining popularity as an alternative recovery strategy, chelating agents have been shown to harm the metal acquisition of bacteria, thereby affecting other metabolic processes that require heavy metals in small amounts. It was then concluded that understanding the mechanism of inhibition by specific heavy metals, and understanding the key microorganism in the inhibited process, is key to developing an effective recovery strategy.
Collapse
|
5
|
Yang K, Bu H, Zhang Y, Yu H, Huang S, Ke L, Hong P. Efficacy of simultaneous hexavalent chromium biosorption and nitrogen removal by the aerobic denitrifying bacterium Pseudomonas stutzeri YC-34 from chromium-rich wastewater. Front Microbiol 2022; 13:961815. [PMID: 35992714 PMCID: PMC9389319 DOI: 10.3389/fmicb.2022.961815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of high concentrations of heavy metals and the loss of functional microorganisms usually affect the nitrogen removal process in wastewater treatment systems. In the study, a unique auto-aggregating aerobic denitrifier (Pseudomonas stutzeri strain YC-34) was isolated with potential applications for Cr(VI) biosorption and reduction. The nitrogen removal efficiency and denitrification pathway of the strain were determined by measuring the concentration changes of inorganic nitrogen during the culture of the strain and amplifying key denitrification functional genes. The changes in auto-aggregation index, hydrophobicity index, and extracellular polymeric substances (EPS) characteristic index were used to evaluate the auto-aggregation capacity of the strain. Further studies on the biosorption ability and mechanism of cadmium in the process of denitrification were carried out. The changes in tolerance and adsorption index of cadmium were measured and the micro-characteristic changes on the cell surface were analyzed. The strain exhibited excellent denitrification ability, achieving 90.58% nitrogen removal efficiency with 54 mg/L nitrate-nitrogen as the initial nitrogen source and no accumulation of ammonia and nitrite-nitrogen. Thirty percentage of the initial nitrate-nitrogen was converted to N2, and only a small amount of N2O was produced. The successful amplification of the denitrification functional genes, norS, norB, norR, and nosZ, further suggested a complete denitrification pathway from nitrate to nitrogen. Furthermore, the strain showed efficient aggregation capacity, with the auto-aggregation and hydrophobicity indices reaching 78.4 and 75.5%, respectively. A large amount of protein-containing EPS was produced. In addition, the strain effectively removed 48.75, 46.67, 44.53, and 39.84% of Cr(VI) with the initial concentrations of 3, 5, 7, and 10 mg/L, respectively, from the nitrogen-containing synthetic wastewater. It also could reduce Cr(VI) to the less toxic Cr(III). FTIR measurements and characteristic peak deconvolution analysis demonstrated that the strain had a robust hydrogen-bonded structure with strong intermolecular forces under the stress of high Cr(VI) concentrations. The current results confirm that the novel denitrifier can simultaneously remove nitrogen and chromium and has potential applications in advanced wastewater treatment for the removal of multiple pollutants from sewage.
Collapse
|
6
|
Zhang X, Yu T, Liu C, Fan X, Wu Y, Wang M, Zhao C, Chen Y. Cysteine reduced the inhibition of CO 2 on heterotrophic denitrification: Restoring redox balance, facilitating iron acquisition and carbon metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154173. [PMID: 35240182 DOI: 10.1016/j.scitotenv.2022.154173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The direct effect of CO2 on denitrification has attracted great attention currently. Our previous studies have confirmed that CO2 inhibited heterotrophic denitrification and caused high nitrite accumulation and nitrous oxide emission. Cysteine is a widely reported bio-accelerator; however, its effect on denitrification under CO2 exposure remains unknown. In this paper, the effect of cysteine on heterotrophic denitrification and its mechanisms under CO2 exposure were explored with the model denitrifier, Paracoccus denitrificans. We observed that total nitrogen removal increased from 17.9% to 90.4% as cysteine concentration increased from 0 to 50 μM, probably due to restoration of cell growth and viability. Further study showed that cysteine reduced the inhibition of CO2 on denitrification due to multiple positive influences: (1) regulating glutathione metabolism to eliminate intracellular reactive nitrogen species (RNS), while reducing extracellular polymeric substances (EPS) levels and altering its composition, ultimately restoring cell membrane integrity (2) facilitating the transport and metabolism of carbon sources to increase NADH production, and (3) increasing intracellular iron and up-regulating the expression of key iron transporters genes (AfuA, AfuB, ExbB and TonB) to restore the transport and consumption of electron. This study suggests that cysteine can be added to recover heterotrophic denitrification performance after inhibition by elevated CO2.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tong Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xinyun Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Ma WJ, Cheng YF, Jin RC. Comprehensive evaluation of the long-term effect of Cu 2+ on denitrifying granular sludge and feasibility of in situ recovery by phosphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126901. [PMID: 34419849 DOI: 10.1016/j.jhazmat.2021.126901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
With increased industrial development, vast heavy metals are inevitably discharged into wastewater. Cu2+ is one of the most hazardous heavy metals in biotreatment. However, the potential effect of Cu2+ on denitrifying granular sludge is still unknown. This work assesses the response of denitrifying granular sludge to Cu2+ stress from multiple aspects. The denitrifying granular sludge could tolerate 5 mg L-1 Cu2+, while the nitrogen removal efficiency decreased to 48.5% under 10 mg L-1 Cu2+. Enzyme activity and carbohydrate metabolism were inhibited, and the denitrifying bacteria were washed out under Cu2+ stress. The resulting deteriorated state was reversed by phosphate. The nitrogen removal efficiency recovered to 99% after 10 days, and the enzyme activity also recovered to the original level. Membrane transport, transcription and cellular processes were promoted. Overall, the results of this work provide a feasible strategy to rapidly restore the metabolic activity of denitrifying granular sludge under Cu2+ stress.
Collapse
Affiliation(s)
- Wen-Jie Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Comparative Study on Using Various Recovery Stimulation Methods to Boost Nitrification Recovery in SBRs Inhibited by Hazardous Events. WATER 2021. [DOI: 10.3390/w14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A system consisting of six SBR units was operated in parallel for three phases to investigate the impacts of salinity shock and anaerobic and aerobic starvation on the activated sludge process stability and effects of various recovery stimulation methods on the subsequent recovery period. Different recovery strategies were applied in each SBR unit, including natural recovery, adding bio-accelerators, a stepwise increase feed strategy, a stepwise strategy coupled with bio-accelerators dosing, extended aeration time, and extended aeration time coupled with bio-accelerators dosing. It was concluded that the combination of stepwise strategy and dosing bio-accelerators showed the most efficiency in boosting system recovery after being subjected to NaCl shock and starvation. The boosting effect of the stepwise strategy alone was slightly better in recovery after NaCl shock. Furthermore, extending the aeration rate could bring more positive effects when resuscitating the system after long-term anaerobic starvation. For the unit that only received dosing of bio-accelerators during the recovery period, it could be concluded that there was a specific time requirement for the bio-accelerators to take effect significantly, as the impact of bio-accelerators on the beginning days of recovery periods was very slight. In contrast, adjusting operational regimes such as stepwise increased feed volume or extending aeration time could significantly boost the SBRs from the first recovery days. Hence, highly effective recovery efficiency could be achieved by coupling dosing bio-accelerators with other operational adjustment methods, especially stepwise strategies.
Collapse
|
9
|
Wang Q, Zhao Y, Zhai S, Liu D, Zhou X, Wang Y, Cabrera J, Ji M. Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(VI) shock. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126664. [PMID: 34329097 DOI: 10.1016/j.jhazmat.2021.126664] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The transient hexavalent chromium (Cr(VI)) shock may directly inhibit the denitrification process of municipal wastewater treatment plants (WWTPs), which is difficult to recover in a short time. This study developed four nontoxic bio-promoters (combination of L-cysteine, flavin adenine dinucleotide (FAD), biotin, cytokinin and different redox mediators) to quickly restore the denitrification performance after high-loading Cr(VI) suppressing. After feeding with 100 mg/L of Cr(VI) for 42 cycles (T, 4 h), the removal efficiency of nitrate was reduced by 85.00%, and nitrite was accumulated simultaneously. The denitrification performance was recovered quickly with the addition of bio-promoters, introducing redox mediators showed noticeable superiority on the bio-inhibition release. Compared with sodium humate and riboflavin, the AQDS induced bio-promoter achieved the best nitrate removal recovery performance within only 28 T, and the recovery rate was 2.16 times faster than the natural recovery. Microbial analysis showed that Cr(VI) specially inhibited napA-type denitrifiers, and the OTU numbers sharply dropped by 48.74%. Redox mediators induced bio-promoters could effectively recover the abundance of napA-type and nirS-type denitrifying microorganisms, which was consistent with the change of nitrate removal efficiency. This study offers a cost-effective approach to deal with Cr(VI) shock problem, which may promote the development of bio-promoters for WWTPs.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Siyuan Zhai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australian
| | - Jonnathan Cabrera
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Zhou X, Zhai S, Zhao Y, Liu D, Wang Q, Ji M. Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125087. [PMID: 33476908 DOI: 10.1016/j.jhazmat.2021.125087] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium (Cr(VI)) may inhibit denitrification in biological wastewater treatment systems, and the inhibited denitrification process is difficult to recover in a short time. This study explored Cr(VI) cascade impact (20-125 mg L-1) on denitrification and developed one nontoxic biological accelerant (combination of L-cysteine, flavin adenine dinucleotide, biotin and cytokinin) for denitrification recovery. The results showed that NO3--N removal efficiency decreased from 75.7% to 21.5% when Cr(VI) concentration increased from 80 to 125 mg L-1. Addition of accelerant could effectively promote the removal of NO3--N, and observably reduce the recovery time (42 T) compared with natural recovery (63 T). Furthermore, the main site of Cr(VI) reduction and Cr(III) immobilization was located in the intercellular compartment of the biofilm. Microbes produced more tightly bound extracellular polymeric substances (TB-EPS) to protect them from toxicity under the low Cr(VI) concentrations, while low EPS was secreted when Cr(VI) concentration was higher than 60 mg L-1. Compared to natural recovery system, bio-accelerant addition was beneficial to the recovery of denitrifiers activities, especially for the bacteria containing nirS gene. The results facilitated an understanding of Cr(VI) impact on denitrification, and the proposed bio-accelerant can be potentially applied to heavy metal shock-loading emergency situations.
Collapse
Affiliation(s)
- Xu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Duo Liu
- The Ninth Waterworks of Beijing Waterworks Group Co., Ltd, Beijing 100012, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
11
|
Ma B, Li Z, Wang S, Liu Z, Li S, She Z, Yu N, Zhao C, Jin C, Zhao Y, Guo L, Gao M. Insights into the effect of nickel (Ni(II)) on the performance, microbial enzymatic activity and extracellular polymeric substances of activated sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:81-89. [PMID: 31071636 DOI: 10.1016/j.envpol.2019.04.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 05/27/2023]
Abstract
The performance, nitrogen removal rate, microbial enzymatic activity and extracellular polymeric substances (EPS) of activated sludge were assessed under nickel (Ni(II)) stress. The organic matter and NH4+-N removal efficiencies were stable at less than 10 mg/L Ni(II) and subsequently decreased with the increment of Ni(II) concentration from 10 to 30 mg/L. The specific oxygen uptake rate and dehydrogenase activity kept stable at less than 5 mg/L Ni(II) and then declined at 5-30 mg/L Ni(II). Both specific ammonia-oxidizing rate (SAOR) and specific nitrite-oxidizing rate (SNOR) decreased with the increment of Ni(II) concentration. The changing trends of ammonia monooxygenase and nitrite oxidoreductase activities were matched those of SAOR and SNOR, respectively. The nitrite-reducing rate and nitrate-reducing rate illustrated a similar variation tendency to the nitrite reductase activity and nitrate reductase activity, respectively. Ni(II) impacted on the production, chemical composition and functional group of EPS. The relation between the sludge volume index and the EPS production exhibited a better linear function with a negative slope, demonstrating that Ni(II) improved the sludge settleability despite of the increase of EPS production.
Collapse
Affiliation(s)
- Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Sen Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhaozhe Liu
- Qingjian International Group Co., Ltd, Qingdao, 266000, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Changkun Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
12
|
Nguyen HN, Rodrigues DF. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:200-207. [PMID: 28961500 DOI: 10.1016/j.jhazmat.2017.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the chronic toxicity of graphene (G) and graphene oxide (GO) in activated sludge. Sequencing batch bioreactors were fed with influents containing 0, 1 and 5mgL-1 of GO or G (12h cycles) for ten days. Reduction in performance of the bioreactors in relation to chemical oxygen demand, ammonia and phosphate removals was observed after three days in the bioreactors fed with 5mgL-1 of nanomaterials. After about eight days, these reactors reached a steady state nutrient removal, which corresponded to recovery of certain groups of ammonia oxidizing bacteria and phosphate accumulating bacteria despite the increasing accumulation of nanomaterials in the sludge. These results suggested that biological treatment can be affected transiently by initial exposure to the nanomaterials, but certain groups of microorganisms, less sensitive to these nanomaterials, can potentially strive in the presence of these nanomaterials. Results of 16S rRNA gene deep sequencing showed that G and GO affected differently the microbial communities in the activated sludge. Between the two nanomaterials investigated, GO presented the highest impact in nutrient removal, gene abundance and changes in microbial population structures.
Collapse
Affiliation(s)
- Hang N Nguyen
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA.
| |
Collapse
|
13
|
Liu X, Yin H, Tang S, Feng M, Peng H, Lu G, Liu Z, Dang Z. Effects of single and combined copper/perfluorooctane sulfonate on sequencing batch reactor process and microbial community in activated sludge. BIORESOURCE TECHNOLOGY 2017; 238:407-415. [PMID: 28458174 DOI: 10.1016/j.biortech.2017.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Long-term exposure experiments with single and combined pollutants of copper (Cu)/perfluorooctane sulfonate (PFOS) were conducted to explore the influence on activated sludge in SBRs. Compared with the control, the removal of organics, nitrogen and phosphorus in the presence of PFOS exhibited no apparent difference, but reduced in different degrees when Cu and Cu/PFOS existed. PFOS exposure deteriorated the settling performance of activated sludge with SVI value and amount of extracellular polymeric substance (EPS) increasing, but posed little impacts on microbial activity (dehydrogenase, protease) and antioxidant activity (SOD, CAT). Under Cu and Cu/PFOS loading, dehydrogenase and protease activity were observed to decrease as well as SOD and CAT activity. The sequencing results revealed that bacterial richness and community diversity reduced under Cu and Cu/PFOS exposure. Overall, adverse effect of combined pollution was lower than that of single Cu in long-time due to antagonistic effect existed between Cu and PFOS.
Collapse
Affiliation(s)
- Xintong Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Shaoyu Tang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Wang Y, Ji M, Zhao Y, Zhai H. Recovery of nitrification in cadmium-inhibited activated sludge system by bio-accelerators. BIORESOURCE TECHNOLOGY 2016; 200:812-819. [PMID: 26587790 DOI: 10.1016/j.biortech.2015.10.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Cadmium (Cd) is toxic to nitrifying bacteria, but current studies on recovery process in Cd-inhibited activated sludge system are limited, especially on intensify-recovery processes with developing and optimizing nontoxic bio-accelerators. In this study, bioactivity recovery effects were demonstrated with respect to effluent NH4(+)-N, NO2(-)-N, NO3(-)-N concentrations, specific oxygen uptake rates and cadmium distribution in five parallel SBRs. Results indicated that bioactivity of nitrifying bacteria was mainly inhibited by surface-bound Cd. Dosing biotin, l-aspartic acid and cytokinin simultaneously was the most effective. Linear chain, together with amide (NH) and carboxyl (COOH) groups, may be important factors in fast nitrification recovery process. In terms of dosage and dosing mode, six-multiple dosage of optimal mixture with dosing at each cycle evenly was the most effective and bioactivities of nitrifying bacteria could 100% recovered within 7days. The bio-accelerators and optimum usage can be potentially applied to cope with heavy metal shock-loading emergency situations.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072, China.
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072, China
| |
Collapse
|