1
|
Lima PJM, da Silva RM, Neto CACG, Gomes E Silva NC, Souza JEDS, Nunes YL, Sousa Dos Santos JC. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem 2022; 69:2794-2818. [PMID: 33481298 DOI: 10.1002/bab.2098] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Glycerol is a common by-product of industrial biodiesel syntheses. Due to its properties, availability, and versatility, residual glycerol can be used as a raw material in the production of high value-added industrial inputs and outputs. In particular, products like hydrogen, propylene glycol, acrolein, epichlorohydrin, dioxalane and dioxane, glycerol carbonate, n-butanol, citric acid, ethanol, butanol, propionic acid, (mono-, di-, and triacylglycerols), cynamoil esters, glycerol acetate, benzoic acid, and other applications. In this context, the present study presents a critical evaluation of the innovative technologies based on the use of residual glycerol in different industries, including the pharmaceutical, textile, food, cosmetic, and energy sectors. Chemical and biochemical catalysts in the transformation of residual glycerol are explored, along with the factors to be considered regarding the choice of catalyst route used in the conversion process, aiming at improving the production of these industrial products.
Collapse
Affiliation(s)
- Paula Jéssyca Morais Lima
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Rhonyele Maciel da Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | | | - Natan Câmara Gomes E Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| | - Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE, Brazil.,Instituto de Engenharias e Desenvolvimento Sustentável - IEDS, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE, Brazil
| |
Collapse
|
2
|
Optimized Recombinant Expression and Characterization of Collagenase in Bacillus subtilis WB600. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The collagenase encoding gene col was cloned into a pP43NMK vector and amplified in Escherichia coli JM109 cells. The shuttle vector pP43NMK was used to sub-clone the col gene to obtain the vector pP43NMK-col for the expression of collagenase in Bacillus subtilis WB600. The enzyme was characterized and the composition of the expression medium and culture conditions were optimized. Methods: The expressed recombinant enzyme was purified by ammonium sulfate, ultrafiltration, and through a nickel column. The purified collagenase had an activity of 9405.54 U/mg. Results: The recombinant enzyme exhibited optimal activity at pH 9.0 and 50 °C. Catalytic efficiency of the recombinant collagenase was inhibited by Fe3+ and Cu2+, but stimulated by Co2+, Ca2+, Zn2+, and Mg2+. The optimal conditions for its growth were at pH 7.0 and 35 °C, using 15 g/L of fructose and 36 g/L of yeast powder and peptone mixture (2:1) at 260 rpm with 11% inoculation. The maximal extracellular activity of the recombinant collagenase reached 2746.7 U/mL after optimization of culture conditions, which was 2.4-fold higher than that before optimization. Conclusions: This study is a first attempt to recombinantly express collagenase in B. subtilis WB600 and optimize its expression conditions, its production conditions, and possible scale-up.
Collapse
|
3
|
Mermejo BDC, Bortolucci J, de Andrade AR, Reginatto V. The Non-solventogenic Clostridium beijerinckii Br21 Produces 1,3-Propanediol From Glycerol With Butyrate as the Main By-Product. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.848022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ever-increasing biofuel production has raised the supply of glycerol, an abundant waste from ethanolic fermentation and transesterification, for biodiesel production. Glycerol can be a starting material for sustainable production of 1,3-propanediol (1,3 PD), a valued polymer subunit. Here, we compare how Clostridium pasteurianum DSMZ 525, a well-known 1,3-PD-producer, and the non-solventogenic Clostridium beijerinckii Br21 perform during glycerol fermentation. Fermentative assays in 80-, 390-, or 1,100-mM glycerol revealed higher 1,3-PD productivity by DSMZ 525 compared to Br21. The highest 1,3-PD productivities by DSMZ 525 and Br21 were obtained in 390 mM glycerol: 3.01 and 1.70 mM h−1, respectively. Glycerol uptake by the microorganisms differed significantly: C. beijerinckii Br21 consumed 41.1, 22.3, and 16.3%, while C. pasteurianum consumed 93, 44.5, and 14% of the initial glycerol concentration in 80, 390, and 1,100 mM glycerol, respectively. In 1,100 mM glycerol, C. beijerinckii Br21 growth was delayed. Besides 1,3-PD, we detected butyrate and acetate during glycerol fermentation by both strains. However, at 80 mM glycerol, C. beijerinckii Br21 formed only butyrate as the by-product, which could help downstream processing of the 1,3-PD fermentation broth. Therefore, C. beijerinckii Br21, an unexplored biocatalyst so far, can be used to convert glycerol to 1,3-PD and can be applied in biofuel biorefineries.
Collapse
|
4
|
Wang SX, Huang P, Liu H, Dai Y, Wang XL, Liu GQ. Optimization for the production of a polyketone 3S,4S-DMD from Panus lecomtei (Agaricomycetes) by submerged fermentation. Mycology 2022; 13:212-222. [PMID: 35938082 PMCID: PMC9354644 DOI: 10.1080/21501203.2022.2036842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3,4-Dihydroxy-2,2-dimethyl-chroman derivatives have diverse physiological properties. A polyketone (3S,4S)-3,4-Dihydroxy-6-methoxy-2,2-dimethylchromom (3S,4S-DMD) with antibacterial activity was isolated from the solid culture of rare edible fungus Panus lecomtei. However, the yield of 3S,4S-DMD in solid culture of P. lecomtei is very low and the production period are too long. In this work, efficient accumulation of 3S,4S-DMD in P. lecomtei by submerged fermentation is studied. The key fermentation factors of P. lecomtei for 3S,4S-DMD production were optimised by single-factor experiment successively, and then a Box-Behnken design (BBD) experiment was carried out to further enhance 3S,4S-DMD production. A maximum 3S,4S-DMD yield of 196.3 mg/L was obtained at 25.78 g/L glucose, 1.67 g/L MgSO4 · 7H2O, 40°C and 197 r/min, respectively, which increased by 1.3-fold in comparison with that in the non-optimised fermentation conditions. Furthermore, an enhanced yield of 3S,4S-DMD (261.6 mg/L) was obtained in 5-L agitated fermenter. The 3S,4S-DMD productivity in flask and fermenter reached to 7.26 and 8.07 mg/g per day, respectively, which considerably increased by over 121-fold in comparison with that in the solid fermentation (0.06 mg/g per day). This study presents a potential method for the production of 3S,4S-DMD by submerged fermentation.
Collapse
Affiliation(s)
- Si-Xian Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha, China
| | - Ping Huang
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yucheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha, China
| |
Collapse
|
5
|
Altafini RDM, Martins TM, Bruni AT, Reginatto V. Upgraded medium composition highlights the relevance of iron sulfate for 1,3-propanediol production by a Clostridium beijerinckii strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Iyyappan J, Bharathiraja B, Varjani S, PraveenKumar R, Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126405. [PMID: 34826562 DOI: 10.1016/j.biortech.2021.126405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microbial reduction of black strap molasses (BSM) by Clostridium acetobutylicum MTCC 11,274 was performed for the production of biobutanol. The optimum fermentation conditions were predicted using one factor at a time (OFAT) method. The identification of significant parameters was performed using Plackett-Burman Design (PBD). Furthermore the fermentation conditions were optimized using central composite design (CCD). The kinetics of substrate utilization and product formation were investigated. Initial pH, yeast extract concentration (g/L) and total reducing sugar concentration (g/L) were found as significant parameters affecting butanol production using C. acetobutylicum MTCC11274. The maximum butanol production under optimal condition was 10.27 + 0.82 g/L after 24 h. The waste black strap molasses obtained from sugar industry could be used as promising substrate for the production of next generation biofuel.
Collapse
Affiliation(s)
- J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602107, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - R PraveenKumar
- Arunai Engineering College, Tiruvannamalai 606603, India
| | - S Muthu Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
7
|
Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources. Biochem Soc Trans 2021; 48:2283-2293. [PMID: 32897293 DOI: 10.1042/bst20200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Butanol is an important chemical and potential fuel. For more than 100 years, acetone-butanol-ethanol (ABE) fermentation of Clostridium strains has been the most successful process for biological butanol production. In recent years, other microbes have been engineered to produce butanol as well, among which Escherichia coli was the best one. Considering the crude oil price fluctuation, minimizing the cost of butanol production is of highest priority for its industrial application. Therefore, using cheaper feedstocks instead of pure sugars is an important project. In this review, we summarized butanol production from different renewable resources, such as industrial and food waste, lignocellulosic biomass, syngas and other renewable resources. This review will present the current progress in this field and provide insights for further engineering efforts on renewable butanol production.
Collapse
|
8
|
Arbter P, Sabra W, Utesch T, Hong Y, Zeng A. Metabolomic and kinetic investigations on the electricity-aided production of butanol by Clostridium pasteurianum strains. Eng Life Sci 2021; 21:181-195. [PMID: 33716617 PMCID: PMC7923553 DOI: 10.1002/elsc.202000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
In this contribution, we studied the effect of electro-fermentation on the butanol production of Clostridium pasteurianum strains by a targeted metabolomics approach. Two strains were examined: an electrocompetent wild type strain (R525) and a mutant strain (dhaB mutant) lacking formation of 1,3-propanediol (PDO). The dhaB-negative strain was able to grow on glycerol without formation of PDO, but displayed a high initial intracellular NADH/NAD ratio which was lowered subsequently by upregulation of the butanol production pathway. Both strains showed a 3-5 fold increase of the intracellular NADH/NAD ratio when exposed to cathodic current in a bioelectrochemical system (BES). This drove an activation of the butanol pathway and resulted in a higher molar butanol to PDO ratio for the R525 strain. Nonetheless, macroscopic electron balances suggest that no significant amount of electrons derived from the BES was harvested by the cells. Overall, this work points out that electro-fermentation can be used to trigger metabolic pathways and improve product formation, even when the used microbe cannot be considered electroactive. Accordingly, further studies are required to unveil the underlying (regulatory) mechanisms.
Collapse
Affiliation(s)
- Philipp Arbter
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Yaeseong Hong
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| |
Collapse
|
9
|
Increased Selectivity for Butanol in Clostridium Pasteurianum Fermentations via Butyric Acid Addition or Dual Feedstock Strategy. FERMENTATION 2020. [DOI: 10.3390/fermentation6030067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Volatility of the petroleum market has renewed research into butanol as an alternate fuel. In order to increase the selectivity for butanol during glycerol fermentation with Clostridium pasteurianum, butyric acid can be added to the medium. In this manuscript, different methods of extracellular butyric acid addition are explored, as well as self-generation of butyric acid fermented from sugars in a co-substrate strategy. Molasses was used as an inexpensive sugar substrate, and the optimal molasses to glycerol ratio was found to allow the butyric acid to be taken back up into the cells and increase the productivity of butanol from all carbon sources. When butyric acid is added directly into the media, there was no significant difference between chemically pure butyric acid, or butyric acid rich supernatant from a separate fermentation. When low concentrations of butyric acid (1 or 2 g/L) are added to the initial media, an inhibitory effect is observed, with no influence on the butanol selectivity. However, when added later to the fermentation, over 1 g/L butyric acid is taken into the cells and increased the relative carbon yield from 0.449 to 0.519 mols carbon in product/mols carbon in substrate. An optimized dual substrate fermentation strategy in a pH-controlled reactor resulted in the relative carbon yield rising from 0.439 when grown on solely glycerol, to 0.480 mols C product/mols C substrate with the dual substrate strategy. An additional benefit is the utilization of a novel source of sugars to produce butanol from C. pasteurianum. The addition of butyric acid, regardless of how it is generated, under the proper conditions can allow for increased selectivity for butanol from all substrates.
Collapse
|
10
|
Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis XY. Int J Biol Macromol 2020; 148:173-181. [DOI: 10.1016/j.ijbiomac.2020.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/17/2022]
|
11
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
12
|
Munch G, Schulte A, Mann M, Dinger R, Regestein L, Rehmann L, Büchs J. Online measurement of CO2 and total gas production in parallel anaerobic shake flask cultivations. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Sarchami T, Rehmann L. Increased Butanol Yields through Cosubstrate Fermentation of Jerusalem Artichoke Tubers and Crude Glycerol by Clostridium pasteurianum DSM 525. ACS OMEGA 2019; 4:15521-15529. [PMID: 31572853 PMCID: PMC6761685 DOI: 10.1021/acsomega.9b00879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Clostridium pasteurianum DSM 525 can produce butanol, 1,3-propanediol, and ethanol from glycerol. The product distribution can be tilted toward butanol when adding butyric acid. The strain predominantly produces acetic and butyric acids when grown on saccharides. Hence, butyrate formed from saccharide conversion can be used to stimulate butanol production from glycerol under cosubstrate cultivation. The optimal cosubstrate ratio was determined, and under optimal conditions, a butanol yield and a productivity of 0.27 ± 0.01 gbutanol g-1 (glycerol + sugar) -1 and 0.74 ± 0.02 g L-1 h-1 were obtained. On the basis of these results, batch fermentation in a 5 L bioreactor was performed using Jerusalem artichoke hydrolysate (carbohydrate source) and crude glycerol (residue from biodiesel production) at the previously determined optimal condition. A butanol yield and a productivity of 0.28 ± 0.007 gbutanol g(glycerol+sugar) -1 and 0.55 ± 0.008 g L-1 h-1 were achieved after 27 h fermentation, indicating the suitability of those low-cost carbon sources as cosubstrates for butanol production via C. pasteurianum.
Collapse
|
14
|
Wang Z, Gao W, Liu X, Chen P, Lu W, Wang F, Li H, Sun Q, Zhang H. Efficient production of polysaccharide by Chaetomium globosum CGMCC 6882 through co-culture with host plant Gynostemma pentaphyllum. Bioprocess Biosyst Eng 2019; 42:1731-1738. [PMID: 31321528 DOI: 10.1007/s00449-019-02169-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Endophytic fungus, as a new kind of microbial resources and separated from plants, has attracted increasing attention due to its ability to synthesize the same or similar bioactive secondary metabolites as the host plants. Nevertheless, the effects of the symbiotic relationship between microorganisms and elicitors existed in host plant on metabolite production are not adequately understood. In the present work, the impacts of elicitors (ginseng saponin and puerarin) and symbiotic microorganisms on endophytic fungus Chaetomium globosum CGMCC 6882 synthesizing polysaccharide were evaluated. Results show that the polysaccharide titers increased from 2.36 to 3.88 g/L and 3.67 g/L with the addition of 16 μg/L ginseng saponin and puerarin, respectively. Moreover, the maximum polysaccharide titer reached 4.55 g/L when C. globosum CGMCC 6882 was co-cultured with UV-irradiated G. pentaphyllum. This work brings a significant contribution to the research and interpretation of the relationship between endophytic fungus and its host plant.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenshuo Gao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiaoying Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Peizhang Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenbo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Fuzhuan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Benali M, Ajao O, El Mehdi N, Restrepo AM, Fradj N, Boumghar Y. Acetone–Butanol–Ethanol Production from Eastern Canadian Yellow Birch and Screening of Isopropanol–Butanol–Ethanol-Producing Strains. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marzouk Benali
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | - Olumoye Ajao
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | - Naima El Mehdi
- Natural Resources Canada, CanmetENERGY, Varennes, Canada
| | | | - Narimene Fradj
- Université du Québec à Trois-Rivières, Department of Chemistry, Biochemistry and Physics, Trois-Rivières, Canada
| | - Yacine Boumghar
- Centre d'études des procédés chimiques du Québec, Montréal, Canada
| |
Collapse
|
16
|
Ye Z, Song J, Zhu E, Song X, Chen X, Hong X. Alginate Adsorbent Immobilization Technique Promotes Biobutanol Production by Clostridium acetobutylicum Under Extreme Condition of High Concentration of Organic Solvent. Front Microbiol 2018; 9:1071. [PMID: 29910776 PMCID: PMC5992427 DOI: 10.3389/fmicb.2018.01071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
In Acetone-Butanol-Ethanol fermentation, bacteria should tolerate high concentrations of solvent products, which inhibit bacteria growth and limit further increase of solvents to more than 20 g/L. Moreover, this limited solvent concentration significantly increases the cost of solvent separation through traditional approaches. In this study, alginate adsorbent immobilization technique was successfully developed to assist in situ extraction using octanol which is effective in extracting butanol but presents strong toxic effect to bacteria. The adsorbent improved solvent tolerance of Clostridium acetobutylicum under extreme condition of high concentration of organic solvent. Using the developed technique, more than 42% of added bacteria can be adsorbed to the adsorbent. Surface area of the adsorbent was more than 10 times greater than sodium alginate. Scanning electron microscope image shows that an abundant amount of pore structure was successfully developed on adsorbents, promoting bacteria adsorption. In adsorbent assisted ABE fermentation, there was 21.64 g/L butanol in extracting layer compared to negligible butanol produced with only the extractant but without the adsorbent, for the reason that adsorbent can reduce damaging exposure of C. acetobutylicum to octanol. The strategy can improve total butanol production with respect to traditional culture approach by more than 2.5 fold and save energy for subsequent butanol recovery, which effects can potentially make the biobutanol production more economically practical.
Collapse
Affiliation(s)
- Zhuoliang Ye
- School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Jingyi Song
- School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Enhao Zhu
- School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Xin Song
- School of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering, Fuzhou University, Fuzhou, China.,National Engineering Research Center for Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, China
| | - Xiaoting Hong
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
17
|
Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, Zeng Q. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. BIORESOURCE TECHNOLOGY 2018; 253:343-354. [PMID: 29329775 DOI: 10.1016/j.biortech.2018.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Butyric acid is an important platform chemical, which is widely used in the fields of food, pharmaceutical, energy, etc. Microbial fermentation as an alternative approach for butyric acid production is attracting great attention as it is an environmentally friendly bioprocessing. However, traditional fermentative butyric acid production is still not economically competitive compared to chemical synthesis route, due to the low titer, low productivity, and high production cost. Therefore, reduction of butyric acid production cost by utilization of alternative inexpensive feedstock, and improvement of butyric acid production and productivity has become an important target. Recently, several advanced strategies have been developed for enhanced butyric acid production, including bioprocess techniques and metabolic engineering methods. This review provides an overview of advances and strategies in process and strain engineering for butyric acid production by microbial fermentation. Additionally, future perspectives on improvement of butyric acid production are also proposed.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mengyu Huang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
18
|
Performance of commercial composite hydrophobic membranes applied for pervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Xin F, Chen T, Jiang Y, Lu J, Dong W, Zhang W, Ma J, Zhang M, Jiang M. Enhanced biobutanol production with high yield from crude glycerol by acetone uncoupled Clostridium sp. strain CT7. BIORESOURCE TECHNOLOGY 2017; 244:575-581. [PMID: 28803108 DOI: 10.1016/j.biortech.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 05/06/2023]
Abstract
This study reports a unique acetone uncoupled Clostridium species strain CT7, which shows efficient capability of glycerol utilization with high butanol ratio. Medium compositions, such as substrate concentration, micronutrients and pH show significant effects on butanol production from glycerol by strain CT7. To further maximize butanol production, fermentation conditions were optimized by using response surface methodology (RSM). Final butanol production of 16.6g/L with yield of 0.43g/g consumed glycerol was obtained, representing the highest butanol production and yield from glycerol in the batch fermentation mode. Furthermore, strain CT7 could directly convert crude glycerol to 11.8g/L of butanol without any pretreatment. Hence, strain CT7 shows immense potential for biofuels production using waste glycerol as cheap substrate.
Collapse
Affiliation(s)
- Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
20
|
Pervaporative butanol removal from PBE fermentation broths for the bioconversion of glycerol by Clostridium pasteurianum. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Groeger C, Wang W, Sabra W, Utesch T, Zeng AP. Metabolic and proteomic analyses of product selectivity and redox regulation in Clostridium pasteurianum grown on glycerol under varied iron availability. Microb Cell Fact 2017; 16:64. [PMID: 28424096 PMCID: PMC5395762 DOI: 10.1186/s12934-017-0678-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/09/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clostridium pasteurianum as an emerging new microbial cell factory can produce both n-butanol (BuOH) and 1,3-propanediol (1,3-PDO), and the pattern of product formation changes significantly with the composition of the culture medium. Among others iron content in the medium was shown to strongly affect the products selectivity. However, the mechanism behind this metabolic regulation is still unclear. For a better understanding of such metabolic regulation and for process optimization, we carried out fermentation experiments under either iron excess or iron limitation conditions, and performed metabolic, stoichiometric and proteomic analyses. RESULTS 1,3-PDO is most effectively produced under iron limited condition (Fe-), whereas 1,3-PDO and BuOH were both produced under iron rich condition (Fe+). With increased iron availability the BuOH/1,3-PDO ratio increased significantly from 0.27 mol/mol (at Fe-) to 1.4 mol/mol (at Fe+). Additionally, hydrogen production was enhanced significantly under Fe+ condition. Proteomic analysis revealed differentiated expression of many proteins including several ones of the central carbon metabolic pathway. Among others, pyruvate: ferredoxin oxidoreductase, hydrogenases, and several electron transfer flavoproteins was found to be strongly up-regulated under Fe+ condition, pointing to their strong involvement in the regeneration of the oxidized form of ferredoxin, and consequently their influences on the product selectivity in C. pasteurianum. Of particular significance is the finding that H2 formation in C. pasteurianum is coupled to the ferredoxin-dependent butyryl-CoA dehydrogenase catalyzed reaction, which significantly affects the redox balance and thus the product selectivity. CONCLUSIONS The metabolic, stoichiometric and proteomic results clearly show the key roles of hydrogenases and ferredoxins dependent reactions in determining the internal redox balance and hence product selectivity. Not only the NADH pool but also the regulation of the ferredoxin pool could explain such product variation under different iron conditions.
Collapse
Affiliation(s)
- Christin Groeger
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestr.15, 21073 Hamburg, Germany
| |
Collapse
|
22
|
Bagnato G, Iulianelli A, Sanna A, Basile A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. MEMBRANES 2017; 7:membranes7020017. [PMID: 28333121 PMCID: PMC5489851 DOI: 10.3390/membranes7020017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.
Collapse
Affiliation(s)
- Giuseppe Bagnato
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (ITM-CNR), c/o University of Calabria, via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| | - Aimaro Sanna
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Angelo Basile
- Institute on Membrane Technology of the Italian National Research Council (ITM-CNR), c/o University of Calabria, via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
23
|
Kaushal M, Ahlawat S, Mukherjee M, Muthuraj M, Goswami G, Das D. Substrate dependent modulation of butanol to ethanol ratio in non-acetone forming Clostridium sporogenes NCIM 2918. BIORESOURCE TECHNOLOGY 2017; 225:349-358. [PMID: 27912184 DOI: 10.1016/j.biortech.2016.11.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Present study reports a non-acetone producing Clostridium sporogenes strain as a potential producer of liquid biofuels. Alcohol production was positively regulated by sorbitol and instant dry yeast as carbon and nitrogen sources respectively. Media optimization resulted in maximum butanol and ethanol titer (gL-1) of 12.1 and 7.9 respectively. Depending on the combination of carbon sources, the organism was found to manipulate its metabolism towards synthesis of either ethanol or butanol, thereby affecting the total alcohol titer. Among various dual substrate combinations, glucose-glycerol mixture in the ratio of 60:40 resulted in maximum butanol and ethanol titer (gL-1) of 11.9 and 12.1 respectively with total alcohol productivity of 0.59gL-1h-1. In the mixture, when pure glycerol was replaced with crude glycerol, butanol and ethanol titer (gL-1) of 11.2 and 11.7 was achieved. Hence, the strain shows immense potential for biofuels production using crude glycerol as cheap substrate.
Collapse
Affiliation(s)
- Mehak Kaushal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Saumya Ahlawat
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Mayurketan Mukherjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Gargi Goswami
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
24
|
Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum. Metab Eng 2017; 40:124-137. [PMID: 28119139 PMCID: PMC5367854 DOI: 10.1016/j.ymben.2017.01.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 11/23/2022]
Abstract
Declining fossil fuel reserves, coupled with environmental concerns over their continued extraction and exploitation have led to strenuous efforts to identify renewable routes to energy and fuels. One attractive option is to convert glycerol, a by-product of the biodiesel industry, into n-butanol, an industrially important chemical and potential liquid transportation fuel, using Clostridium pasteurianum. Under certain growth conditions this Clostridium species has been shown to predominantly produce n-butanol, together with ethanol and 1,3-propanediol, when grown on glycerol. Further increases in the yields of n-butanol produced by C. pasteurianum could be accomplished through rational metabolic engineering of the strain. Accordingly, in the current report we have developed and exemplified a robust tool kit for the metabolic engineering of C. pasteurianum and used the system to make the first reported in-frame deletion mutants of pivotal genes involved in solvent production, namely hydA (hydrogenase), rex (Redox response regulator) and dhaBCE (glycerol dehydratase). We were, for the first time in C. pasteurianum, able to eliminate 1,3-propanediol synthesis and demonstrate its production was essential for growth on glycerol as a carbon source. Inactivation of both rex and hydA resulted in increased n-butanol titres, representing the first steps towards improving the utilisation of C. pasteurianum as a chassis for the industrial production of this important chemical.
Collapse
|
25
|
Bekatorou A, Dima A, Tsafrakidou P, Boura K, Lappa K, Kandylis P, Pissaridi K, Kanellaki M, Koutinas AA. Downstream extraction process development for recovery of organic acids from a fermentation broth. BIORESOURCE TECHNOLOGY 2016; 220:34-37. [PMID: 27560489 DOI: 10.1016/j.biortech.2016.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The present study focused on organic acids (OAs) recovery from an acidogenic fermentation broth, which is the main problem regarding the use of OAs for production of ester-based new generation biofuels or other applications. Specifically, 10 solvents were evaluated for OAs recovery from aqueous media and fermentation broths. The effects of pH, solvent/OAs solution ratios and application of successive extractions were studied. The 1:1 solvent/OAs ratio showed the best recovery rates in most cases. Butyric and isobutyric acids showed the highest recovery rates (80-90%), while lactic, succinic, and acetic acids were poorly recovered (up to 45%). The OAs recovery was significantly improved by successive 10-min extractions. Alcohols presented the best extraction performance. The process using repeated extractions with 3-methyl-1-butanol led to the highest OAs recovery. However, 1-butanol can be considered as the most cost-effective option taking into account its price and availability.
Collapse
Affiliation(s)
- Argyro Bekatorou
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Agapi Dima
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Panagiotia Tsafrakidou
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Konstantina Boura
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Katerina Lappa
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Panagiotis Kandylis
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Katerina Pissaridi
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Maria Kanellaki
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Athanasios A Koutinas
- Food Biotechnology Group, Department of Chemistry, University of Patras, Patras 26500, Greece.
| |
Collapse
|
26
|
Wu J, Zhang X, Zhou J, Dong M. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. BIORESOURCE TECHNOLOGY 2016; 218:999-1007. [PMID: 27450982 DOI: 10.1016/j.biortech.2016.07.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 05/06/2023]
Abstract
Microbial fermentations promise to revolutionize the conventional extraction of (2S)-pinocembrin from natural plant sources. Previously an Escherichia coli fermentation system was developed for one-step (2S)-pinocembrin production. However, this fermentation platform need supplementation of expensive malonyl-CoA precursor malonate and requires morpholinopropane sulfonate to provide buffering capacity. Here, a clustered regularly interspaced short palindromic repeats interference was constructed to efficiently channel carbon flux toward malonyl-CoA. By exploring the effects of different culture pH on microbial fermentation, it was found that high pH values favored upstream pathway catalysis, while low pH values favored downstream pathway catalysis. Based on this theory, a two-stage pH control strategy was proposed. The pH was controlled at 7.0 during 0-10h, and was shifted to 6.5 after 10h. Finally, the (2S)-pinocembrin titers increased to 525.8mg/L. These results were attained in minimal medium without additional precursor supplementation, thus offering opportunities for industrial scale low-cost production of flavonoids.
Collapse
Affiliation(s)
- Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Xia Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
27
|
Pyne ME, Liu X, Moo-Young M, Chung DA, Chou CP. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. Sci Rep 2016; 6:26228. [PMID: 27641836 PMCID: PMC5027557 DOI: 10.1038/srep26228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided.
Collapse
Affiliation(s)
- Michael E Pyne
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Xuejia Liu
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Duane A Chung
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Ontario, Canada.,Algaeneers Inc. and Neemo Inc., Hamilton, Ontario, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
28
|
A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. FERMENTATION-BASEL 2016. [DOI: 10.3390/fermentation2020013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol. World J Microbiol Biotechnol 2016; 32:103. [DOI: 10.1007/s11274-016-2056-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
|