1
|
Lei M, Dong X, Huang M, Zhao L, Zou J, Tian D, Lei Y, He J, Shen F. Collaborative performance of enzymatic saccharification and organic pollutant degradation from PHP (phosphoric acid coupled with hydrogen peroxide) pretreatment of lignocellulose. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124273. [PMID: 39848175 DOI: 10.1016/j.jenvman.2025.124273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated. Results indicated that temperature, H3PO4 and H2O2 concentration were positively correlated with the model pollutant degradation (methylene blue) and enzymatic hydrolysis. Under the optimized conditions of temperature (55 °C), H3PO4 concentration (65%), and H2O2 concentration (7%), three typical agricultural residues, including wheat straw, Jerusalem artichoke stalks and corn stover, achieved 95.2%, 94.0% and 98.3% methylene blue degradation, and the corresponding cellulose-glucose conversion was 100%, 97.6% and 100.0%, respectively. While two typical woody residues of oak and birch sawdust achieved methylene blue degradation of 70.2% and 68.0%, and the corresponding cellulose-glucose conversion reached 88.3% and 84.0%, respectively. 90.2-93.6% H3PO4 could be recovered with a stable performance of methylene blue degradation of 98.8-99.7% and cellulose-glucose conversion of 96.1-99.8% in the 5 recycling batches. Overall, this work achieved the "win-win" function on pollutant removal and glucose production, and efficient solvent recycling, which further improved the applicability of PHP pretreatment.
Collapse
Affiliation(s)
- Miao Lei
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Xuan Dong
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Keyuan Engineering Technology Testing Center Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Mei Huang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Li Zhao
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jianmei Zou
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Dong Tian
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yongjia Lei
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jinsong He
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Fei Shen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| |
Collapse
|
2
|
Zhu L, Shim J, Huang Y, Armstrong JN, Meng T, Ren S. Nacre-Inspired Hybrid Multilayer Insulation Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54467-54474. [PMID: 39344969 DOI: 10.1021/acsami.4c12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Superinsulation aerogels are characterized by low tensile strength and brittleness due to their high porosity. To address these limitations, multiscale architectural design inspired by nacre can be employed. This materials design approach offers a promising strategy for enhancing the mechanical strength of aerogel thermal insulation. In this study, we present nacre-inspired multilayer cellulose-silica aerogel configurations. The cellulose "brick" network imparts structural strength to effectively redistribute energy, while the nanoporous "mortar" silica blocks heat transfer, maintaining insulation and fire retardance. The multilayer composites, with a layering configuration of five cellulose layers with four silica layers (5 + 4) and a cellulose layer thickness of 1.42 mm, exhibit a thermal conductivity of 31.3 mW/(m·K), a flexural modulus of 505 MPa, and an impact strength of 7.33 kJ/m2. The hydrophobic composite shows a water contact angle of 127°, enhanced soundproofing with a 27% noise reduction, and a carbon footprint of 0.49 kgCO2eq/kg. The multilayer cellulose-silica aerogel design provides a robust, eco-friendly thermal insulation solution for green building applications.
Collapse
Affiliation(s)
- Long Zhu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jongmin Shim
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jason N Armstrong
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Taotao Meng
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Yan ZX, Li M, Wei HY, Peng SY, Xu DJ, Zhang B, Cheng X. Characterization and Antioxidant Activity of the Polysaccharide Hydrolysate from Lactobacillus plantarum LPC-1 and Their Effect on Spinach (Spinach oleracea L.) Growth. Appl Biochem Biotechnol 2024; 196:6151-6173. [PMID: 38194184 DOI: 10.1007/s12010-023-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.
Collapse
Affiliation(s)
- Zu-Xuan Yan
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Min Li
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hong-Yu Wei
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Duan-Jun Xu
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bao Zhang
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Cheng
- Institute of Applied Microbiology, College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Qi G, Pan Z, Zhang X, Wang H, Chang S, Wang B, Gao B. Novel pretreatment with hydrogen peroxide enhanced microwave biochar for heavy metals adsorption: Characterization and adsorption performance. CHEMOSPHERE 2024; 346:140580. [PMID: 38303392 DOI: 10.1016/j.chemosphere.2023.140580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 02/03/2024]
Abstract
Hydrogen peroxide (HP) was used to pretreat wheat straw (WS) for microwave biochar production at 100-600 W, the physicochemical properties of pretreated WS and biochar products as well as heavy metals adsorption performance were investigated. Results showed that HP enhanced specific surface area (SSA) and pore volume (PV) of WS, and the largest SSA (190.35 m2 g-1) and PV (0.1493 cm3 g-1) of biochar were obtained at microwave powers of 600 W (HPWS600) and 500 W (HPWS500), respectively. HPWS500 showed maximum adsorption capacities, which were 57.56, 190.21, and 65.16 mg g-1 for Cd2+, Pb2+, and Cu2+, respectively. Solution pH values and cation concentrations exhibited significant effects on adsorption capacities of biochar. The pseudo-second-order kinetic and Langmuir isotherm models fitted better for metal adsorption process. The FTIR results suggested that chemisorption mechanisms including precipitation with carbonate and complexation with oxygen-containing functional groups might be predominant adsorption mechanisms. These results suggest that HP pretreatment has excellent potential for biochar production.
Collapse
Affiliation(s)
- Guangdou Qi
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Zhifei Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250000, China
| | - Shuaishuai Chang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250000, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
5
|
Yoosefian SH, Ebrahimi R, Hosseinzadeh Samani B, Maleki A. Digestion of lignocellulosic biomass under an innovative pneu-mechanical system and optimization of process. J Biotechnol 2023; 374:70-79. [PMID: 37541624 DOI: 10.1016/j.jbiotec.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this study, an anaerobic pneumatic mechanical digester (PMD) was designed for the first time to investigate the impact of pneumatic agitator on increasing the bioethanol production and compared with a mechanical digester (MD). Fermentation was performed during an optimized pretreatment and hydrolysis process by RSM (Response Surface Method). Ultrasound optimized points (the time values, the acid concentration, and the biomass load) were 30 min, 1.95% v/v, and 6%, and hydrolysis was done within 45 min at the acid concentration of 2.04% v/v and temperature of 148.4 °C. The hydrolysis solutions were poured and the fermentation process took place within 20 days in the PMD and MD. The sampling sequence was every 5 days. According to the results, the PMD could produce bioethanol more than the MD by 27.94%. Besides, CO, H2S and O2 were measured through fermentation. In PMD, the amount of H2S and O2 was lower than the MD, but then the production of CO in the PMD was meaningfully higher. Finally, by the application of the PMD, the amount of harmful mixtures produced throughout the process can be controlled. It can be said that with the new method designed in this study, it is possible to take an important step in the biorefinery and use the biomass produced in nature in an economical and environmentally friendly way.
Collapse
Affiliation(s)
- Seyedeh Hoda Yoosefian
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| | - Rahim Ebrahimi
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran.
| | | | - Ali Maleki
- Department of Mechanical Engineering of Biosystem, Shahrekord University, 8818634141 Shahrekord, Iran
| |
Collapse
|
6
|
Wu R, Chen M, Qin Y, Liu S, Li X. Combined hydrothermal and biological treatments for valorization of fruit and vegetable waste into liquid organic fertilizer. ENVIRONMENTAL RESEARCH 2023; 221:115262. [PMID: 36639011 DOI: 10.1016/j.envres.2023.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the effects of hydrothermal treatment, biological treatment and their combination on nutrients recovery from fruit and vegetable waste (FVW) and evaluated the feasibility of fruit and vegetable waste juice (FVWJ) from the combined treatment as liquid organic fertilizer. In this study, following conditions were determined suitable for FVW treatment: the temperature of 165 °C and retention time of 45 min for hydrothermal treatment, 20 h for biological treatment, and Weissella, as the dominant microbial genus present in FVW, was suggested as inoculum for biological treatment. In the combined treatment, based on the above conditions of hydrothermal and biological treatments, the yield of FVWJ was 93.03 g out of 100 g FVW, and concentrations of organic matter (1.45%, w/w), primary nutrients (0.51%, w/w), and toxic components in the FVWJ complied with the requirements for use concentration in both Chinese and European standards for liquid organic fertilizer. The economic analysis showed the net saving of 13.60 USD per ton FVW, indicating that it is an economical approach to valorize fruit and vegetable waste into liquid organic fertilizer through the combined treatment.
Collapse
Affiliation(s)
- Renming Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingsheng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yifeng Qin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shuchang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Xudong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Tailoring biochar by PHP towards the oxygenated functional groups (OFGs)-rich surface to improve adsorption performance. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Andrade MS, Ishikawa OH, Costa RS, Seixas MV, Rodrigues RC, Moura EA. Development of sustainable food packaging material based on biodegradable polymer reinforced with cellulose nanocrystals. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
10
|
Lei M, Shen F, Hu J, Zhao L, Huang M, Zou J, Tian D, Yang G, Zeng Y, Deng S. A novel way to facilely degrade organic pollutants with the tail-gas derived from PHP (phosphoric acid plus hydrogen peroxide) pretreatment of lignocellulose. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127517. [PMID: 34688009 DOI: 10.1016/j.jhazmat.2021.127517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The abundantly released tail-gas from lignocellulose pretreatment with phosphoric acid plus hydrogen peroxide (PHP) was found to accelerate the aging of latex/silicone textural accessories of the pretreatment device. Inspired by this, tail-gas was utilized to control organic pollutants. Methylene blue (MB), as a model pollutant, was rapidly decolorized by the tail-gas, and oxidative degradation was substantially proven by full-wavelength scanning with a UV-visible spectrometer. The tail-gas from six typical lignocellulosic feedstocks produced 68.0-98.3% MB degradation, suggesting its wide feedstock compatibility. Three other dyes, including rhodamine B, methyl orange and malachite green, obtained 97.5-99.5% degradation; moreover, tetracycline, resorcinol and hexachlorobenzene achieved 73.8-93.7% degradation, suggesting a superior pollutant compatibility. In a cytotoxicity assessment, the survival rate of the degraded MB was 103.5% compared with 80.4% for the untreated MB, implying almost no cytotoxicity after MB degradation. Mechanism investigations indicated that the self-exothermic reaction in PHP pretreatment drove the self-generated peroxy acids into tail-gas. Moreover, it heated the pollutant solution and thermally activated peroxy acids as free radicals for efficient pollutant degradation. Here, a brand-new technique for degrading organic pollutants with a "Win-Win-Win" concept was purposed for lignocellulose valorization, pollutant control by waste tail-gas, and biofuel production.
Collapse
Affiliation(s)
- Miao Lei
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, The University of Calgary, Calgary T2N 4H9, Canada
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jianmei Zou
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
11
|
Tian D, Chen Y, Shen F, Luo M, Huang M, Hu J, Zhang Y, Deng S, Zhao L. Self-generated peroxyacetic acid in phosphoric acid plus hydrogen peroxide pretreatment mediated lignocellulose deconstruction and delignification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:224. [PMID: 34823568 PMCID: PMC8614055 DOI: 10.1186/s13068-021-02075-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/13/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND Peroxyacetic acid involved chemical pretreatment is effective in lignocellulose deconstruction and oxidation. However, these peroxyacetic acid are usually artificially added. Our previous work has shown that the newly developed PHP pretreatment (phosphoric acid plus hydrogen peroxide) is promising in lignocellulose biomass fractionation through an aggressive oxidation process, while the information about the synergistic effect between H3PO4 and H2O2 is quite lack, especially whether some strong oxidant intermediates is existed. In this work, we reported the PHP pretreatment system could self-generate peroxyacetic acid oxidant, which mediated the overall lignocellulose deconstruction, and hemicellulose/lignin degradation. RESULTS The PHP pretreatment profile on wheat straw and corn stalk were investigated. The pathways/mechanisms of peroxyacetic acid mediated-PHP pretreatment were elucidated through tracing the structural changes of each component. Results showed that hemicellulose was almost completely solubilized and removed, corresponding to about 87.0% cellulose recovery with high digestibility. Rather high degrees of delignification of 83.5% and 90.0% were achieved for wheat straw and corn stalk, respectively, with the aid of peroxyacetic acid oxidation. A clearly positive correlation was found between the concentration of peroxyacetic acid and the extent of lignocellulose deconstruction. Peroxyacetic acid was mainly self-generated through H2O2 oxidation of acetic acid that was produced from hemicellulose deacetylation and lignin degradation. The self-generated peroxyacetic acid then further contributed to lignocellulose deconstruction and delignification. CONCLUSIONS The synergistic effect of H3PO4 and H2O2 in the PHP solvent system could efficiently deconstruct wheat straw and corn stalk lignocellulose through an oxidation-mediated process. The main function of H3PO4 was to deconstruct biomass recalcitrance and degrade hemicellulose through acid hydrolysis, while the function of H2O2 was to facilitate the formation of peroxyacetic acid. Peroxyacetic acid with stronger oxidation ability was generated through the reaction between H2O2 and acetic acid, which was released from xylan and lignin oxidation/degradation. This work elucidated the generation and function of peroxyacetic acid in the PHP pretreatment system, and also provide useful information to tailor peroxide-involved pretreatment routes, especially at acidic conditions.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yiyi Chen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Maoyuan Luo
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Wan X, Shen F, Hu J, Huang M, Zhao L, Zeng Y, Tian D, Yang G, Zhang Y. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor. Int J Biol Macromol 2021; 180:51-60. [PMID: 33727185 DOI: 10.1016/j.ijbiomac.2021.03.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/21/2023]
Abstract
To convert lignin into high-valued carbon materials and understand the lignin structure function, oxidized lignin, a by-product from lignocellulose PHP-pretreatment (phosphoric acid plus hydrogen peroxide), was carbonized by one-step KOH-activation; the physico-chemical characteristics and electrochemical performances of the harvested carbons were also investigated. Results indicated the resultant carbons displayed 3-dimensional hierarchical porous morphology with maximum specific surface area of 3094 m2 g-1 and pore volume of 1.72 cm3 g-1 using 3:1 KOH/lignin ratio for carbonization. Three-electrode determination achieved a specific capacitance of 352.9 F g-1 at a current of 0.5 A g-1, suggesting a superior rate performance of this carbon. Two-electrode determination obtained an excellent energy density of 9.5 W h kg-1 at power density of 25.0 W kg-1. Moreover, 5000 cycles of charge/discharge reached 88.46% retention at 5 A g-1, implying an outstanding cycle stability. Basically, low molecular weight and abundant oxygen-containing functional groups of employed lignin mainly related to the excellent porous morphology and the outstanding electrochemical performances, suggesting the oxidized lignin was an ideal precursor to facilely prepare activated carbon for high-performance supercapacitor. Overall, this work provides a new path to valorize lignin by-product derived from oxidative pretreatment techniques, which can further promote the integrality of lignocellulose biorefinery.
Collapse
Affiliation(s)
- Xue Wan
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary T2N 4H9, Canada
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
13
|
Lyu Q, Chen X, Zhang Y, Yu H, Han L, Xiao W. One-pot fractionation of corn stover with peracetic acid and maleic acid. BIORESOURCE TECHNOLOGY 2021; 320:124306. [PMID: 33157440 DOI: 10.1016/j.biortech.2020.124306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Lignocellulose fractionation is a primary treatment to enhance cellulose accessibility and multi-component use. Herein, the development of a one-step fractionation is reported for cellulose enrichment from corn stover using a low concentration of peracetic acid combined with maleic acid (PAM). The effects of pretreatment parameters on the contents of cellulose, hemicellulose, and lignin were investigated. After cooking for 1 h at 130 °C with 1.5 wt% peracetic acid and 3 wt% maleic acid, 86.83% of corn stover cellulose remained in the solid residue while 88.21% of hemicellulose and 87.77% of lignin dissolved into the aqueous liquid. Hemicellulose was primarily hydrolyzed into xylose with 84.58% recovered during the PAM process. The cellulose-rich residue was enzymatically hydrolyzed with a glucose yield of 89.65%, which was two to three times that of untreated substrate. Generally, the proposed process offers a promising approach for efficient fractionation of lignocellulose under mild and environmental-friendly conditions.
Collapse
Affiliation(s)
- Qian Lyu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Xueli Chen
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Yuxuan Zhang
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Haitao Yu
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China
| | - Weihua Xiao
- College of Engineering, China Agricultural University, Box 191, Beijing 100083, China.
| |
Collapse
|
14
|
Wan X, Yao F, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules 2019; 9:E844. [PMID: 31817992 PMCID: PMC6995591 DOI: 10.3390/biom9120844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023] Open
Abstract
Effective valorization of lignin is crucial to achieve a sustainable, economic and competitive biorefinery of lignocellulosic biomass. In this work, an integrated process was proposed based on a concentrated phosphoric acid plus hydrogen peroxide (PHP) pretreatment to simultaneously facilitate cellulose digestibility and modify lignin as adsorbent. As a dominant constitutor of PHP pretreatment, H2O2 input and its influence on the overall fractionation/lignin modification performance was thoroughly investigated. Results indicated that wheat straw was fractionated more efficiently by increasing the H2O2 input. H2O2 input had a significant influence on the digestibility of the obtained cellulose-rich fraction whereby almost 100.0% cellulose-glucose conversion can be achieved even with only 0.88% H2O2 input. Besides, the adsorption capacity of lignin on MB was improved (74.3 to 210.1 mg g-1) due to the oxidative-modification in PHP pretreatment with H2O2 inputs. Regression analysis indicated that -COOH groups mainly governed the lignin adsorption (R2 = 0.946), which displayed the considerable adsorption capacities for typical cationic substances. This work shows a promising way to integrate the lignin modification concept into the emerging PHP pretreatment process with the dual goal of both cellulose utilization and lignin valorization.
Collapse
Affiliation(s)
- Xue Wan
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Fengpei Yao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, The University of Calgary, Calgary, AB T2N 4H9, Canada;
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Yanzong Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (F.Y.); (D.T.); (Y.Z.); (G.Y.); (Y.Z.); (S.D.)
| |
Collapse
|
15
|
Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery. SUSTAINABILITY 2019. [DOI: 10.3390/su11216175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three typical waste furniture boards (fiberboard, chipboard, and blockboard) were pretreated with phosphoric acid and hydrogen peroxide (PHP). The fractionation process of these feedstocks was attempted in order to harvest the cellulose-rich fraction for enzymatic hydrolysis and bioethanol conversion; further, lignin recovery was also considered in this process. The results indicated that 78.9–91.2% of the cellulose was recovered in the cellulose-rich fraction. The decreased crystallinity, which promoted the water retention capacity and enzyme accessibility, contributed greatly to the excellent hydrolysis performance of the cellulose-rich fraction. Therefore, rather high cellulose–glucose conversions of 83.3–98.0% were achieved by hydrolyzing the pretreated furniture boards, which allowed for harvesting 208–241 g of glucose from 1.0 kg of feedstocks. Correspondingly, 8.1–10.4 g/L of ethanol were obtained after 120 h of simultaneous saccharification and fermentation. The harvested lignin exhibited abundant carboxyl –OH groups (0.61–0.67 mmol g−1). In addition, approximately 15–26 g of harvested oligosaccharides were integrated during PHP pretreatment. It was shown that PHP pretreatment is feasible for these highly recalcitrant biomass board materials, which can diversify the bioproducts used in the integrated biorefinery concept.
Collapse
|
16
|
Yao F, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. BIORESOURCE TECHNOLOGY 2019; 275:19-26. [PMID: 30572259 DOI: 10.1016/j.biortech.2018.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 05/15/2023]
Abstract
Pretreating lignocellulosic biomass by phosphoric acid plus hydrogen peroxide (PHP) was integrated with recovering concentrated phosphoric acid (CPA), lignin, and treating phosphorus (P) wastewater. Results indicated no significant effects on cellulose recovery was observed by promoting ethanol addition, but CPA and lignin recovery were improved to 80.0% and 23.3%, respectively. Increasing water addition did not greatly affect CPA recovery (80.0-80.4%), and lignin recovery (22.8-23.6%). Consequently, the ratio of 11:1 (ethanol/PHP solution) and 4:1 (water/de-ethanol liquor) were suggested for solid/liquid separation and lignin precipitation. Average 86.0% CPA was recycled for pretreatment (≥11 runs) with average 96.3% cellulose-glucose conversion. A specially-developed biochar from crab shell was efficient on P removal with maximal adsorption capacity of 261.6 mg/g. Pretreating 1.0 kg wheat straw by 1.1 kg CPA harvested 155.0 g ethanol, 45.0 g high purity lignin and 4.9 kg P-rich biochar fertilizer. Recovering CPA, biochar-fertilizer and lignin, and P wastewater treatment made PHP pretreatment towards more sustainable and cleaner.
Collapse
Affiliation(s)
- Fengpei Yao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Department of Wood Science, the University of British Columbia, Vancouver V6T 1Z4, BC, Canada; Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary T2N 4H9, Canada
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
17
|
Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. BIORESOURCE TECHNOLOGY 2018; 268:355-362. [PMID: 30096643 DOI: 10.1016/j.biortech.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
Phosphoric acid plus hydrogen peroxide (PHP) pretreatment was employed on wheat straw for ethanol conversion by simultaneous saccharification and fermentation (SSF) at high loadings. Results showed solid loading of PHP-pretreated wheat straw can be greatly promoted to 20%. Although more enzyme input improved ethanol conversion significantly, it still can be potentially reduced to 10-20 mg protein/g cellulose. Increasing yeast input also promoted ethanol conversion, however, the responses were not significant. Response surface method was employed to optimize SSF conditions with the strategy of maximizing ethanol conversion and concentration and minimizing enzyme and yeast input. Results indicated that ethanol conversion of 88.2% and concentration of 69.9 g/L were obtained after 120 h SSF at solid loading of 15.3%, and CTec2 enzyme and yeast were in lower input of 13.2 mg protein/g cellulose and 1.0 g/L, respectively. Consequently, 15.5 g ethanol was harvested from 100 g wheat straw in the optimal conditions.
Collapse
Affiliation(s)
- Jingwen Qiu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FIN-00076 Aalto, Finland
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
18
|
Chang KL, Wang XQ, Han YJ, Deng H, Liu JY, Lin YC. Enhanced Enzymatic Hydrolysis of Rice Straw Pretreated by Oxidants Assisted with Photocatalysis Technology. MATERIALS 2018; 11:ma11050802. [PMID: 29772644 PMCID: PMC5978179 DOI: 10.3390/ma11050802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
Abstract
This work evaluated the effectiveness of rice straw pretreatment using a TiO2/UV system in the presence of oxidants. The effects of TiO2 concentrations, pH and photocatalysis time were investigated. Inorganic oxidants including H2O2, K2S2O8, and KIO4 were added to further enhance the effect on enzymatic hydrolysis of rice straw. The TiO2/UV/ H2O2 pretreatment showed a higher amount of released reducing sugar (8.88 ± 0.10 mg/mL, compared to 5.47 ± 0.03 mg/mL in untreated sample). Composition analyses of rice straw after the TiO2/UV/H2O2 pretreatment showed partial lignin and hemicellulose removal. Moreover, structural features of untreated and pretreated rice straw were analyzed through FE-SEM, FT-IR, and XRD. This work suggests that H2O2 is an efficient addition for photocatalysis pretreatment of rice straw.
Collapse
Affiliation(s)
- Ken-Lin Chang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Xiao-Qin Wang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Ye-Ju Han
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Hao Deng
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Jing-Yong Liu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung 000807, Taiwan.
| |
Collapse
|
19
|
Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci Rep 2018; 8:1321. [PMID: 29358729 PMCID: PMC5778052 DOI: 10.1038/s41598-018-19517-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Wheat straw (WS) is a potential biomass for production of monomeric sugars. However, the enzymatic hydrolysis ratio of cellulose in WS is relatively low due to the presence of lignin and hemicellulose. To enhance the enzymatic conversion of WS, we tested the impact of three different pretreatments, e.g. sulfuric acid (H2SO4), sodium hydroxide (NaOH), and hot water pretreatments to the enzymatic digestions. Among the three pretreatments, the highest cellulose conversion rate was obtained with the 4% NaOH pretreatment at 121 °C (87.2%). In addition, NaOH pretreatment was mainly effective in removing lignin, whereas the H2SO4 pretreatment efficiently removed hemicellulose. To investigate results of pretreated process for enhancement of enzyme-hydolysis to the WS, we used scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy to analyze structural changes of raw and treated materials. The structural analysis indicated that after H2SO4 and NaOH pretreatments, most of the amorphous cellulose and partial crystalline cellulose were hydrolyzed during enzymatic hydrolysis. The findings of the present study indicate that WS could be ideal materials for production of monomeric sugars with proper pretreatments and effective enzymatic base hydrolysis.
Collapse
|
20
|
Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y. Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018; 8:12714-12723. [PMID: 35541248 PMCID: PMC9079361 DOI: 10.1039/c8ra00764k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
Xylan, de-alkaline lignin and microcrystalline cellulose were employed as representative models of hemicellulose, lignin and cellulose in lignocellulosic biomass. These three model compounds, together with the real-world biomass, wheat straw were pretreated using the newly developed PHP pretreatment (concentrated phosphoric acid plus hydrogen peroxide) to better understand the structural changes of the recovered solid and chemical fractions in the liquid. Results showed that almost all xylan and higher than 70% lignin were removed from wheat straw, and more than 90% cellulose was recovered in the solid fraction. The pretreated model xylan recovered via ethanol-precipitation still maintained its original structural features. The degree of polymerization of soluble xylooligosaccharides in liquid was reduced, resulting in the increase of monomeric xylose release. Further xylose oxidization via the path of 2-furancarboxylic acid → 2(5H)-furanone → acrylic acid → formic acid was mainly responsible for xylan degradation. The chemical structure of de-alkaline lignin was altered significantly by PHP pretreatment. Basic guaiacyl units of lignin were depolymerized, and aromatic rings and side aliphatic chains were partially decomposed. Ring-opening reactions of the aromatics and cleavage of C–O–C linkages were two crucial paths to lignin oxidative degradation. In contrast to lignin, no apparent changes occurred on microcrystalline cellulose. The reason was likely that acid-depolymerization and oxidative degradation of cellulose were greatly prevented by the formed cellulose phosphate. The transformation of cellulose, hemicellulose, and lignin in lignocellulosic biomass in a novel pretreatment are elucidated based on model fractions.![]()
Collapse
|
21
|
Wang Z, Shen D, Shen F, Wu C, Gu S. Ginkgo biloba L. shells-based adsorbent for the removal of Cu 2+ and Cd 2+ from aqueous solution: Kinetics, isotherm, thermodynamics and mechanisms. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. BIORESOURCE TECHNOLOGY 2017; 238:174-181. [PMID: 28433905 DOI: 10.1016/j.biortech.2017.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 05/26/2023]
Abstract
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores.
Collapse
Affiliation(s)
- Jingwen Qiu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Lunjie Ma
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yaodong Hu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
23
|
Zhang H, Xu Y, Yu S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. BIORESOURCE TECHNOLOGY 2017; 234:343-349. [PMID: 28340439 DOI: 10.1016/j.biortech.2017.02.094] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 05/11/2023]
Abstract
A novel and green approach for the coproduction of xylooligosaccharides (XOS), in terms of a series of oligosaccharide components from xylobiose to xylohexose, and fermentable sugars was developed using the prehydrolysis of acetic acid that was fully recyclable and environmentally friendly, followed by enzymatic hydrolysis. Compared to hydrochloric acid and sulfuric acid, acetic acid hydrolysis provided the highest XOS yield of 45.91% and the highest enzymatic hydrolysis yield. More than 91% conversion of cellulose was achieved in a batch-hydrolysis using only a cellulase loading of 20FPU/g cellulose and even a high solid loading of 20% without any special strategies. The acetic acid pretreated corncob should be washed adequately before saccharification to achieve complete hydrolysis. Consequently, a mass balance analysis showed that 139.8g XOS, 328.1g glucose, 25.1g cellobiose, and 147.8g xylose were produced from 1000g oven dried raw corncob.
Collapse
Affiliation(s)
- Hongyu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Shiyuan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
24
|
Udeh BA, Erkurt EA. Compositional and structural changes in Phoenix canariensis and Opuntia ficus-indica with pretreatment: Effects on enzymatic hydrolysis and second generation ethanol production. BIORESOURCE TECHNOLOGY 2017; 224:702-707. [PMID: 27847237 DOI: 10.1016/j.biortech.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Two different plants namely Phoenix canariensis and Opuntia ficus-indica were used as substrate for reducing sugar generation and ethanol production. Dilute acid, alkaline and steam explosion were used as pretreatment methods in order to depolymerize lignin and/or hemicellulose and recover cellulose. By using alkaline pretreatment with 2.5% NaOH 71.08% for P. canariensis and 74.61% for O. ficus-indica lignin removal and 81.84% for P. canariensis and 72.66% for O. ficus-indica cellulose recovery yields were obtained. Pretreated materials were hydrolyzed by cellulase with high efficiency (87.0% and 84.5% cellulose conversion yields for P. canariensis and O. ficus-indica) and used as substrate for fermentation. Maximum ethanol production of 15.75g/L and 14.71g/L were achieved from P. canariensis and O. ficus-indica respectively. Structural differences were observed by XRD, FTIR and SEM for untreated, pretreated, hydrolyzed and fermented samples and were highly correlated with compositional analysis results.
Collapse
Affiliation(s)
- Benard Anayo Udeh
- Cyprus International University, Department of Environmental Sciences, Haspolat - Nicosia, Turkish Republic of Northern Cyprus via Mersin 10, Turkey
| | - Emrah Ahmet Erkurt
- Cyprus International University, Department of Environmental Sciences, Haspolat - Nicosia, Turkish Republic of Northern Cyprus via Mersin 10, Turkey.
| |
Collapse
|
25
|
Tang S, Liu R, Sun FF, Dong C, Wang R, Gao Z, Zhang Z, Xiao Z, Li C, Li H. Bioprocessing of tea oil fruit hull with acetic acid organosolv pretreatment in combination with alkaline H 2O 2. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:86. [PMID: 28405217 PMCID: PMC5385081 DOI: 10.1186/s13068-017-0777-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND As a natural renewable biomass, the tea oil fruit hull (TOFH) mainly consists of lignocellulose, together with some bioactive substances. Our earlier work constructed a two-stage solvent-based process, including one aqueous ethanol organosolv extraction and an atmospheric glycerol organosolv (AGO) pretreatment, for bioprocessing of the TOFH into diverse bioproducts. However, the AGO pretreatment is not as selective as expected in removing the lignin from TOFH, resulting in the limited delignification and simultaneously high cellulose loss. RESULTS In this study, acetic acid organosolv (AAO) pretreatment was optimized with experimental design to fractionate the TOFH selectively. Alkaline hydrogen peroxide (AHP) pretreatment was used for further delignification. Results indicate that the AAO-AHP pretreatment had an extremely good selectivity at component fractionation, resulting in 92% delignification and 88% hemicellulose removal, with 87% cellulose retention. The pretreated substrate presented a remarkable enzymatic hydrolysis of 85% for 48 h at a low cellulase loading of 3 FPU/g dry mass. The hydrolyzability was correlated with the composition and structure of substrates by using scanning electron microscopy, confocal laser scanning microscopy, and X-ray diffraction. CONCLUSION The mild AAO-AHP pretreatment is an environmentally benign and advantageous scheme for biorefinery of the agroforestry biomass into value-added bioproducts.
Collapse
Affiliation(s)
- Song Tang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
| | - Rukuan Liu
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Chunying Dong
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Rui Wang
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Zhongyuan Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4001 Australia
| | - Zhihong Xiao
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Changzhu Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| | - Hui Li
- National Engineering Research Center for Oil-tea Camellia, Hunan Academy of Forestry, Changsha, 410004 China
| |
Collapse
|
26
|
Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification. Appl Biochem Biotechnol 2016; 181:1123-1139. [DOI: 10.1007/s12010-016-2273-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
27
|
Chandolias K, Pardaev S, Taherzadeh MJ. Biohydrogen and carboxylic acids production from wheat straw hydrolysate. BIORESOURCE TECHNOLOGY 2016; 216:1093-1097. [PMID: 27268482 DOI: 10.1016/j.biortech.2016.05.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.
Collapse
Affiliation(s)
| | - Sindor Pardaev
- Samarkand Agricultural Institute, 140103 Samarkand, Uzbekistan
| | | |
Collapse
|
28
|
Qi G, Xiong L, Wang B, Lin X, Zhang H, Li H, Huang C, Chen X, Wang C, Chen X. Improvement and Characterization in Enzymatic Hydrolysis of Regenerated Wheat Straw Dissolved by LiCl/DMAc Solvent System. Appl Biochem Biotechnol 2016; 181:177-191. [DOI: 10.1007/s12010-016-2206-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|