1
|
Sankar M, Mathew RM, Puthiyamadam A, Sreeja-Raju A, Christopher M, Gokhale DV, Sukumaran RK. Comparison of the solid-state and submerged fermentation derived secretomes of hyper-cellulolytic Penicillium janthinellum NCIM 1366 reveals the changes responsible for differences in hydrolytic performance. BIORESOURCE TECHNOLOGY 2023; 371:128602. [PMID: 36632853 DOI: 10.1016/j.biortech.2023.128602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Solid-state fermentation (SSF) and submerged fermentation (SmF) have often been compared for production of biomass hydrolyzing enzymes highlighting the superiority of the SSF produced enzymes, but the reasons for the performance differences are under-explored. Penicillium janthinellum NCIM 1366 culture extracts from SSF had better hydrolytic performance along with a higher initial rate of reaction. Secretome analyses of the SSF and SmF enzymes using LC/MS-MS, indicated that while the type of proteins secreted were similar in both modes, the abundance of specific beta glucosidases, lytic polysaccharide monooxygenases and hemicellulolytic enzymes were very high in SSF resulting in efficient initiation, low accumulation of cellobiose and high initial reaction rates. Key enzymes that catalyse lignocellulose breakdown under SSF and SmF are therefore different and the fungus may be speculated to have regulation mechanisms that aid differential expression under different cultivation modes.
Collapse
Affiliation(s)
- Meena Sankar
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reshma M Mathew
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anoop Puthiyamadam
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athiraraj Sreeja-Raju
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera Christopher
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Ashoor S, Mallapureddy KK, Sukumaran RK. Sequential mild acid and alkali pretreatment of rice straw to improve enzymatic saccharification for bioethanol production. Prep Biochem Biotechnol 2023; 53:231-238. [PMID: 35559826 DOI: 10.1080/10826068.2022.2073597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sequential pretreatment using different NaOH concentrations (0.5%, 1.0%, 1.5%, w/w) and 1% H2SO4 (w/w) was evaluated as a strategy for effective hydrolysis of rice straw. The efficiency of sequential NaOH and H2SO4 (SNA) pretreatment against sequential H2SO4 and NaOH (SH) was assessed. SH pretreated biomass attained more sugar yield compared to SNA pretreated biomass. The sugar yields from pretreated biomass improved with increasing NaOH concentration in both SH and SNA treatments. The maximum sugar release of 40.6 mg/ml (83.2% efficiency) was obtained from SH pretreated biomass when the stage 2 alkali treatment was performed at 1.5% w/w NaOH. The non-detoxified hydrolysate from this biomass was fermented with 96.8% efficiency.
Collapse
Affiliation(s)
- Selim Ashoor
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Kiran Kumar Mallapureddy
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Thiruvananthapuram, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O, Thiruvananthapuram, India
| |
Collapse
|
3
|
Xiang H, Dai K, Kou J, Wang G, Zhang Z, Li D, Chen C, Wu J. Selective adsorption of ferulic acid and furfural from acid lignocellulosic hydrolysate by novel magnetic lignin-based adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Jie-Liu, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiol Res 2022; 262:127101. [DOI: 10.1016/j.micres.2022.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
5
|
Martins AF, Villetti MA, Mortari SR, Pedroso GB, Saldanha LF, Rambo MKD. Detoxification of fermentable broth with activated biocarbon resulting from pyrolysis of agroforestry residues. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1445-1454. [PMID: 33378561 DOI: 10.1002/wer.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Carbon-like materials from pyrolysis (<500°C) of agricultural leftovers (rice husks, eucalyptus sawdust and peach stones) were submitted to steam activation and the expected adsorbent properties evaluated by means of a chemical method (methylene blue) and physically characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and surface area (BET). Batch experiments were carried out to check the pH effect on the adsorption of methylene blue, by evaluating the respective equilibrium isotherms (Langmuir, Freundlich and Temkin). The steam-activated biocarbons showed significant adsorbent capacity, which increased along with pH. The best performance was achieved by the activated biocarbon from peach stones, which showed adsorptive properties similar to activated carbon market. The suitable detoxification efficiency of untreated broths with activated biocarbon, and an increase in the required fermentability, supports the potential use of these adsorptive bioproducts from agricultural leftovers. The profitable use of agricultural waste materials is actually a welcome strategy for consolidating the biorefinery concept as well as ensuring planetary sustainability. PRACTITIONER POINTS: Use of biomass residues for detoxification of fermentable broth. The activated biocarbons showed significant adsorbent capacity similar to activated carbon market. The results revealed the potential of the biomass residues as a promising source within bio-refineries.
Collapse
|
6
|
Kim N, Seo JH, Yun YS, Park D. New insight into continuous recirculation-process for treating arsenate using bacterial biosorbent. BIORESOURCE TECHNOLOGY 2020; 316:123961. [PMID: 32795871 DOI: 10.1016/j.biortech.2020.123961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new recirculation column reactor system for arsenate removal using a polyethylenimine coated bacterial biosorbent was developed. Solution pH was the most important factor in process design and operation. In order to control and optimize solution pH favorable for arsenate removal, a pH control and recirculation system was added to a column reactor. The effects of recycle ratio, initial arsenate concentration, and flow rate on the arsenate removal performance of the developed process were examined. Thomas and Yoon-Nelson models were used to interpret the breakthrough curve of arsenate removal. The maximum arsenate adsorption amount of the new reactor was determined to be 50.86 mg/g by the Thomas model. Importantly, the new reactor showed unimpeded adsorption performance compared with that in the batch experiments. The desorption study also showed excellent reusability. The results indicated that the newly developed process could be a promising application prospect for removing arsenate.
Collapse
Affiliation(s)
- Namgyu Kim
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea
| | - Ji Hae Seo
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, 567 Baekje-daero, Jeounju 54896, Republic of Korea
| | - Donghee Park
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea.
| |
Collapse
|
7
|
Direct separation of acetate and furfural from xylose by nanofiltration of birch pretreated liquor: Effect of process conditions and separation mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Rosales-Calderon O, Arantes V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:240. [PMID: 31624502 PMCID: PMC6781352 DOI: 10.1186/s13068-019-1529-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 05/03/2023]
Abstract
The demand for fossil derivate fuels and chemicals has increased, augmenting concerns on climate change, global economic stability, and sustainability on fossil resources. Therefore, the production of fuels and chemicals from alternative and renewable resources has attracted considerable and growing attention. Ethanol is a promising biofuel that can reduce the consumption of gasoline in the transportation sector and related greenhouse gas (GHG) emissions. Lignocellulosic biomass is a promising feedstock to produce bioethanol (cellulosic ethanol) because of its abundance and low cost. Since the conversion of lignocellulose to ethanol is complex and expensive, the cellulosic ethanol price cannot compete with those of the fossil derivate fuels. A promising strategy to lower the production cost of cellulosic ethanol is developing a biorefinery which produces ethanol and other high-value chemicals from lignocellulose. The selection of such chemicals is difficult because there are hundreds of products that can be produced from lignocellulose. Multiple reviews and reports have described a small group of lignocellulose derivate compounds that have the potential to be commercialized. Some of these products are in the bench scale and require extensive research and time before they can be industrially produced. This review examines chemicals and materials with a Technology Readiness Level (TRL) of at least 8, which have reached a commercial scale and could be shortly or immediately integrated into a cellulosic ethanol process.
Collapse
Affiliation(s)
- Oscar Rosales-Calderon
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| | - Valdeir Arantes
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| |
Collapse
|
9
|
Puthiyamadam A, Adarsh VP, Mallapureddy KK, Mathew A, Kumar J, Yenumala SR, Bhaskar T, Ummalyama SB, Sahoo D, Sukumaran RK. Evaluation of a wet processing strategy for mixed phumdi biomass conversion to bioethanol. BIORESOURCE TECHNOLOGY 2019; 289:121633. [PMID: 31248726 DOI: 10.1016/j.biortech.2019.121633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Biorefineries typically use dry feedstock due to technical and logistic issues, but in unique cases where climatic conditions are unfavorable and where the biomass has to be processed without a holding time, wet processing might be advantageous. The present study evaluated the possibility of using the fresh (non-dried) mixed biomass harvested from Phumdis; which are floating vegetation unique to Loktak lake in Manipur, India, for bioethanol production. Pretreatment with dilute alkali (1.5% at 120 °C for 60 min) resulted in 36% lignin removal and an enhancement of cellulose content to 48% from 37%, and enzymatic hydrolysis released 25 g/L glucose. Fermentation of the hydrolysates was highly efficient at 95%, attained in 36 h and 80% in just 12 h. The new wet processing strategy could help in value addition of mixed phumdi biomass.
Collapse
Affiliation(s)
- Anoop Puthiyamadam
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai Prasannakumari Adarsh
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Kiran Kumar Mallapureddy
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Anil Mathew
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Jitendra Kumar
- Biomass Conversion Area (BCA), Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Academy of Scientific and Innovative Research (AcSIR), Dehradun 248005, India
| | - Sudhakara Reddy Yenumala
- Biomass Conversion Area (BCA), Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Academy of Scientific and Innovative Research (AcSIR), Dehradun 248005, India
| | - Thallada Bhaskar
- Biomass Conversion Area (BCA), Materials Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Academy of Scientific and Innovative Research (AcSIR), Dehradun 248005, India
| | | | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division (MPTD), CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India.
| |
Collapse
|
10
|
Félix FKDC, Letti LAJ, Vinícius de Melo Pereira G, Bonfim PGB, Soccol VT, Soccol CR. L-lysine production improvement: a review of the state of the art and patent landscape focusing on strain development and fermentation technologies. Crit Rev Biotechnol 2019; 39:1031-1055. [DOI: 10.1080/07388551.2019.1663149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Luiz Alberto Junior Letti
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
11
|
Chen Z, Liu G, Zhang J, Bao J. A preliminary study on l-lysine fermentation from lignocellulose feedstock and techno-economic evaluation. BIORESOURCE TECHNOLOGY 2019; 271:196-201. [PMID: 30268811 DOI: 10.1016/j.biortech.2018.09.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
l-Lysine is a commodity amino acid produced from starch feedstock. Various alternative feedstocks had been used for l-lysine production, but the yield was very low. This study took the first preliminary investigation on l-lysine production from lignocellulose for the replacement of food-crop starch. Corn stover was dry acid pretreated and biodetoxified, then used for enzymatic hydrolysis and l-lysine fermentation by an industrial Corynebacterium glutamicum strain. Various fermentation parameters, nutrient additions, and operation variables were applied and finally 33.8 g/L of l-lysine was obtained. This l-lysine titer is still below that of starch based fermentation, but already 3-5 folds greater than that of other alternative feedstocks based fermentation. A techno-economic analysis was conducted and the minimum selling price of l-lysine (hydrochloride form) was calculated to be $2.445 per kg. The cost reduction by the future improvement could fill the technical and economic gap between the cellulosic and starch based l-lysine production.
Collapse
Affiliation(s)
- Zeyu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Kumar V, Binod P, Sindhu R, Gnansounou E, Ahluwalia V. Bioconversion of pentose sugars to value added chemicals and fuels: Recent trends, challenges and possibilities. BIORESOURCE TECHNOLOGY 2018; 269:443-451. [PMID: 30217725 DOI: 10.1016/j.biortech.2018.08.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 05/12/2023]
Abstract
Most of the crop plants contain about 30% of hemicelluloses comprising D-xylose and D-arabinose. One of the major limitation for the use of pentose sugars is that high purity grade D-xylose and D-arabinose are yet to be produced as commodity chemicals. Research and developmental activities are going on in this direction for their use as platform intermediates through economically viable strategies. During chemical pretreatment of biomass, the pentose sugars were generated in the liquid stream along with other compounds. This contains glucose, proteins, phenolic compounds, minerals and acids other than pentose sugars. Arabinose is present in small amounts, which can be used for the economic production of value added compound, xylitol. The present review discusses the recent trends and developments as well as challenges and opportunities in the utilization of pentose sugars generated from lignocellulosic biomass for the production of value added compounds.
Collapse
Affiliation(s)
- Vinod Kumar
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160071, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Vivek Ahluwalia
- Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160071, Punjab, India.
| |
Collapse
|
13
|
Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. BIORESOURCE TECHNOLOGY 2017; 245:1588-1602. [PMID: 28579173 DOI: 10.1016/j.biortech.2017.05.145] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The l-aspartate amino acids (AFAAs) are constituted of l-aspartate, l-lysine, l-methionine, l-threonine and l-isoleucine. Except for l-aspartate, AFAAs are essential amino acids that cannot be synthesized by humans and most farm animals, and thus possess wide applications in food, animal feed, pharmaceutical and cosmetics industries. To date, a number of amino acids, including AFAAs have been industrially produced by microbial fermentation. However, the overall metabolic and regulatory mechanisms of the synthesis of AFAAs and the recent progress on strain construction have rarely been reviewed. Aiming to promote the establishment of strains of Corynebacterium glutamicum and Escherichia coli, the two industrial amino acids producing bacteria, that are capable of producing high titers of AFAAs and derivatives, this paper systematically summarizes the current progress on metabolic engineering manipulations in both central metabolic pathways and AFAA synthesis pathways based on the category of the five-word strain breeding strategies: enter, flow, moderate, block and exit.
Collapse
Affiliation(s)
- Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hongbo Wei
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Microbial Engineering of China Light Industry, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
14
|
Christopher M, Mathew AK, Kiran Kumar M, Pandey A, Sukumaran RK. A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. BIORESOURCE TECHNOLOGY 2017; 242:178-183. [PMID: 28400172 DOI: 10.1016/j.biortech.2017.03.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 05/11/2023]
Abstract
Cotton post-harvest residue/cotton stalk (CS) - a major agro-residue in south asian countries was evaluated as a feed stock for bioethanol production. The common thermochemical pretreatment strategies based on dilute acid and alkali and different combinations of biomass hydrolyzing enzymes were evaluated for saccharification of CS biomass. A hydrolytic efficiency of 80% was achieved for alkali treated biomass using cellulase supplemented with beta glucosidase. Recycling of undigested/residual biomass and/or enzyme supported same final sugar concentration as for fresh hydrolytic experiments. Fermentation was carried out using a novel, inhibitor-resistant strain of Saccharomyces cerevisiae where 76% of theoretical maximum efficiency was attained. Material balances were derived for the entire process from biomass pre-processing to hydrolysis.
Collapse
Affiliation(s)
- Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Anil K Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - M Kiran Kumar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India
| | - Ashok Pandey
- Centre for Innovative and Applied Bioprocessing, Mohali 160 071, Punjab, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019, India.
| |
Collapse
|
15
|
Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation. Bioprocess Biosyst Eng 2017; 40:1657-1667. [DOI: 10.1007/s00449-017-1821-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022]
|
16
|
Coz A, Llano T, Cifrián E, Viguri J, Maican E, Sixta H. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes. MATERIALS 2016; 9:ma9070574. [PMID: 28773700 PMCID: PMC5456911 DOI: 10.3390/ma9070574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
Abstract
The complete bioconversion of the carbohydrate fraction is of great importance for a lignocellulosic-based biorefinery. However, due to the structure of the lignocellulosic materials, and depending basically on the main parameters within the pretreatment steps, numerous byproducts are generated and they act as inhibitors in the fermentation operations. In this sense, the impact of inhibitory compounds derived from lignocellulosic materials is one of the major challenges for a sustainable biomass-to-biofuel and -bioproduct industry. In order to minimise the negative effects of these compounds, numerous methodologies have been tested including physical, chemical, and biological processes. The main physical and chemical treatments have been studied in this work in relation to the lignocellulosic material and the inhibitor in order to point out the best mechanisms for fermenting purposes. In addition, special attention has been made in the case of lignocellulosic hydrolysates obtained by chemical processes with SO₂, due to the complex matrix of these materials and the increase in these methodologies in future biorefinery markets. Recommendations of different detoxification methods have been given.
Collapse
Affiliation(s)
- Alberto Coz
- Green Engineering and Resources, Department of Chemistry and Process and Resource Engineering, University of Cantabria, Avda. Los Castros s/n, Santander 39005, Spain.
| | - Tamara Llano
- Green Engineering and Resources, Department of Chemistry and Process and Resource Engineering, University of Cantabria, Avda. Los Castros s/n, Santander 39005, Spain.
| | - Eva Cifrián
- Green Engineering and Resources, Department of Chemistry and Process and Resource Engineering, University of Cantabria, Avda. Los Castros s/n, Santander 39005, Spain.
| | - Javier Viguri
- Green Engineering and Resources, Department of Chemistry and Process and Resource Engineering, University of Cantabria, Avda. Los Castros s/n, Santander 39005, Spain.
| | - Edmond Maican
- Faculty of Biotechnical Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independentei, Sector 6, Bucuresti 060042, Romania.
| | - Herbert Sixta
- Department of Forest Products Technology, School of Chemistry, Aalto University, P.O. Box 16300, Aalto FI-00076, Finland.
| |
Collapse
|