1
|
Zou S, Zhang Z, Lee YY, Ai H, Zhang Y, Wang Y. Lipase-catalyzed esterification for efficient acylglycerols synthesis in a solvent-free system: Process optimization, mass transfer insights and kinetic modeling. Food Chem 2025; 474:143151. [PMID: 39891972 DOI: 10.1016/j.foodchem.2025.143151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Acylglycerols are widely used in the food industry due to their antimicrobial, emulsifying and nutritional properties. This study investigated the key reaction parameters, mass transfer mechanisms, and kinetic features of lipase-catalyzed esterification in a solvent-free system. Taguchi method was further employed to explore the relationship between "reaction parameter - yield composition". The results revealed that the maximum selectivity were achieved fror MAG (57.72 %), DAG (82.67 %) and TAG (79.29 %) under different enzymatic conditions. Fatty acid-to-glycerol molar ratio had the greatest impact on DAG selectivity, contributing 38.08 % of total impact level. Mass transfer analysis showed that external mass transfer limitation could be effectively overcome at stirring speeds above 600 rpm. Kinetic analysis confirmed that the reaction followed the Ping-Pong BiBi mechanism with alcohol and acid inhibition (SSE = 0.000643). This work provided a theoretical basis for developing more efficient and selective catalytic processes, aiding in quality control, reactor design, and industrial scale-up.
Collapse
Affiliation(s)
- Shuo Zou
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhen Zhang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Hongzeng Ai
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yufei Zhang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei 430062, China
| | - Yong Wang
- China-Malaysia Belt and Road Joint Laboratory on Oil Processing and Safety, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
do Nascimento NN, Cansian ABM, de Sousa JS, Negrão FN, Tardioli PW, Vieira AMS. Plants lipases: challenges, recent advances, and future prospects - a review. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03164-y. [PMID: 40220056 DOI: 10.1007/s00449-025-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Plant lipases offer a sustainable and promising alternative for various industrial applications, with increasing use in biocatalytic processes in recent years. Leveraging plants as renewable resources reduces dependence on animal or microbial sources, providing significant potential for sustainable lipase production. These lipases are biodegradable and less toxic, enhancing their cost-effectiveness, particularly when sourced from plants with additional economic value. The diversity of plant species offers a wide array of lipases with different properties, broadening their industrial applications. Additionally, integrating plant lipase production into existing agricultural processes by using agricultural residues or by-products as enzyme sources can reduce costs and add value to waste materials. Despite their potential, several challenges must be addressed for the effective utilization of plant-derived lipases. Reducing extraction and purification costs is essential to make these enzymes competitive with other sources. Advancements in the biochemical and structural characterization of plant lipases have facilitated enzymatic engineering approaches to enhance enzyme stability, specificity, and catalytic efficiency. A review of the current research can help identify gaps and suggest new directions for enzyme development and technological advancements. Understanding the mechanisms of action and unique properties of plant lipases can drive innovations in biocatalytic processes. This review aims to highlight the characteristics of plant lipases and the challenges in their extraction, purification, and stability. This study conducted a narrative review using a database of relevant studies, selecting 92 studies. The future of plant lipases holds great promise for transformative impacts across various industries, promoting more sustainable and innovative practices.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Ana Bárbara Moulin Cansian
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
- Institute of Chemistry, University of São Paulo, São Paulo, SP, Brasil
| | - Jumara Silva de Sousa
- Postgraduate Program in Chemical Engieering, State University of Maringá, Maringá, PR, Brazil
| | - Fernanda Novelli Negrão
- Postgraduate Program in Genetics and Enhancement, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Waldir Tardioli
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
3
|
Liu J, Zhao S, Wei W, Yu S, Wang Z, Zheng J. Improved catalytic stability of immobilized Candida antarctica lipase B on macroporous resin with organic polymer coating for biodiesel production. Bioprocess Biosyst Eng 2025; 48:147-157. [PMID: 39433572 DOI: 10.1007/s00449-024-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
Lipase is one of the most widely studied and applied biocatalysts. Due to the high enzyme leakage rate of the immobilization method of physical adsorption, we propose a new lipase immobilization method, based on the combination of macroporous resin adsorption and organic polymer coating. The immobilized Candida antarctica lipase B (CALB@resin-CAB) was prepared by combining the macroporous resin adsorption with cellulose acetate butyrate coating, and its structure was characterized by various analytic methods. Immobilized lipase was applied for biodiesel production using acidified palm oil as the starting material, the conversion rate achieved as high as 98.5% in two steps. Furthermore, the immobilized lipase displayed satisfactory stability and reusability in biodiesel production. When the aforementioned reaction was carried out in a continuous flow packed bed system, the yield of biodiesel was 94.8% and space-time yield was 2.88 g/(mL∙h). The immobilized lipase CALB@resin-CAB showed high catalytic activity and stability, which has good potential for industrial application in the field of oil processing.
Collapse
Affiliation(s)
- Jiale Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shufan Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wan Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shupeng Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianyong Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
4
|
Ayinla ZA, Ademakinwa AN, Agboola FK. Comparative modelling, molecular docking and immobilization studies on Rhizopus oryzae lipase: evaluation of potentials for fatty acid methyl esters synthesis. J Biomol Struct Dyn 2023; 41:7235-7247. [PMID: 36082604 DOI: 10.1080/07391102.2022.2119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Elucidation of lipase-substrate interactions will guide the proper industrial use and applicability of the enzyme. The aim of this study was to predict the 3 D structure of Rhizopus oryzae ZAC3 (RoZAC3) lipase, study its interactions with some natural substrates and evaluate the feasibility of fatty acid methyl esters (FAME) production by the immobilized lipase. Protein identification of RoZAC3 lipase was carried out using LC-MS/MS. The 3 D structure of the lipase was built using homology modelling and natural substrates such as tributyrin, tripalmitin and triolein were docked to the optimized 3 D model for investigation of enzyme-ligand interactions. RoZAC3 lipase, immobilized by adsorption on Lewatit VP OC 1600 was applied in the synthesis of fatty acid methyl esters (FAME). From the phylogenetic analysis, it was observed that RoZAC3 lipase was closely related (48%) to Rhizopus javanicus lipase (Q7M4U7). The predicted 3 D model was validated using the SWISS model validation server. Ramachandran and ERRAT plots were used to assess the amino acid environment and overall quality of the model. From the docking studies, the values of the binding energies obtained for tributyrin, tripalmitin and triolein were - 5.37, -5.27 and -5.77 respectively. At an enzyme:immobilization support ratio of 50 mg/g, transesterification reaction duration of 18 h and a temperature of 40 oC, the conversion reached above 80%. The molecular docking studies provided information on the interaction/modifications between the RoZAC3 lipase and triacylglycerols that can be exploited for numerous applications. The immobilized lipase could serve in hydro-esterification reactions adaptable for biodiesel production.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zainab Adenike Ayinla
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Femi Kayode Agboola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
5
|
Jeon S, Hwang J, Do H, Le LTHL, Lee CW, Yoo W, Lee MJ, Shin SC, Kim KK, Kim HW, Lee JH. Feruloyl Esterase ( LaFae) from Lactobacillus acidophilus: Structural Insights and Functional Characterization for Application in Ferulic Acid Production. Int J Mol Sci 2023; 24:11170. [PMID: 37446348 DOI: 10.3390/ijms241311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Ferulic acid and related hydroxycinnamic acids, used as antioxidants and preservatives in the food, cosmetic, pharmaceutical and biotechnology industries, are among the most abundant phenolic compounds present in plant biomass. Identification of novel compounds that can produce ferulic acid and hydroxycinnamic acids, that are safe and can be mass-produced, is critical for the sustainability of these industries. In this study, we aimed to obtain and characterize a feruloyl esterase (LaFae) from Lactobacillus acidophilus. Our results demonstrated that LaFae reacts with ethyl ferulate and can be used to effectively produce ferulic acid from wheat bran, rice bran and corn stalks. In addition, xylanase supplementation was found to enhance LaFae enzymatic hydrolysis, thereby augmenting ferulic acid production. To further investigate the active site configuration of LaFae, crystal structures of unliganded and ethyl ferulate-bound LaFae were determined at 2.3 and 2.19 Å resolutions, respectively. Structural analysis shows that a Phe34 residue, located at the active site entrance, acts as a gatekeeper residue and controls substrate binding. Mutating this Phe34 to Ala produced an approximately 1.6-fold increase in LaFae activity against p-nitrophenyl butyrate. Our results highlight the considerable application potential of LaFae to produce ferulic acid from plant biomass and agricultural by-products.
Collapse
Affiliation(s)
- Sangeun Jeon
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 07505, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 07505, Republic of Korea
| | - Ly Thi Huong Luu Le
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chang Woo Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
| | - Wanki Yoo
- Department of Chemistry, College of Natural Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Min Ju Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
| | - Seung Chul Shin
- Division of Life Sciences, Korea Polar Research Institute, Incheon 07505, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Han-Woo Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 07505, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 07505, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 07505, Republic of Korea
| |
Collapse
|
6
|
Bio-Based Materials versus Synthetic Polymers as a Support in Lipase Immobilization: Impact on Versatile Enzyme Activity. Catalysts 2023. [DOI: 10.3390/catal13020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
To improve enzyme stability, the immobilization process is often applied. The choice of a support on which the enzymes are adsorbed plays a major role in enhancing biocatalysts’ properties. In this study, bio-based (i.e., chitosan, coffee grounds) and synthetic (i.e., Lewatit VP OC 1600) supports were used in the immobilization of lipases of various microbial origins (yeast (Yarrowia lipolytica) and mold (Aspergillus oryzae)). The results confirmed that the enzyme proteins had been adsorbed on the surface of the selected carriers, but not all of them revealed comparably high catalytic activity. Immobilized CALB (Novozym 435) was used as a commercial reference biocatalyst. The best hydrolytic activity (higher than that of CALB) was observed for Novozym 51032 (lipase solution of A. oryzae) immobilized on Lewatit VP OC 1600. In terms of synthetic activity, there were only slight differences between the applied carriers for A. oryzae lipase, and the highest measures were obtained for coffee grounds. All of the biocatalysts had significantly lower activity in the synthesis reactions than the reference catalyst.
Collapse
|
7
|
Rodríguez Mejía Y, Romero Romero F, Basavanag Unnamatla MV, Ballesteros Rivas MF, Varela Guerrero V. Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
Collapse
Affiliation(s)
- Yetzin Rodríguez Mejía
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
| | - Fernando Romero Romero
- Universidad Autónoma del Estado de México, Facultad de Química , Carretera Toluca-Ixtlahuaca Km. 15, Unidad el Cerrillo , Toluca , Estado de México , 50200 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Murali Venkata Basavanag Unnamatla
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Maria Fernanda Ballesteros Rivas
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| | - Victor Varela Guerrero
- Universidad Autónoma del Estado de México, Facultad de Química , Paseo Colón esq. Paseo Tollocan s/n, 50120 , Toluca , Estado de México , CP 50120 , México
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM , Carretera Toluca-Atlacomulco Km 14.5 , Toluca , Estado de México , 50200 , México
| |
Collapse
|
8
|
Cloning, protein expression and biochemical characterization of Carica papaya esterase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Producing Natural Flavours from Isoamyl Alcohol and Fusel Oil by Using Immobilised Rhizopus oryzae Lipase. Catalysts 2022. [DOI: 10.3390/catal12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enzymatic synthesis of short-chain esters (flavours) might enable their labelling as natural, increasing their value. Covalently immobilised Rhizopus oryzae lipase (EO-proROL) was used to synthesise isoamyl butyrate and acetate. In cyclohexane, the best performer reaction solvent, 1.8 times higher yield of isoamyl butyrate (ca. 100%) than isoamyl acetate (ca. 55%) was obtained. Optimum initial acid concentration (410 mM) and acid:alcohol mole ratio (0.5) were established by a central composite rotatable design to maximise isoamyl butyrate single-batch and cumulative production with reused enzyme. These conditions were used to scale up the esterification (150 mL) and to assess yield, initial esterification rate, productivity and enzyme operational stability. Commercial isoamyl alcohol and fusel oil results were found to be similar as regards yield (91% vs. 84%), initial reaction rate (5.4 µM min−1 with both substrates), operational stability (40% activity loss after five runs with both) and productivity (31.09 vs. 28.7 mM h−1). EO-proROL specificity for the structural isomers of isoamyl alcohol was also evaluated. Thus, a successful biocatalyst and product conditions ready to be used for isoamyl ester industrial production are here proposed.
Collapse
|
10
|
Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental pollution caused by conventional petro-diesel initiates at time of crude oil extraction and continues until its consumption. The resulting emission of poisonous gases during the combustion of petroleum-based fuel has worsened the greenhouse effect and global warming. Moreover, exhaustion of finite fossil fuels due to extensive exploitation has made the search for renewable resources indispensable. In light of this, biodiesel is a best possible substitute for the regular petro-diesel as it is eco-friendly, renewable, and economically viable. For effective biodiesel synthesis, the selection of potential feedstock and choice of efficient catalyst is the most important criteria. The main objective of this bibliographical review is to highlight vital role of different catalytic systems acting on variable feedstock and diverse methods for catalysis of biodiesel synthesis reactions. This paper further explores the effects of optimized reaction parameters, modification in chemical compositions, reaction operating parameters, mechanism and methodologies for catalysts preparation, stability enhancement, recovery, and reusability with the maximum optimum activity of catalysts. In future, the development of well-planned incentive structures is necessary for systematic progression of biodiesel process. Besides this, the selection of accessible and amended approaches for synthesis and utilization of specific potential catalysts will ensure the sustainability of eco-green biodiesel.
Collapse
|
11
|
Nájera-Martínez EF, Melchor-Martínez EM, Sosa-Hernández JE, Levin LN, Parra-Saldívar R, Iqbal HMN. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications. Int J Biol Macromol 2022; 208:748-759. [PMID: 35364201 DOI: 10.1016/j.ijbiomac.2022.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/08/2023]
Abstract
Growing demand for agricultural production means a higher quantity of residues produced. The reuse and recycling of agro-industrial wastes reduce worldwide greenhouse emissions. New opportunities are derived from this kind of residuals in the biotechnological field generating valuable products in growing sectors such as transportation, bioenergy, food, and feedstock. The use of natural macromolecules towards biocatalysts offers numerous advantages over free enzymes and friendliness with the environment. Enzyme immobilization improves enzyme properties (stability and reusability), and three types of supports are discussed: inorganic, organic, and hybrid. Several examples of agro-industrial wastes such as coconut wastes, rice husks, corn residues and brewers spent grains (BSG), their properties and potential as supports for enzyme immobilization are described in this work. Before the immobilization, biological and non-biological pretreatments could be performed to enhance the waste potential as a carrier. Additionally, immobilization methods such as covalent binding, adsorption, cross-linking and entrapment are compared to provide high efficiency. Enzymes and biocatalysts for industrial applications offer advantages over traditional chemical processes with respect to sustainability and process efficiency in food, energy, and bioremediation fields. The wastes reviewed in this work demonstrated a high affinity for lipases and laccases and might be used in biodiesel production and textile wastewater treatment, among other applications.
Collapse
Affiliation(s)
| | | | | | - Laura Noemí Levin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dpto. de Biodiversidad y Biología Experimental, Laboratorio de Micología Experimental: INMIBO-CONICET, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, NL, Mexico.
| |
Collapse
|
12
|
Heinzl GC, Mota DA, Martinis V, Martins AS, Soares CMF, Osório N, Gominho J, Madhavan Nampoothiri K, Sukumaran RK, Pereira H, Ferreira-Dias S. Integrated bioprocess for structured lipids, emulsifiers and biodiesel production using crude acidic olive pomace oils. BIORESOURCE TECHNOLOGY 2022; 346:126646. [PMID: 34974092 DOI: 10.1016/j.biortech.2021.126646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Olive pomace oil (OPO), a by-product of olive oil industry, is directly consumed after refining. The novelty of this study consists of the direct use of crude high acidic OPO (3.4-20% acidity) to produce added-value compounds, using sn-1,3-regioselective lipases: (i) low-calorie dietetic structured lipids (SL) containing caprylic (C8:0) or capric (C10:0) acids by acidolysis or interesterification with their ethyl esters, (ii) fatty acid methyl esters (FAME) for biodiesel, and (iii) sn-2 monoacylglycerols (emulsifiers), as by-product of FAME production by methanolysis. Immobilized Rhizomucor miehei lipase showed similar activity in acidolysis and interesterification for SL production (yields: 47.8-53.4%, 7 h, 50℃) and was not affected by OPO acidity. Batch operational stability decreased with OPO acidity, but it was at least three-fold in interesterification that in acidolysis. Complete conversion of OPO into FAME and sn-2 monoacylglycerols was observed after 3 h-transesterification (glycerol stepwise addition) and lipase deactivation was negligeable after 11 cycles.
Collapse
Affiliation(s)
- Giuditta C Heinzl
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Lisbon, Portugal
| | - Danyelle A Mota
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Lisbon, Portugal; Institute of Technology and Research (ITP), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil; Tiradentes University (UNIT), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil
| | - Valentina Martinis
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Lisbon, Portugal
| | - Ana Sofia Martins
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Lisbon, Portugal
| | - Cleide M F Soares
- Institute of Technology and Research (ITP), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil; Tiradentes University (UNIT), Avenida Murilo Dantas 300 - Farolândia, Aracaju, Brazil
| | - Natália Osório
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia do Barreiro, Lavradio, Portugal; Instituto Superior de Agronomia, Universidade de Lisboa, Centro de Estudos Florestais, Associated Laboratory TERRA, Lisbon, Portugal
| | - Jorge Gominho
- Instituto Superior de Agronomia, Universidade de Lisboa, Centro de Estudos Florestais, Associated Laboratory TERRA, Lisbon, Portugal
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Helena Pereira
- Instituto Superior de Agronomia, Universidade de Lisboa, Centro de Estudos Florestais, Associated Laboratory TERRA, Lisbon, Portugal
| | - Suzana Ferreira-Dias
- Instituto Superior de Agronomia, Universidade de Lisboa, LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Lisbon, Portugal.
| |
Collapse
|
13
|
Nabgan W, Jalil AA, Nabgan B, Jadhav AH, Ikram M, Ul-Hamid A, Ali MW, Hassan NS. Sustainable biodiesel generation through catalytic transesterification of waste sources: a literature review and bibliometric survey. RSC Adv 2022; 12:1604-1627. [PMID: 35425206 PMCID: PMC8979057 DOI: 10.1039/d1ra07338a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
Sustainable renewable energy production is being intensely disputed worldwide because fossil fuel resources are declining gradually. One solution is biodiesel production via the transesterification process, which is environmentally feasible due to its low-emission diesel substitute. Significant issues arising with biodiesel production are the cost of the processes, which has stuck its sustainability and the applicability of different resources. In this article, the common biodiesel feedstock such as edible and non-edible vegetable oils, waste oil and animal fats and their advantages and disadvantages were reviewed according to the Web of Science (WOS) database over the timeframe of 1970-2020. The biodiesel feedstock has water or free fatty acid, but it will produce soap by reacting free fatty acids with an alkali catalyst when they present in high portion. This reaction is unfavourable and decreases the biodiesel product yield. This issue can be solved by designing multiple transesterification stages or by employing acidic catalysts to prevent saponification. The second solution is cheaper than the first one and even more applicable because of the abundant source of catalytic materials from a waste product such as rice husk ash, chicken eggshells, fly ash, red mud, steel slag, and coconut shell and lime mud. The overview of the advantages and disadvantages of different homogeneous and heterogeneous catalysts is summarized, and the catalyst promoters and prospects of biodiesel production are also suggested. This research provides beneficial ideas for catalyst synthesis from waste for the transesterification process economically, environmentally and industrially.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Bahador Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Arvind H Jadhav
- Centre for Nano and Material Science, JAIN University Jain Global Campus Bangalore 562112 Karnataka India
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore 54000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Mohamad Wijayanuddin Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| | - Nurul Sahida Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia 81310 Skudai Johor Malaysia
| |
Collapse
|
14
|
El-Kady K, Raslan M, Zaki AH. Effect of Different TiO 2 Morphologies on the Activity of Immobilized Lipase for Biodiesel Production. ACS OMEGA 2021; 6:35484-35493. [PMID: 34984280 PMCID: PMC8717535 DOI: 10.1021/acsomega.1c04942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Lipase catalytic activity is greatly influenced by immobilization on nanoparticles. In this study, lipase from Aspergillus niger was immobilized on TiO2 nanoparticles with different morphologies: microspheres, nanotubes, and nanosheets. All TiO2 samples were prepared by a hydrothermal method. Lipase/TiO2 nanocomposites were prepared by a physical adsorption method through hydrophobic interactions. The prepared composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The catalytic activity of free and immobilized lipases was tested using sunflower oil in the presence of methanol to produce biodiesel at 40 °C for 90 min. The lipase immobilized on TiO2 microspheres showed the highest activity compared to the lipase immobilized on TiO2 nanotubes and nanosheets. To optimize the lipase-to-microsphere ratio, lipase was immobilized on TiO2 microspheres in different microspheres/lipase, w/w, (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25. It was noticed that the hydrolytic activity follows the order 1:0.25 > 1:0.5 > 1:75 > 1:1. The immobilization yield activities were found to be 113, 123, 125, and 130% for the microspheres/lipase (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25, respectively.
Collapse
Affiliation(s)
- Kholoud El-Kady
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mai Raslan
- Biotechnology
& Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ayman H. Zaki
- Materials
Science and Nanotechnology Department, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
15
|
Simões T, Ferreira J, Lemos MFL, Augusto A, Félix R, Silva SFJ, Ferreira-Dias S, Tecelão C. Argan Oil as a Rich Source of Linoleic Fatty Acid for Dietetic Structured Lipids Production. Life (Basel) 2021; 11:life11111114. [PMID: 34832990 PMCID: PMC8621445 DOI: 10.3390/life11111114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Argan oil is rich in long-chain unsaturated fatty acids (FA), mostly oleic and linoleic, and natural antioxidants. This study addresses the production of low-calorie structured lipids by acidolysis reaction, in a solvent-free system, between caprylic (C8:0; system I) or capric (C10:0; system II) acids and argan oil, used as triacylglycerol (TAG) source. Three commercial immobilized lipases were tested: Novozym® 435, Lipozyme® TL IM, and Lipozyme® RM IM. Higher incorporation degree (ID) was achieved when C10:0 was used as acyl donor, for all the lipases tested. Lipozyme® RM IM yielded the highest ID for both systems (28.9 ± 0.05 mol.% C10:0, and 11.4 ± 2.2 mol.% C8:0), being the only catalyst able to incorporate C8:0 under the reaction conditions for biocatalyst screening (molar ratio 2:1 FA/TAG and 55 °C). The optimal conditions for Lipozyme® RM IM in system II were found by response surface methodology (66 °C; molar ratio FA/TAG of 4:1), enabling to reach an ID of 40.9 mol.% of C10:0. Operational stability of Lipozyme® RM IM in system II was also evaluated under optimal conditions, after eight consecutive 24 h-batches, with biocatalyst rehydration between cycles. The biocatalyst presented a half-life time of 103 h.
Collapse
Affiliation(s)
- Tiago Simões
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Jessica Ferreira
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Ana Augusto
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
- CDRSP-Center for Rapid and Sustainable Product Development, Politécnico de Leiria, 2430-028 Marinha Grande, Portugal
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Rafael Félix
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Susana F. J. Silva
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
| | - Suzana Ferreira-Dias
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
| | - Carla Tecelão
- MARE-Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (T.S.); (J.F.); (M.F.L.L.); (A.A.); (R.F.); (S.F.J.S.)
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal;
- Correspondence:
| |
Collapse
|
16
|
Constitutive Expression in Komagataella phaffii of Mature Rhizopus oryzae Lipase Jointly with Its Truncated Prosequence Improves Production and the Biocatalyst Operational Stability. Catalysts 2021. [DOI: 10.3390/catal11101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) containing 28 C-terminal amino acids of the prosequence fused to the N-terminal mature sequence in ROL (proROL) was successfully expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris) under the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP). Although the sequence encoding the mature lipase (rROL) was also transformed, no clones were obtained after three transformation cycles, which highlights the importance of the truncated prosequence to obtain viable transformed clones. Batch cultures of the K. phaffii strain constitutively expressing proROL scarcely influenced growth rate and exhibited a final activity and volumetric productivity more than six times higher than those obtained with proROL from K. phaffii under the methanol-inducible alcohol oxidase 1 promoter (PAOX1). The previous differences were less marked in fed-batch cultures. N-terminal analysis confirmed the presence of the 28 amino acids in proROL. In addition, immobilized proROL exhibited increased tolerance of organic solvents and an operational stability 0.25 and 3 times higher than that of immobilized rROL in biodiesel and ethyl butyrate production, respectively. Therefore, the truncated prosequence enables constitutive proROL production, boosts bioprocess performance and provides a more stable biocatalyst in two reactions in which lipases are mostly used at industrial level, esterification (ethyl butyrate) and transesterification (biodiesel).
Collapse
|
17
|
Theisinger SM, de Smidt O, Lues JFR. Categorisation of culturable bioaerosols in a fruit juice manufacturing facility. PLoS One 2021; 16:e0242969. [PMID: 33882058 PMCID: PMC8059861 DOI: 10.1371/journal.pone.0242969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Bioaerosols are defined as aerosols that comprise particles of biological origin or activity that may affect living organisms through infectivity, allergenicity, toxicity, or through pharmacological or other processes. Interest in bioaerosol exposure has increased over the last few decades. Exposure to bioaerosols may cause three major problems in the food industry, namely: (i) contamination of food (spoilage); (ii) allergic reactions in individual consumers; or (iii) infection by means of pathogenic microorganisms present in the aerosol. The aim of this study was to characterise the culturable fraction of bioaerosols in the production environment of a fruit juice manufacturing facility and categorise isolates as harmful, innocuous or potentially beneficial to the industry, personnel and environment. Active sampling was used to collect representative samples of five areas in the facility during peak and off-peak seasons. Areas included the entrance, preparation and mixing area, between production lines, bottle dispersion and filling stations. Microbes were isolated and identified using 16S, 26S or ITS amplicon sequencing. High microbial counts and species diversity were detected in the facility. 239 bacteria, 41 yeasts and 43 moulds were isolated from the air in the production environment. Isolates were categorised into three main groups, namely 27 innocuous, 26 useful and 39 harmful bioaerosols. Harmful bioaerosols belonging to the genera Staphylococcus, Pseudomonas, Penicillium and Candida were present. Although innocuous and useful bioaerosols do not negatively influence human health their presence act as an indicator that an ideal environment exists for possible harmful bioaerosols to emerge.
Collapse
Affiliation(s)
- Shirleen M. Theisinger
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Olga de Smidt
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Jan F. R. Lues
- Centre for Applied Food Sustainability and Biotechnology (CAFSaB), Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| |
Collapse
|
18
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
19
|
Paitaid P, H-Kittikun A. Enhancing immobilization of Aspergillus oryzae ST11 lipase on polyacrylonitrile nanofibrous membrane by bovine serum albumin and its application for biodiesel production. Prep Biochem Biotechnol 2020; 51:536-549. [DOI: 10.1080/10826068.2020.1836654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pattarapon Paitaid
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Aran H-Kittikun
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
20
|
Entrapping Immobilisation of Lipase on Biocomposite Hydrogels toward for Biodiesel Production from Waste Frying Acid Oil. Catalysts 2020. [DOI: 10.3390/catal10080834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A new application of biocomposite hydrogels named gelatin-alginate (GA) and pectin alginate (PA) enables the use of the hydrogels as carriers for lipase entrapment during biodiesel production. Waste frying acid oil (WFAO), a raw material, was converted to biodiesel via an esterification reaction catalysed by two different immobilised biocatalysts: gelatin-alginate lipase (GAL) and pectin-alginate lipase (PAL). The highest immobilisation yield of GAL and PAL beads was achieved at 97.61% and 98.30%, respectively. Both of them gave biodiesel yields in the range of 75–78.33%. Furthermore, capability and reusability of biocatalysts were improved such that they could be reused up to 7 cycles. Moreover, the predicted biodiesel properties met the European biodiesel standard (EN14214). Interestingly, entrapped lipase on composite hydrogels can be used as an alternative catalyst choice for replacing the chemical catalyst during the biodiesel production.
Collapse
|
21
|
A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production. ENERGIES 2020. [DOI: 10.3390/en13113013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis.
Collapse
|
22
|
Ahmed HM, Mohamed SS, Amin HA, Moharam ME, El-Bendary MA, Hawash SI. Semi-pilot scale production of biodiesel from waste frying oil by genetically improved fungal lipases. Prep Biochem Biotechnol 2020; 50:915-924. [PMID: 32496968 DOI: 10.1080/10826068.2020.1771730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This paper addresses the issue of combining the usage of waste frying oil (WFO), as a feedstock, and a lipase produced in solid-state fermentation (SSF), as a biocatalyst, for semi-pilot scale production of biodiesel as fatty acid methyl esters (FAME). Two fungal mutants namely; Rhizopus stolonifer 1aNRC11 mutant F (1F) and Aspergillus tamarii NDA03a mutant G (3G) were used as a cocatalyst. The two mutants were cultivated separately by SSF in a tray bioreactor. The dried fermented solid of 1F and 3G mutants were used in a ratio of 3:1, respectively, for WFO transesterification. Optimization of several semi-pilot process stages including SSF and WFO transesterification reaction conditions resulted in 92.3% conversion of WFO to FAME. This FAME yield was obtained after 48 h using 10% cocatalyst (w/w of WFO), 10% water (w/w of WFO) and 3:1 methanol/ WFO molar ratio at 30 °C and 250 rpm. A preliminary economic evaluation of produced biodiesel price (190 $/Ton) is less than half the price of petroleum diesel in Egypt (401$/Ton) and is about 40.3% the price of biodiesel produced using a pure enzyme, which is a promising result. This strategy makes the biodiesel synthesis process greener, economical and sustainable.
Collapse
Affiliation(s)
- Hanan M Ahmed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Sayeda S Mohamed
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Hala A Amin
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Maysa E Moharam
- Department of Microbial Chemistry, National Research Centre, Cairo, Egypt
| | - Magda A El-Bendary
- Department of Microbial Chemistry, National Research Centre, Cairo, Egypt
| | - Salwa I Hawash
- Department of Chemical Engineering and Pilot Plant, National Research Centre, Cairo, Egypt
| |
Collapse
|
23
|
Facile One-Pot Immobilization of a Novel Thermostable Carboxylesterase from Geobacillus uzenensis for Continuous Pesticide Degradation in a Packed-Bed Column Reactor. Catalysts 2020. [DOI: 10.3390/catal10050518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The novel carboxylesterase gene (est741) was cloned from Geobacillus uzenensis. The optimal pH and temperature of Est741 were 8.0 and 50 °C. Through site-directed mutation, the optimum temperature of the mutant M160K(EstM160K) was increased from 50 to 60 °C, and showed enhanced T1/2 of 2.5 h at 70 °C in comparison to the wild type (1.3 h). EstM160K was successfully expressed Pichia pastoris and EstM160K fermentation broth was directly immobilized on epoxy-functionalized supports via a one-pot strategy to obtain the immobilized enzyme lx-EstM160K. Additionally, lx-EstM160K showed enhanced T1/2 of 36.8 h at 70 °C in comparison to free enzyme. lx-EstM160K could degrade various pyrethroid pesticides. After 40 min reaction with 50 U of the lx-EstM160K, the malathion removal was 95.8% with a malathion concentration of 20 mg/L. When 2.5 g lx-EstM160K was added to the 10 mL column reactor with the concentration of bifenthrin was 500 mg/L and the transfer rate of the pump was 0.7 mL/min, the degradation rate of lx-EstM160K to bifenthrin was 90.4%. lx-EstM160K exhibited high operational stability and maintained 72% initial activity after ten batches of continuous reaction for bifenthrin pesticide biodegradation.
Collapse
|
24
|
Zheng J, Wei W, Wang S, Li X, Zhang Y, Wang Z. Immobilization of Lipozyme TL 100L for methyl esterification of soybean oil deodorizer distillate. 3 Biotech 2020; 10:51. [PMID: 32002342 DOI: 10.1007/s13205-019-2028-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
An immobilization method for binding cross-linked enzyme aggregates of Lipozyme TL 100L on macroporous resin NKA (CLEA-TLL@NKA) was developed in this study. The esterification activity of CLEA-TLL@NKA reached 6.4 U/mg. The surface structure of immobilized lipase was characterized by scanning electron microscopy. Methyl esterification reaction of soybean oil deodorizer distillate (SODD) was catalyzed by CLEA-TLL@NKA, which the conversion rate reached 98% and its activity retained over 90% after 20 batches of reaction. Compared with the commercial enzyme Lipozyme TLIM, half-life (t 1/2) of CLEA-TLL@NKA increased by 25 times and the catalytic activity increased by approximate 10 times. Thus, CLEA-TLL@NKA had high catalytic activity, good operational stability, and potential industrial application in the field of oil processing.
Collapse
Affiliation(s)
- Jianyong Zheng
- 1Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Wei Wei
- 1Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Shengfan Wang
- Zhejiang Medicine Co., Ltd Xinchang Pharmaceutical Factory, Xinchang, 312500 Zhejiang People's Republic of China
| | - Xiaojun Li
- 3School of Medicine and Life Sciences, Xinyu University, Xinyu, 338004 Jiangxi People's Republic of China
| | - Yinjun Zhang
- 1Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People's Republic of China
| | - Zhao Wang
- 1Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People's Republic of China
| |
Collapse
|
25
|
Affiliation(s)
- S. M. Zakir Hossain
- Department of Chemical EngineeringUniversity of Bahrain P.O. Box 32038 Isa Town Bahrain
| |
Collapse
|
26
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
27
|
Gusniah A, Veny H, Hamzah F. Ultrasonic Assisted Enzymatic Transesterification for Biodiesel Production. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03570] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Azianna Gusniah
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Harumi Veny
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Fazlena Hamzah
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
28
|
Immobilized cutinases: Preparation, solvent tolerance and thermal stability. Enzyme Microb Technol 2018; 116:33-40. [DOI: 10.1016/j.enzmictec.2018.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
|
29
|
Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis. SUSTAINABILITY 2018. [DOI: 10.3390/su10051451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Curr Opin Biotechnol 2018; 50:57-64. [DOI: 10.1016/j.copbio.2017.11.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
|
31
|
Abstract
Global shortages of fossil fuels, significant rise in the price of crude oil, and increased environmental concerns have stimulated the rapid growth of biodiesel production. Biodiesel is generally produced through transesterification reaction catalyzed either chemically or enzymatically. Enzymatic transesterification is of interest since it shows advantages over the chemical process and, in addition, is considered a "green" process. This chapter reviews the current status of biodiesel production with a lipase biocatalysis approach, including sources of lipases, kinetics, lipase immobilization techniques, and lipase reaction mechanism for biodiesel production. Factors affecting biodiesel production and the economic feasibility of lipase biodiesel production are also covered.
Collapse
Affiliation(s)
- Marcos Vargas
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Xochitl Niehus
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Leticia Casas-Godoy
- Cátedras CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico.
| |
Collapse
|
32
|
Koutinas M, Yiangou C, Osório NM, Ioannou K, Canet A, Valero F, Ferreira-Dias S. Application of commercial and non-commercial immobilized lipases for biocatalytic production of ethyl lactate in organic solvents. BIORESOURCE TECHNOLOGY 2018; 247:496-503. [PMID: 28968571 DOI: 10.1016/j.biortech.2017.09.130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This study explores the potential for enhancing the production of ethyl lactate (EL), a green solvent, through enzymatic esterification. Different solvents were compared as organic media for conversion of lactate and ethanol into EL, catalyzed by Novozym 435. Chloroform and hexane were the most effective in low acid concentrations (0.01-0.1M) exhibiting maximum EL yields of 88% and 75% respectively. The yield of EL improved as the solvent's LogP increased up to a value of 2. Non-commercial immobilized biocatalysts consisting heterologous Rhizopous oryzae (rROL) and Candida rugosa (CRL) lipases immobilized on hydrophobic supports were compared to commercial biocatalysts clarifying that Novozym 435 and Lipozyme RM IM could be efficiently applied. Operational stability tests were conducted using Novozym 435, which retained higher activity in chloroform as compared to hexane. Although non-commercial biocatalysts were not competitive in esterification, they exhibited significant activity towards hydrolysis constituting a valuable alternative to higher-cost options.
Collapse
Affiliation(s)
- Michalis Koutinas
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus.
| | - Chrystalleni Yiangou
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Natália M Osório
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia do Barreiro, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
| | - Katerina Ioannou
- Department of Environmental Science and Technology, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
| | - Albert Canet
- Departament d'Enginyeria Quimica, Biològica i Ambiental (EE), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Francisco Valero
- Departament d'Enginyeria Quimica, Biològica i Ambiental (EE), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Suzana Ferreira-Dias
- Universidade de Lisboa, Instituto Superior de Agronomia, LEAF, Linking Landscape Environment, Agriculture and Food, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
33
|
Abreu Silveira E, Moreno-Perez S, Basso A, Serban S, Pestana Mamede R, Tardioli PW, Sanchez Farinas C, Rocha-Martin J, Fernandez-Lorente G, Guisan JM. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC Biotechnol 2017; 17:88. [PMID: 29246143 PMCID: PMC5732512 DOI: 10.1186/s12896-017-0407-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022] Open
Abstract
Background Enzymatic ethanolysis of oils (for example, high oleic sunflower oil containing 90% of oleic acid) may yield two different reaction products depending on the regioselectivity of the immobilized lipase biocatalyst. Some lipase biocatalysts exhibit a 1,3-regioselectivity and they produced 2 mols of fatty acid ethyl ester plus 1 mol of sn2-monoacylglycerol (2-MAG) per mol of triglyceride without the release of glycerol. Other lipase biocatalysts are completely non-regioselective releasing 3 mols of fatty acid ethyl ester and 1 mol of glycerol per mol of triglyceride. Lipase from Thermomyces lanuginosus (TLL) adsorbed on hydrophobic supports is a very interesting biocatalyst for the ethanolysis of oil. Modulation of TLL regioselectivity in anhydrous medium was intended via two strategies of TLL immobilization: a. - interfacial adsorption on different hydrophobic supports and b.- interfacial adsorption on a given hydrophobic support under different experimental conditions. Results Immobilization of TLL on supports containing divinylbenezene moieties yielded excellent 1,3-regioselective biocatalysts but immobilization of TLL on supports containing octadecyl groups yielded non-regioselective biocatalysts. On the other hand, TLL immobilized on Purolite C18 at pH 8.5 and 30 °C in the presence of traces of CTAB yielded a biocatalyst with a perfect 1,3-regioselectivity and a very interesting activity: 2.5 μmols of oil ethanolyzed per min per gram of immobilized derivative. This activity is 10-fold higher than the one of commercial Lipozyme TL IM. Immobilization of the same enzyme on the same support, but at pH 7.0 and 25 °C, led to a biocatalyst which can hydrolyze all ester bonds in TG backbone. Conclusions Activity and regioselectivity of TLL in anhydrous media can be easily modulated via Biocatalysis Engineering producing very active immobilized derivatives able to catalyze the ethanolysis of triolein. When the biocatalyst was 1,3-regioselective a 33% of 2-monoolein was obtained and it may be a very interesting surfactant. When biocatalyst catalyzed the ethanolysis of the 3 positions during the reaction process, a 99% of ethyl oleate was obtained and it may be a very interesting drug-solvent and surfactant. The absence of acyl migrations under identical reaction conditions is clearly observed and hence the different activities and regioselectivities seem to be due to the different catalytic properties of different derivatives of TLL.
Collapse
Affiliation(s)
- Erick Abreu Silveira
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain.,Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Sonia Moreno-Perez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Alessandra Basso
- Purolite, Unit D, Llantrisant Business Park, Llantrisant, CF72 8LF, UK
| | - Simona Serban
- Purolite, Unit D, Llantrisant Business Park, Llantrisant, CF72 8LF, UK
| | - Rita Pestana Mamede
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | | | | | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC. Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
34
|
Monitoring the Activity of Immobilized Lipase with Quinizarin Diester Fluoro-Chromogenic Probe. Molecules 2017; 22:molecules22122136. [PMID: 29207517 PMCID: PMC6149872 DOI: 10.3390/molecules22122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022] Open
Abstract
Quinizarin diester is used as a fluoro-chromogenic substrate of the activity of lipase supported in poly(methylmetacrylate) beads (CALB, Novozym® 435) dispersed in organic solvents. The monoester and diester of quinizarin are both non-fluorescent species contrasting with the enzymatic product quinizarin that shows optical absorption in the visible region and strong fluorescence signal. The enzymatic conversion is accomplished by spectroscopic measurements and it follows a sigmoid curve from which the mean reaction time of the enzymatic process can be determined. This parameter indicates the enzyme activity of the immobilized lipase. Its dependency with the amount of lipase allowed the determination of the ratio of the catalytic rate and the Michaelis constant (kc/Km) and the experimental value found was (1.0 ± 0.1) × 10−2 mg−1/min in the case of quinizarin diacetate.
Collapse
|
35
|
Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. ACTA ACUST UNITED AC 2017; 15:114-124. [PMID: 28794998 PMCID: PMC5545822 DOI: 10.1016/j.btre.2017.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/21/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
Abstract
Phenol red screening plates is the best method for detecting lipolytic activity. Substrate specificity is affected by temperature and pH. Essential to test substrates at various pH and temperature to determine optima. Lipolytic enzymes indigenous to Eucalyptus sp. can assist in pitch control.
This study highlights the importance of determining substrate specificity at variable experimental conditions. Lipases and esterases were isolated from microorganisms cultivated from Eucalyptus wood species and then concentrated (cellulases removed) and characterized. Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the most favourable method of screening for lipolytic activity. Lipolytic activity of the various enzymes were highest at 45–61 U/ml at the optimum temperature and pH of between at 30–35 °C and pH 4–5, respectively. Change in pH influenced the substrate specificity of the enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl chains such as dodecanoate (C12), myristate (C14), palmitate (C16) and stearate (C18) indicating that they could be characterised as potential lipases. Prospective esterases were also detected with specificity towards acetate (C2), butyrate (C4) and valerate (C5). Enzymes maintained up to 95% activity at the optimal pH and temperature for 2–3 h. It is essential to test substrates at various pH and temperature when determining optimum activity of lipolytic enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate temperatures makes them excellent candidates for application in the treatment of pitch during acid bi-sulphite pulping, which would greatly benefit the pulp and paper industry.
Collapse
|
36
|
Wang X, Qin X, Li D, Yang B, Wang Y. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. BIORESOURCE TECHNOLOGY 2017; 235:18-24. [PMID: 28351728 DOI: 10.1016/j.biortech.2017.03.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 05/21/2023]
Abstract
This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (<10%). The highest biodiesel yield (95.45%) was acquired with one-step addition of methanol under the optimized conditions. Moreover, it was observed that immobilized MAS1 lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1H and 13C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration.
Collapse
Affiliation(s)
- Xiumei Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Daoming Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
37
|
Bonet-Ragel K, López-Pou L, Tutusaus G, Benaiges MD, Valero F. Rice husk ash as a potential carrier for the immobilization of lipases applied in the enzymatic production of biodiesel. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1308498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kírian Bonet-Ragel
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lucia López-Pou
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gisela Tutusaus
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M. Dolors Benaiges
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
38
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
39
|
Filice M, Molina M, Benaiges MD, Abian O, Valero F, Palomo JM. Solid-surface activated recombinant Rhizopous oryzae lipase expressed in Pichia pastoris and chemically modified variants as efficient catalysts in the synthesis of hydroxy monodeprotected glycals. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00255f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly active, specific and regioselective heterogeneous lipase biocatalyst was developed for the monodeprotection of peracetylated glycals.
Collapse
Affiliation(s)
- Marco Filice
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- Madrid
- Spain
- Spanish National Research Centre for Cardiovascular Disease (CNIC)
| | - Marta Molina
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- Madrid
- Spain
| | - M. Dolors Benaiges
- Departament d'Enginyeria Química
- Biológica i Ambiental, EE
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - Olga Abian
- Instituto Aragonés de Ciencias de la Salud (IACS)
- Zaragoza
- Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI)
- Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI
| | - Francisco Valero
- Departament d'Enginyeria Química
- Biológica i Ambiental, EE
- Universitat Autònoma de Barcelona
- Barcelona
- Spain
| | - Jose M. Palomo
- Department of Biocatalysis
- Institute of Catalysis (CSIC)
- Madrid
- Spain
| |
Collapse
|
40
|
Rodrigues J, Perrier V, Lecomte J, Dubreucq E, Ferreira-Dias S. Biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium. BIORESOURCE TECHNOLOGY 2016; 218:1224-1229. [PMID: 27474957 DOI: 10.1016/j.biortech.2016.07.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
The lipase/acyltransferase from Candida parapsilosis (CpLIP2) immobilized on two synthetic resins (Accurel MP 1000 and Lewatit VP OC 1600) was used as catalyst for the production of biodiesel (fatty acid methyl esters, FAME) by transesterification of jatropha oil with methanol, in a lipid/aqueous system. The oil was dispersed in a buffer solution (pH 6.5) containing methanol in excess (2M in the biphasic system; molar ratio methanol/acyl chains 2:1). Transesterification was carried out at 30°C, under magnetic stirring, using 10% (w/w) of immobilized enzyme in relation to oil. The maximum FAME yields were attained after 8h reaction time: 80.5% and 93.8%, when CpLIP2 immobilized on Accurel MP 1000 or on Lewatit VP OC 1600 were used, respectively. CpLIP2 on both Accurel MP 1000 and Lewatit VP OC 1600 showed high operational stability along 5 consecutive 8h batches.
Collapse
Affiliation(s)
- Joana Rodrigues
- University of Lisbon, Instituto Superior de Agronomia, LEAF, Lisbon, Portugal
| | | | | | - Eric Dubreucq
- Montpellier SupAgro, UMR IATE, F-34060 Montpellier, France
| | | |
Collapse
|