1
|
Cui N, Cai M, Zhang X, Zeng R, Zhou L, Chen G, Zou G. Nitrogen removal performance and mechanism in constructed wetlands under saline conditions: Role of Canna indica inoculated with Piriformospora indica. BIORESOURCE TECHNOLOGY 2024; 408:131218. [PMID: 39106905 DOI: 10.1016/j.biortech.2024.131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
The phytopromotional root endophytic fungus Piriformospora indica was introduced into the wetland plant Canna indica L. to explore its impact on nitrogen (N) removal in constructed wetlands (CWs) to treat normal and saline (0.9 % NaCl) wastewater. P. indica colonization increased total nitrogen, NH4+-N, and NO3--N removal efficiencies under normal and saline conditions, with NO3--N removal rates significantly increasing by 17.5 % under saline conditions (P<0.05). N removal by plant uptake improved by 26.1 % and 27.7 % under normal and saline conditions due to P. indica-mediated growth-promoting effects. Salt-tolerant denitrifiers and nitrifiers guaranteed the dominant role of microbial degradation in N removal under saline conditions. P. indica inoculation considerably improved the contribution of Nocardioides and Nitrosomnas to dissimilatory/assimilatory nitrate reduction and nitrification genes, respectively. These findings elucidate the mechanisms and potential applications of P. indica-mediated phytoremediation in practical wastewater treatment under varying salty conditions.
Collapse
Affiliation(s)
- Naxin Cui
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Xu Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Rong Zeng
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China; Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd, PR China
| | - Li Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Guifa Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China
| | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai 201415, PR China.
| |
Collapse
|
2
|
Mohamed AYA, Tuohy P, Healy MG, Ó hUallacháin D, Fenton O, Siggins A. Effects of coagulation pre-treatment on chemical and microbial properties of water-soil-plant systems of constructed wetlands. CHEMOSPHERE 2024; 362:142745. [PMID: 38950741 DOI: 10.1016/j.chemosphere.2024.142745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Chemical coagulation has gained recognition as an effective technique to enhance the removal efficiency of pollutants in wastewater prior to their entry into a constructed wetland (CW) system. However, its potential impact on the chemical and microbial properties of soil and plant systems within CWs requires further research. This study investigated the impact of using ferric chloride (FeCl3) as a pre-treatment stage for dairy wastewater (DWW) on the chemical and microbial properties of water-soil-plant systems of replicated pilot-scale CWs, comparing them to CWs treating untreated DWW. CWs treating amended DWW had better performance than CWs treating raw DWW for all water quality parameters (COD, TSS, TP, and TN), ensuring compliance with the EU wastewater discharge directives. Soil properties remained mostly unaffected except for pH, calcium and phosphorus (P), which were lower in CWs treating amended DWW. As a result of lower nitrogen (N) and P loads, the plants in CWs receiving FeCl3-amended DWW had lower N and P contents than the plants of raw DWW CWs. However, the lower loads of P into amended DWW CWs did not limit the growth of Phragmites australis, which were able to accumulate trace elements higher than CWs receiving raw DWW. Alpha and Beta-diversity analysis revealed minor differences in community richness and composition between both treatments, with only 3.7% (34 genera) showed significant disparities. Overall, the application of chemical coagulation produced superior effluent quality without affecting the properties of soil and plant of CWs or altering the functioning of the microbial community.
Collapse
Affiliation(s)
- A Y A Mohamed
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| | - P Tuohy
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland.
| | - D Ó hUallacháin
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - O Fenton
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - A Siggins
- School of Biological and Chemical Sciences, and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| |
Collapse
|
3
|
Ali H, Min Y, Yu X, Kooch Y, Marnn P, Ahmed S. Composition of the microbial community in surface flow-constructed wetlands for wastewater treatment. Front Microbiol 2024; 15:1421094. [PMID: 39101038 PMCID: PMC11296210 DOI: 10.3389/fmicb.2024.1421094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Traditionally constructed wetlands face significant limitations in treating tailwater from wastewater treatment plants, especially those associated with sugar mills. However, the advent of novel modified surface flow constructed wetlands offer a promising solution. This study aimed to assess the microbial community composition and compare the efficiencies of contaminant removal across different treatment wetlands: CW1 (Brick rubble, lignite, and Lemna minor L.), CW2 (Brick rubble and lignite), and CW3 (Lemna minor L.). The study also examined the impact of substrate and vegetation on the wetland systems. For a hydraulic retention time of 7 days, CW1 successfully removed more pollutants than CW2 and CW3. CW1 demonstrated removal rates of 72.19% for biochemical oxygen demand (BOD), 74.82% for chemical oxygen demand (COD), 79.62% for NH4 +-N, 77.84% for NO3 --N, 87.73% for ortho phosphorous (OP), 78% for total dissolved solids (TDS), 74.1% for total nitrogen (TN), 81.07% for total phosphorous (TP), and 72.90% for total suspended solids (TSS). Furthermore, high-throughput sequencing analysis of the 16S rRNA gene revealed that CW1 exhibited elevated Chao1, Shannon, and Simpson indices, with values of 1324.46, 8.8172, and 0.9941, respectively. The most common bacterial species in the wetland system were Proteobacteria, Spirochaetota, Bacteroidota, Desulfobacterota, and Chloroflexi. The denitrifying bacterial class Rhodobacteriaceae also had the highest content ratio within the wetland system. These results confirm that CW1 significantly improves the performance of water filtration. Therefore, this research provides valuable insights for wastewater treatment facilities aiming to incorporate surface flow-constructed wetland tailwater enhancement initiatives.
Collapse
Affiliation(s)
- Haider Ali
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education and State Environmental Protection Key Laboratory For Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Ministry of Education and Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Yongen Min
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education and State Environmental Protection Key Laboratory For Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Ministry of Education and Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Xiaofei Yu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education and State Environmental Protection Key Laboratory For Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Ministry of Education and Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
- Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station and Key Laboratory of Wetland Ecology and Environment and Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yahya Kooch
- Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Phyoe Marnn
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education and State Environmental Protection Key Laboratory For Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology of Ministry of Education and Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Sarfraz Ahmed
- School of Life Sciences, Northeast Normal University, Changchun, China
- Key Laboratory of Remote Sensing, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
4
|
Yang Z, Shi S, He X, Cao M, Lin H, Fu J, Zhou J. High-efficient nutrient removal in a single-stage electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) for low C/N sanitary sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119848. [PMID: 38113787 DOI: 10.1016/j.jenvman.2023.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
To efficiently remove nutrients from low C/N sanitary sewage by conventional biological process is challenging due to the lack of sufficient electron donors. A novel electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) was established to promote nitrogen and phosphorus removal for sanitary sewage with low C/N ratios (3.5-1.5). Highly efficient removal of nitrogen (>79%) and phosphorus (>97%) was achieved in the E-SBBR operating under alternating anoxic/electrolysis-anoxic/aerobic conditions. The coexistence of autotrophic nitrifiers, electron transfer-related bacteria, and heterotrophic and autohydrogenotrophic denitrifiers indicated synergistic nitrogen removal via multiple nitrogen-removing pathways. Electrolysis application induced microbial anoxic ammonia oxidation, autohydrogenotrophic denitrification and electrocoagulation processes. Deinococcus enriched on the electrodes were likely to mediate the electricity-driven ammonia oxidation which promoted ammonia removal. PICRUSt2 indicated that the relative abundances of key genes (hyaA and hyaB) associated with hydrogen oxidation significantly increased with the decreasing C/N ratios. The high autohydrogenotrophic denitrification rates during the electrolysis-anoxic period could compensate for the decreased heterotrophic rates resulting from insufficient carbon sources and nitrate removal was dramatically enhanced. Electrocoagulation with iron anode was responsible for phosphorus removal. This study provides insights into mechanisms by which electrochemically assisted biological systems enhance nutrient removal for low C/N sanitary sewage.
Collapse
Affiliation(s)
- Zhi Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jiahao Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Qi Y, Zhong Y, Luo L, He J, Feng B, Wei Q, Zhang K, Ren H. Subsurface constructed wetlands with modified biochar added for advanced treatment of tailwater: Performance and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167533. [PMID: 37793458 DOI: 10.1016/j.scitotenv.2023.167533] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The limitations of conventional substrates in treating wastewater treatment plant tailwater are evident in subsurface flow constructed wetlands, and the emergence of biochar presents a solution to this problem. The objective of this study was to assess and prioritize the efficacy of various modified reed biochar in removing pollutants when used as fillers in wetland systems. To achieve this, we established multiple simulation systems of vertical groundwater flow wetlands, each filled with different modified reed biochar. The reed biochar was prepared and modified using Pingluo reed poles from Ningxia. We monitored the quality of the effluent water and the diversity of the microbial community in order to evaluate the pollutant removal performance of the modified biochar under different hydraulic retention times in a laboratory setting. The findings indicated that a hydraulic retention time of 24-48 h was found to be optimal for each wetland system. Furthermore, the composite modified biochar system with KMnO4 and ZnCl2 exhibited higher levels of dissolved oxygen and lower conductivity, resulting in superior pollutant removal performance. Specifically, the system achieved removal rates of 89.94 % for COD, 85.88 % for TP, 91.05 % for TN, and 92.76 % for NH3-N. Additionally, the 16S rRNA high-throughput sequencing analysis revealed that the system displayed high Chao1, Shannon, and Simpson indices of 6548.75, 10.1965, and 0.9944, respectively. The predominant bacterial phyla observed in the wetland system were Proteobacteria, Bacteroidetes, Chloroflexi, Patescibacteria, Firmicutes, and Actinobacteria. Additionally, the denitrifying bacterial class, Rhodobacteriaceae, was found to have the highest content ratio in this system. This finding serves as confirmation that the KMnO4 and ZnCl2 composite modified biochar can significantly enhance water purification performance. Consequently, this study offers valuable insights for wastewater treatment plants seeking to implement vertical submersible artificial wetland tailwater improvement projects.
Collapse
Affiliation(s)
- Yarong Qi
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Yanxia Zhong
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China.
| | - Lingling Luo
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Jing He
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, People's Republic of China; Ningxia University Northwest State Key Laboratory of Land Degradation and Ecological Restoration Cultivation Base, Yinchuan 750021, People's Republic of China
| | - Bo Feng
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Qiqi Wei
- School of the Environment & Ecology XiaMen University, XiaMen 361005, People's Republic of China
| | - Koukou Zhang
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Huiqin Ren
- School of Geography and Planning, Ningxia University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
6
|
Liu M, Wang J, Peng Z. Effects of micro-bubble aeration on the pollutant removal and energy-efficient process in a floc-granule sludge coexistence system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3044-3055. [PMID: 38096087 PMCID: wst_2023_376 DOI: 10.2166/wst.2023.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
To investigate energy-saving approaches in wastewater treatment plants and decrease aeration energy consumption, this study successfully established a floc-granule coexistence system in a sequencing batch airlift reactor (SBAR) employing micro-bubble aeration. The analysis focused on granule formation and pollutant removal under various aeration intensities, and compared its performance with a traditional floc-based coarse-bubble aeration system. The results showed that granulation efficiency was positively associated with aeration intensity, which enhanced the secretion of extracellular polymeric substances (EPSs) and facilitated granule formation. The SBAR with the micro-aeration intensity of 30 mL·min-1 showed the best granulation performance (granulation efficiency 52.6%). In contrast to the floc-based system, the floc-granule coexistence system showed better treatment performance, and the best removal efficiencies of NH4+-N, TN, and TP were 100.0, 77.0, and 89.5%, respectively. The floc-granule coexistence system also enriched higher abundance of nutrients removal microbial species, such as Nitrosomonas (0.05-0.14%), Nitrospira (0.14-2.32%), Azoarcus (2.95-12.17%), Thauera (0.43-1.95%), and Paracoccus (0.76-2.89%). The energy-saving potential was evaluated, which indicated it is feasible for the micro-aeration floc-granule coexistence system to decrease the aeration consumption by 14.4% as well as improve the effluent.
Collapse
Affiliation(s)
- Minghui Liu
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Ju Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China
| | - Zhaoxu Peng
- School of Water Conservancy and Transportation, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China; Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft, South Holland 2628 CN, The Netherlands
| |
Collapse
|
7
|
He Q, Yan X, Wang H, Ji Y, Li J, Liu L, Bi P, Xu P, Xu B, Ma J. Towards a better understanding of the anaerobic/oxic/anoxic-aerobic granular sludge process (AOA-AGS) for simultaneous low-strength wastewater treatment and in situ sludge reduction from ambient to winter temperatures. ENVIRONMENTAL RESEARCH 2023; 236:116822. [PMID: 37541415 DOI: 10.1016/j.envres.2023.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C). Results showed that simultaneously advanced nutrients removal, and dramatic in situ sludge reduction (Yobs of 0.093 g MLSS/g COD) were gained regardless of seasonally decreasing temperatures. Winter temperatures even amplified Candidatus Competibacter predominating from 20.11% to 34.74%, which laid the core basis for endogenous denitrification, sludge minimization and temperature resistance. A removal model was thus proposed given the observed functional groups, and doubts were also raised for future investigations. This study would aid a better understanding on the microbial ecology and engineering aspects of the new AOA-AGS process treating low-strength wastewater at low temperatures.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
8
|
Kumwimba MN, Huang J, Dzakpasu M, Ajibade FO, Li X, Sanganyado E, Guadie A, Şenel E, Muyembe DK. Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies. CHEMOSPHERE 2023; 330:138703. [PMID: 37100253 DOI: 10.1016/j.chemosphere.2023.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
The use of natural agro-industrial materials as suspended fillers (SFs) in floating treatment wetlands (FTWs) to enhance nutrient removal performance has recently been gaining significant attention. However, the knowledge concerning the nutrient removal performance enhancement by different SFs (alone and in mixtures) and the major removal pathways is so far inadequate. The current research, for the first time, carried out a critical analysis using five different natural agro-industrial materials (biochar, zeolite, alum sludge, woodchip, flexible solid packing) as SFs in various FTWs of 20 L microcosm tanks, 450 L outdoor mesocosms, and a field-scale urban pond treating real wastewater over 180 d. The findings demonstrated that the incorporation of SFs in FTWs enhanced the removal performance of total nitrogen (TN) by 20-57% and total phosphorus (TP) by 23-63%. SFs further enhanced macrophyte growth and biomass production, leading to considerable increases in nutrient standing stocks. Although all the hybrid FTWs showed acceptable treatment performances, FTWs set up with mixtures of all five SFs significantly enhanced biofilm formation and enriched the abundances of the microbial community related to nitrification and denitrification processes, supporting the detected excellent N retention. N mass balance assessment demonstrated that nitrification-denitrification was the major N removal pathway in reinforced FTWs, and the high removal efficiency of TP was attributable to the incorporation of SFs into the FTWs. Nutrient removal efficiencies ranked in the following order among the various trials: microcosm scale (TN: 99.3% and TP: 98.4%) > mesocosm scale (TN: 84.0% and TP: 95.0%) > field scale (TN: -15.0-73.7% and TP: -31.5-77.1%). These findings demonstrate that hybrid FTWs could be easily scaled up for the removal of pollutants from eutrophic freshwater systems over the medium term in an environmentally-friendly way in regions with similar environmental conditions. Moreover, it demonstrates hybrid FTW as a novel way of disposing of significant quantities of wastes, showing a win-win means with a huge potential for large-scale application.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Faculty of Agronomy, University of Lubumbashi, Democratic Republic of Congo
| | - Jinlou Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fidelis Odedishemi Ajibade
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Civil and Environmental Engineering, Federal University of Technology, Akure, PMB 704, Nigeria
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, United Kingdom
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, 21, Ethiopia
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Diana Kavidia Muyembe
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
9
|
He H, Zhang C, Yang X, Huang B, Zhe J, Lai C, Liao Z, Pan X. The efficient treatment of mature landfill leachate using tower bipolar electrode flocculation-oxidation combined with electrochemical biofilm reactors. WATER RESEARCH 2023; 230:119544. [PMID: 36603307 DOI: 10.1016/j.watres.2022.119544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Mature landfill leachate contains high concentrations of organic and inorganic compounds that inhibit the performance of conventional biological treatment. Nowadays, few single treatment techniques could fulfill the requirements of cleaning mature landfill leachate. In this study, a tower bipolar electrode flocculation-oxidation (BEF-O) reactor and an electrochemical biofilm reactor (EBR) combine device was constructed to effectively treat mature landfill leachate. And the removal efficiency and mechanism of various pollutants using the BEF-O reactor were investigated. The BEF-O system with the current density of 100 mA/cm2 shows excellent treatment efficiency, which can roundly remove most pollutants (NH4+-N, COD and heavy metals, etc.), and increase the bioavailability of the effluent to facilitate subsequent EBR treatment. Benefiting from the metabolic stimulation and population selection effect of electric current on microorganisms, EBR has a denser biofilm, stronger anti-pollution load capacity, superior, and stable pollution treatment efficiency. More importantly, the combined device can reduce the concentrations of COD and NH4+-N from 6410 to 338 mg/L and 4065 to 4 mg/L, respectively, and has an economical energy consumption of 32.02 kWh/(kg COD) and 54.04 kWh/ (kg NH4+-N). To summarize, this research could provide an innovative and industrial application prospect technology for the mature landfill leachate treatment.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Jiangyun Zhe
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
10
|
Li L, Zhang J, Shi Q, Lu S. Comparison of nitrogen removal performance and mechanism from low-polluted wastewater by constructed wetlands with two oxygen supply strategies: Tidal flow and intermittent aeration. CHEMOSPHERE 2023; 313:137364. [PMID: 36427582 DOI: 10.1016/j.chemosphere.2022.137364] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Due to dissolved oxygen (DO) limited nitrogen removal efficiency in constructed wetlands (CWs), two representative oxygen-suppling CWs, i.e., tidal flow constructed wetlands (TFCWs) and intermittently aerated constructed wetlands (IACWs) were proposed to compare the effect of oxygen supply strategies on the nitrogen removal performance and mechanism. Results showed that the removal efficiencies of NH4+-N and COD in IACWs were as high as 90.35-97.14% and 91.14-92.44%, respectively. In terms of TN, TFCWs (83.82%) showed a significantly higher removal efficiency than IACWs, and this result was derived with the flooded/drained phase (FP/DP) ratio of 21 h:3 h in TFCWs, because rhythmic FP and DP formed a high oxygen gradient at different depths of the system, which intensified the nitrification and denitrification simultaneously. The potential nitrifying and denitrifying bacteria (e.g., Nitrospira, Azospira, Haliangium, Bradyrhizobium and Arenimonas) were enriched more significantly in TFCWs compared with IACWs, as well as Bacillus for simultaneous nitrification and denitrification, which promoted nitrogen transformation together. Also, the results of molecular ecological network analysis showed that bacterial community structure in IACWs was more complex and robust than in TFCWs, because there were obviously more nodes and links as well as a higher proportion of negative interference. However, the relationship between genera in TFCWs was closer depending on shorter path distances, and the keystone genus (Nitrosomonas) in related to nitrification was considered to play an important role in nitrogen transformation performance.
Collapse
Affiliation(s)
- Linlin Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Jing Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Qiuyue Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Water Science, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
11
|
Hemdan BA, El-Taweel GE, Naha S, Goswami P. Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell. Sci Rep 2023; 13:1255. [PMID: 36690637 PMCID: PMC9871009 DOI: 10.1038/s41598-023-27795-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm-2, followed by CNTs (248.75 mA cm-2), rGO (193 mA cm-2), and blank (without coating) (151 mA cm-2) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.
Collapse
Affiliation(s)
- Bahaa A Hemdan
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Gamila E El-Taweel
- Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Sunandan Naha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
12
|
Chen H, Hu X, Song W, Wang Z, Li M, Liu H, Li J. Effect of pistachio shell as a carbon source to regulate C/N on simultaneous removal of nitrogen and phosphorus from wastewater. BIORESOURCE TECHNOLOGY 2023; 367:128234. [PMID: 36334867 DOI: 10.1016/j.biortech.2022.128234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Acid-pretreated pistachio shells were used as carbon sources to investigate the effects of carbon source dosage on simultaneous nitrogen and phosphorus removal under different carbon/nitrogen (C/N) ratios (7, 9, and 11). Results showed that C/N was positively correlated with mixed liquor suspended solids (MLSS) (R2 = 0.998, p < 0.01) and f value (R2 = 0.975, p < 0.05). Moreover, it was negatively correlated with the sludge volume index (SVI) (R2 = - 0.959, p < 0.05). C/N was also significantly negatively related to chemical oxygen demand removal rate (R2 = - 0.986, p < 0.05) and positively related to ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal rate (p < 0.05), the correlation coefficients were 0.992, 0.990 and 0.994, respectively. In the reactor with C/N of 11, the MLSS concentration and f value were the highest, the SVI was the lowest, and the removal efficiencies of NH4+-N (85.49 % ± 1.96 %), TN (84.19 % ± 1.42 %) and TP (94.10 % ± 1.67 %) were the highest. Furthermore, the relative abundance of denitrifying bacteria was the highest in the reactor. The abundance of nitrifying bacteria and phosphorus-removal bacteria was also relatively high.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Xiaobing Hu
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China; Engineering Research Center of Water Purification and Utilization Technology based on Biofilm Process, Ministry of Education, Ma'anshan, Anhui 243002, PR China.
| | - Weiwei Song
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Zhenzhen Wang
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Man Li
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Haoyu Liu
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| | - Jingjing Li
- Department of Municipal Engineering, School of Architectural Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, PR China
| |
Collapse
|
13
|
Chen R, Shuai J, Xie Y, Wang B, Hu X, Guo W, Lyu W, Zhou D, Mosa A, Wang H. Aerobic granulation and microbial community succession in sequencing batch reactors treating the low strength wastewater: The dual effects of weak magnetic field and exogenous signal molecule. CHEMOSPHERE 2022; 309:136762. [PMID: 36209862 DOI: 10.1016/j.chemosphere.2022.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The application of magneto-biological effects in wastewater treatment has been brought under the spotlight recently. This work explored the dual effects of magnetic field (MF) and exogenous N-hexanoyl-l-homoserine lactone (C6-HSL) on activated sludge granulation. Results showed that exposure to MF and C6-HSL obviously accelerated the aerobic granulation process and promoted the secretion of extracellular polymeric substances, especially polysaccharides, humic acid-like substances, aromatic proteins, and tryptophan-like substrates. Illumina MiSeq sequencing results indicated that the introduction of MF and C6-HSL can increase the diversity and richness of microbial community without antagonism, and the biological basis for rapid granulation process in this study was the enrichment of slow-growing bacteria Candidatus_Competibacter. Besides, the overgrowth of filamentous bacteria Thiothrix could be suppressed due to the presence of MF, improving the stabilities of aerobic granular sludge. This study provides a new understanding of the MF and C6-HSL effects on rapid aerobic granulation when treating the low-strength wastewater.
Collapse
Affiliation(s)
- Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Jia Shuai
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou, 510663, China
| | - Yijia Xie
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan, 430010, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wenbin Guo
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Enhancing Effects of Sludge Biochar on Aerobic Granular Sludge for Wastewater Treatment. Processes (Basel) 2022. [DOI: 10.3390/pr10112385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sludge biochar can be used as bio-carrier to enhance aerobic granular sludge, however, its impact on the formation and especially long-term stability of aerobic granules has not been fully investigated. In this paper, aerobic granular sludge was cultivated in two parallel sequencing batch reactors (SBRs), R1 and R2, with and without sludge biochar addition in the activated sludge inoculum, respectively. The sludge characteristics, wastewater treatment performance, and microbial community structure of granular sludge were examined on a 240-day operation, during which aerobic granular sludge in the two reactors experienced dynamic changes including granule formation, maturation, breakage, filamentous proliferation, and recovery. Aerobic granules in R1 with biochar formed two weeks earlier than that in R2, presenting a larger mean size, and higher settling ability and biomass retention in the granule maturation period. Concurrently, aerobic granules in R1 showed higher denitrification ability with over 80% removal efficiency throughout the whole operation period. During the maturation period, the ratio of food to biomass (F/M) in R1 was below 0.5 gCOD/gVSS d while it ranged between 0.5 and 1.0 gCOD/gVSS d in R2 due to lower biomass retention. The elemental analysis showed more Ca and P accumulation in aerobic granular sludge from R1, with 3% Ca and 2.75% P in sludge from R1 and 0.91% Ca and 0.75% P in sludge from R2, respectively. The microbial community in R1 had higher richness, diversity, excretion of extracellular polymer substances (EPSs) and abundance of denitrifying genera than that in R2, supporting its higher stability and denitrification performance. These results demonstrated that aerobic granular sludge formed by using sludge biochar as a carrier for granulation can speed up granule formation, improve denitrification performance, and enhance the long-term stability of aerobic granules. The findings disclosed the enhancing effects of biochar for wastewater treatment by aerobic granular sludge, suggesting the potential of practical application of biochar in aerobic granular sludge-based reactors.
Collapse
|
15
|
Ou D, Hu C, Liu Y. Metagenomics unraveled the characteristics and microbial response to hypersaline stress in salt-tolerant aerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115950. [PMID: 35988403 DOI: 10.1016/j.jenvman.2022.115950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/17/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the salt-tolerant aerobic granular sludge (SAGS) was cultivated with the increased salinity (0-9% NaCl), showing oval shape, and clear outline. The related sludge characteristics in the formation process of SAGS as well as the effects of salinity on the performance (removal ability, sludge biomass and EPS component) of SAGS were evaluated. Increased salinity accelerated the formation of SAGS, and resulted in the excess secretion of EPS. Relationship between EPS and settling capacity of SAGS was determined, with the increase of salinity, SVI decreased linearly and the sedimentation performance of granular sludge was enhanced. Pearson correlation analysis showed that shorter settling time (3 min) and longer anaerobic influent time (30 min) were beneficial to the operation of SAGS reactor. Metagenomics results showed that the SAGS was dominated by Candida, Halomonas and other salt-tolerant bacteria, the enrichment of these salt-tolerant microbes played an important role in maintaining the stability of granular sludge system and improving the overall salt-tolerant performance. Compared with S9 samples, the proteome regulation in S0 sample was more active and the abundance of Cell motility related proteins was 5 times higher than that in S9 samples. Extracellular structure related proteins was more active in S9, and its abundance was 3.6 times that of S0.
Collapse
Affiliation(s)
- Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
16
|
Di Capua F, Iannacone F, Sabba F, Esposito G. Simultaneous nitrification-denitrification in biofilm systems for wastewater treatment: Key factors, potential routes, and engineered applications. BIORESOURCE TECHNOLOGY 2022; 361:127702. [PMID: 35905872 DOI: 10.1016/j.biortech.2022.127702] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Simultaneous nitrification-denitrification (SND) is an advantageous bioprocess that allows the complete removal of ammonia nitrogen through sequential redox reactions leading to nitrogen gas production. SND can govern nitrogen removal in single-stage biofilm systems, such as the moving bed biofilm reactor and aerobic granular sludge system, as oxygen gradients allow the development of multilayered biofilms including nitrifying and denitrifying bacteria. Environmental and operational conditions can strongly influence SND performance, biofilm development and biochemical pathways. Recent advances have outlined the possibility to reduce the carbon and energy consumption of the process via the "shortcut pathway", and simultaneously remove both N and phosphorus under specific operational conditions, opening new possibilities for wastewater treatment. This work critically reviews the factors influencing SND and its application in biofilm systems from laboratory to full scale. Operational strategies to enhance SND efficiency and hints to reduce nitrous oxide emission and operational costs are provided.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Bari 70125, Italy.
| | | | | | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, Naples 80125, Italy
| |
Collapse
|
17
|
Li D, Guo W, Liang D, Zhang J, Li J, Li P, Wu Y, Bian X, Ding F. Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113464. [PMID: 35623442 DOI: 10.1016/j.envres.2022.113464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification, and phosphorus (P) removal aerobic granular sequence batch reactor (SNEDPR-AGSBR) is a challenge in the treatment of low carbon/nitrogen (C/N) domestic sewage. In this study, the feasibility of the SNEDPR-AGSBR process was examined in an exceedingly single-stage anaerobic/aerobic/anoxic sequencing batch reactor for treating low C/N ratio (3.3-5.0) domestic sewage. The initial results showed that accompanied by the rapid formation of the mature aerobic granular sludge based on the selection for slow-growing organisms, the rapid start-up (38 d) of the SNEDPR-AGSBR process was successfully realized. The formed mature aerobic granules had a dense structure with an average diameter of 667.7 μm and SVI30 of 30.0 mL/g. Two conditions for achieving the competitive balance between phosphorus-accumulating organisms/denitrifying phosphorus-accumulating organisms (PAOs/DPAOs) and glycogen accumulating organisms/denitrifying glycogen accumulating organisms (GAOs/DGAOs) were revealed by the long-term operation results. First, the dissolved oxygen (DO) concentration needed to be decreased to 3.0 mg/L in the aerobic phase, and then, the aerobic and anoxic phase hydraulic retention time (HRT) should be increased to 3.0 h. Notably, high removal efficiencies for NH4+-N (100%), total nitrogen (84.3%), and P (91.8%) of the SNEDPR-AGSBR process were stably obtained with a low C/N ratio of 3.9 domestic sewage. Simultaneous nitrification and endogenous denitrification (SNED) efficiency of 61.6% was achieved during a long-term operation of 142 days. Finally, microbial community analysis confirmed that GAOs (Defluviicoccus)/DGAOs (Candidatus_Competibacter) were responsible for the removal N, and PAOs (Acinetobacter, Candidatus_Accumulibacter, Hypomicrobinm)/DPAOs (Pseudomonas and Dechloromonas) ensured P removal.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Dongbo Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Jing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Peilin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xueying Bian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Fan Ding
- SDIC Xinkai Water Environment Investment Co., Ltd, Beijing, 101100, China
| |
Collapse
|
18
|
Guo Y, Zhang B, Feng S, Wang D, Li J, Shi W. Unveiling significance of Ca 2+ ion for start-up of aerobic granular sludge reactor by distinguishing its effects on physicochemical property and bioactivity of sludge. ENVIRONMENTAL RESEARCH 2022; 212:113299. [PMID: 35430279 DOI: 10.1016/j.envres.2022.113299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Almost all of the aerobic granular sludge (AGS) reactors were fed on certain amounts of Ca2+ ion, but whether and why it was necessary for reactor start-up remain unknown. Herein, this study conducted a set of comparative experiments in three AGS reactors, which were operated in parallel with Ca2+ addition in R3, hydroxyapatite (HAP) addition in R1, and without any forms of Ca addition in R2. Results showed that R3 not only achieved the complete granulation of sludge, but exhibited superior performance of COD and nutrient removal. In contrast, R1 had a slightly quicker granulation rate than R3 (R1: 0.07 day-1; R3: 0.06 day-1), but the formed granules could not efficiently degrade pollutants. In R2, both sludge granulation and pollutants removal did not proceed normally. Further investigations found that the Ca2+ ion acted in three ways: (1) it increased inorganic composition of sludge to promote granulation; (2) the transformed HAP strengthened stability of granular structure; (3) it ensured bioactivity of granules by driving enrichment of functional microbes and synthesis of metabolism enzymes. Overall, this study systemically proved significance of Ca2+ ion for the start-up of AGS reactors and its influencing mechanisms on different properties of granules.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Siqi Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
19
|
Xu P, Xie Z, Shi L, Yan X, Fu Z, Ma J, Zhang W, Wang H, Xu B, He Q. Distinct responses of aerobic granular sludge sequencing batch reactors to nitrogen and phosphorus deficient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155369. [PMID: 35461925 DOI: 10.1016/j.scitotenv.2022.155369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The nutrients availability determines efficiency of biological treatment systems, along with the structure and metabolism of microbiota. Herein nutrients deficiencies on aerobic granular sludge were comparatively evaluated, treating wastewater with mass ratios of chemical oxygen demand : nitrogen : phosphorus being 200:20:4, 200:2:4, and 200:20:0.4 (deemed as nutrient-balanced, nitrogen-deficient, and phosphorus-deficient), respectively. Results revealed that both nitrogen and phosphorus deficiencies significantly raised the effluent qualities especially nitrogen removal. However, nitrogen deficiency aroused considerable growth of filamentous bacteria, while granules kept compact structure under phosphorus deficient condition. Extracellular polymeric substances (EPS) also varied in contents and structures in response to different wastewaters. Microbial community structure analysis demonstrated that nitrogen deficiency led to lower richness and higher diversity, while the reverse was observed under phosphorus deficient condition. Nitrogen deficiency mainly induced decrease of nitrifying bacteria, while similarly phosphorus deficiency led to loss of phosphorus accumulating organisms. Dramatic enrichment Candidatus_Competibacter and filamentous Thiothrix were found under nutrients deficiencies, in which the latter explained and indicated filamentous bulking potential especially under nitrogen limited condition. Bacterial metabolism patterns verified the functions of microbial community responding to nutrients via PICRUSt2 prediction mainly by up-regulating cell motility, and cellular processes and signaling. This study could aid understanding of long-term stability of aerobic granular sludge for low-strength wastewater treatment.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Liangsheng Shi
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Xiaohui Yan
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Baokun Xu
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China; Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
20
|
Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification. WATER 2022. [DOI: 10.3390/w14091482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A long start-up period is one of the main factors limiting the practical application of aerobic granular sludge (AGS). Bioaugmentation could be a good strategy to accelerate aerobic granulation. In this research, four denitrifying strains were isolated from mature AGS. Mycobacterium senegalense X3-1 exhibited the strongest self-aggregation ability and good denitrification ability. Ensifer adhaerens X1 showed the strongest denitrification ability but poor self-aggregation ability. Additionally, strain X3-1 demonstrated the highest extracellular polymeric substances (EPS) contents accompanied by relatively high N-acyl-homoserine lactones (AHLs) concentrations, which could illustrate its predominant aggregation ability—AHLs produced by bacteria regulate EPS secretion to accelerate cell aggregation. Strain X3-1 and X1 were chosen as inoculated bacterium to verify the effects of bioaugmentation on AGS granulation and denitrification. Granulation was achieved in the sequential batch reactors (SBRs) added strain X3-1 10 days earlier than the control group. The particle morphology and TIN removal rate of X3-1 were both superior to the latter. The introduction of strains reduced the richness and diversity of the microbial community, but the key functional bacteria, Candidatus_Competibacter, proliferates in the SBR inoculated with X3-1. Conclusively, it is suggested Mycobacterium senegalense X31 could be a prospective strain for enhancing AGS formation and denitrification.
Collapse
|
21
|
Liang D, Guo W, Li D, Ding F, Li P, Zheng Z, Li J. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers. ENVIRONMENTAL RESEARCH 2022; 205:112547. [PMID: 34902378 DOI: 10.1016/j.envres.2021.112547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The aerobic granular sludge (AGS) process is a promising technology for wastewater treatment. However, a long start-up period for granulation and instability during long-term operation still hinder the application of AGS technology, especially for low-strength wastewater. To solve these two problems, this study tested a novel strategy involving the selection of slow-growing organisms and the addition of carriers in an anaerobic-aerobic-anoxic sequencing batch reactor (AN/O/AX_SBR). Three identical AN/O/AX_SBRs (R_Ctrl, R_CCM, and R_GAC), fed with low-strength wastewater, were operated for 120 days. R_Ctrl had no carriers, R_CCM contained cell culture microcarriers (CCM), and R_GAC contained granular activated carbon (GAC). Mature AGS was achieved within 80 days in all reactors. The carriers could reduce the maturation period of AGS by approximately 10 days (76, 66, and 69 days in R_Ctrl, R_CCM, and R_GAC, respectively) and improve the physical strength of the AGS. AGS showed a strong structure without excessive proliferation of filamentous bacteria, full-grown size (900-1100 μm), and good settleability (SVI5 was 15.4-19.4 mL/g). Microbiological analysis showed that AN/O/AX_SBRs can provide a metabolic selective pressure to select slow-growing organisms such as nitrifying bacteria (norank_f__NS9_marine_group, Ellin6067, and Nitrospira), glycogen and phosphorus accumulating organisms (GAOs: Candidatus_Competibacter and Defluviicoccus; PAOs: Candidatus_Accumulibacter and Flavobacterium). All reactors showed good performance for simultaneous nitrification, endogenous denitrification, and phosphorus removal. The removal efficiencies of total nitrogen and total phosphorous were above 70% and 80%, respectively. The cycle test showed intermediate PAO-GAO metabolism prevailed in the system, and endogenous denitrification was primarily carried out by denitrifying GAOs.
Collapse
Affiliation(s)
- Dongbo Liang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Dongyue Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Fan Ding
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Peilin Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoming Zheng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
22
|
Tong S, Zhang S, Zhao Y, Feng C, Hu W, Chen N. Hybrid zeolite-based ion-exchange and sulfur oxidizing denitrification for advanced slaughterhouse wastewater treatment. J Environ Sci (China) 2022; 113:219-230. [PMID: 34963530 DOI: 10.1016/j.jes.2021.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
The discharge of slaughterhouse wastewater (SWW) is increasing and its wastewater has to be treated thoroughly to avoid the eutrophication. The hybrid zeolite-based ion-exchange and sulfur autotrophic denitrification (IX-AD) process was developed to advanced treat SWW after traditional secondary biological process. Compared with traditional sulfur oxidizing denitrification (SOD), this study found that IX-AD column showed: (1) stronger ability to resist NO3- pollution load, (2) lower SO42- productivity, and (3) higher microbial diversity and richness. Liaoning zeolites addition guaranteed not only the standard discharge of NH4+-N, but also the denitrification performance and effluent TN. Especially, when the ahead secondary biological treatment process run at the ultra-high load, NO3--N removal efficiency for IX-AD column was still ~100%, whereas only 64.2% for control SOD column. The corresponding average effluent TN concentrations for IX-AD and SOD columns were 5.89 and 65.55 mg/L, respectively. Therefore, IX-AD is a promising technology for advanced SWW treatment and should be widely researched and popularized.
Collapse
Affiliation(s)
- Shuang Tong
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, China; Department of Environmental Science and Engineering, Beijing Academy of Food Sciences, Beijing 100068, China.
| | - Shaoxiang Zhang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yan Zhao
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing 100068, China; Department of Environmental Science and Engineering, Beijing Academy of Food Sciences, Beijing 100068, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Weiwu Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
23
|
Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, Azamathulla HM. Effects of wastewater type on stability and operating conditions control strategy in relation to the formation of aerobic granular sludge - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2113-2130. [PMID: 34810301 DOI: 10.2166/wst.2021.415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
Collapse
Affiliation(s)
- N A Hamiruddin
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - N A Awang
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - S N Mohd Shahpudin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - N S Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
| | - M A M Said
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - B Chaplot
- Department of Geography, M.J.K College, Bettiah, a constituent unit of B.R.A., Bihar University, Bettiah, Muzaffarpur, India
| | - H M Azamathulla
- Faculty of Engineering, The University of the West Indies, St. Augustine, Trinidad
| |
Collapse
|
24
|
Li P, Li K, Xu P, Liu X, Pu Y. Treatment of wastewater with high carbon-to-nitrogen ratio using a waterfall aeration biofilm reactor combined with sequencing batch reactor: Microbial community structure and metabolism analysis. BIORESOURCE TECHNOLOGY 2021; 337:125450. [PMID: 34192637 DOI: 10.1016/j.biortech.2021.125450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
A low-cost and high-efficiency waterfall aeration biofilm reactor (WABR) combined with a sequencing batch reactor (SBR) was established to treat wastewater with a C/N ratio of 50. Three WABR-SBR systems with different fillers were used. In the stable operation phase, the removal efficiency of chemical oxygen demand was R1 (approximately 99%), R2 (97-99%), and R3 (96-99%); the effluent concentration of NH4+-N was 0.5 mg/L without nitrite or nitrate accumulation. High-throughput 16S rRNA sequencing revealed that the dominant phyla in the microbial community structure were Proteobacteria, Bacteroidetes, and Planctomycetes. Quantitative PCR was used to quantify the nitrification and denitrification gene expressions (Nitrobacter, nirS, and nirK) to evaluate the simultaneous nitrification and denitrification processes. Both anammox and denitrifying bacteria were abundant. Metagenomic annotation of genes that revealed the metabolic pathways of carbohydrates, amino acids, and the two dominant enzymes (GH and GT) provide valuable information for microbial ecology analysis.
Collapse
Affiliation(s)
- Peijun Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kai Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pan Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xianchang Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yuewu Pu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Dan NH, Le Luu T. High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147680. [PMID: 34004532 DOI: 10.1016/j.scitotenv.2021.147680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate contains many pollutants that have a negative effect on the environment when improperly discharged. Thus the treatment of landfill leachate is a crucial issue, especially in the bigger cities in developing countries. In this study, landfill leachate is treated using a continuous flow sequencing biofilm batch reactor (CF-SBBR) with different biocarriers (non-carrier (NC), kaldness K1 (K1), mutag biochip 30™ (MB), and sponge polyurethane (SP)). The results show that the best COD, TOC, and NH4+-N removal efficiencies were 79.6 ± 0.8%, 78.1 ± 1.9% and 77.5 ± 3.9% in the MB biocarriers tank with an aeration/mixing ratio of 1.3, a cycle time of 9 h and an organic loading rate (OLR) of 1.74 kgCOD/m3.d. The TN removal efficiencies was decreased when there was an increase in the biocarrier's surface area (NC > K1 > MB > SP). At the highest it was 46.1 ± 6.4%, where the aeration/mixing ratio was 1.3, the cycle time was 9 h, and the OLR was 1.52 kgCOD/m3.d. The higher the surface area of the biocarriers, the greater the anti-shock organic loading capacity of the biocarriers due to the formation of biofilm layers. The microbial communities in the CF-SBBR tanks were abundant with common phylum bacteria as in a conventional activated sludge system. Anammox candidatus bacteria was found to total 0.5%. This study concluded that CF-SBBR is an efficient method to treat landfill leachate.
Collapse
Affiliation(s)
- Nguyen Hong Dan
- Institute for Environment and Resources, Vietnam National University of Ho Chi Minh City, Viet Nam
| | - Tran Le Luu
- Master Program in Water Technology, Reuse, and Management, Vietnamese German University, 2-Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province 820000, Viet Nam.
| |
Collapse
|
26
|
Wang W, Li D, Li S, Wei Z, Zeng H, Zhang J. Insight into enrichment of anaerobic ammonium oxidation bacteria in anammox granulation under decreasing temperature and no strict anaerobic condition: Comparison between continuous and sequencing batch feeding strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147601. [PMID: 34000529 DOI: 10.1016/j.scitotenv.2021.147601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
A continuous flow reactor (CFR) and a sequencing batch reactor (SBR) were operated in parallel to investigate the difference between anammox granulation in CFR and SBR under decreasing temperature and no strict anaerobic condition. The results showed that the biomass achieved initial granulation successfully (D [4, 3] = 280.44 and 346.28 μm) in both CFR and SBR on day 70. Compared with SBR, a better performance (0.33 kg N m-3 d-1) was gotten in CFR due to a better retention capacity of biomass (1397 mg L-1), when seasonal drop of water temperature occurred (18-14 °C). Thus, different operations led to different granulation styles of anammox. Granules in CFR had better rheological properties than that in SBR. Based on a stable and suitable environment provided by CFR, anaerobic ammonium oxidation bacteria (AnAOB) are able to self-aggregate easily and secret extracellular polymeric substances (EPS), which can capture other bacteria as home guardians. In SBR, AnAOB live inside the tan granules under the protection of other bacteria and thick EPS; other aggregations stick to solid carrier surface to form biofilm.
Collapse
Affiliation(s)
- Wenqiang Wang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
27
|
Liu N, Yun Y, Hu L, Xin L, Han M, Zhang P. Study on Start-Up Membraneless Anaerobic Baffled Reactor Coupled with Microbial Fuel Cell for Dye Wastewater Treatment. ACS OMEGA 2021; 6:23515-23527. [PMID: 34549148 PMCID: PMC8444317 DOI: 10.1021/acsomega.1c03560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, the antitoxicity performance of the traditional anaerobic baffled reactor (ABR) and the newly constructed membraneless anaerobic baffled reactor coupled with microbial fuel cell (ABR-MFC) was compared for the treatment of simulated printing and dyeing wastewater under the same hydraulic residence time. The sludge performances of ABR-MFC and ABR were evaluated on the dye removal rate, extracellular polymer (EPS) content, sludge particle size, methane yield, and the surface morphology of granular sludge. It was found that the maximum power density of the ABR-MFC reactor reached 1226.43 mW/m3, indicating that the coupled system has a good power generation capacity. The concentration of the EPS in the ABR-MFC reactor was about 3 times that in the ABR, which could be the result of the larger average particle size of sludge in the ABR-MFC reactor than in the ABR. The dye removal rate of the ABR-MFC reactor (91.71%) was higher than that of the ABR (1.49%). The methane production and microbial species in the ABR-MFC system were higher than those in the ABR. Overall, the MFC embedded in the ABR can effectively increase the resistance of the reactor, promote the formation of granular sludge, and improve the performance of the reactor for wastewater treatment.
Collapse
|
28
|
Duyar A, Ciftcioglu V, Cirik K, Civelekoglu G, Uruş S. Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145919. [PMID: 33640548 DOI: 10.1016/j.scitotenv.2021.145919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Landfill leachate (LFL) is one of the most serious environmental problems due to the high concentrations of toxic and hazardous matters. Although several physical, chemical, methods have been tested, biological processes and single or multiple-stage combinations of them have been receiving more attention due to their cost-effective and environmentally-friendly manner. The present work recommended coupling of conventional single-stage A/O with moving bed biofilm reactor and membrane bioreactor (AnoxMBBR/AeMBR) for LFL treatment. The system performance was evaluated for 233 d under varying nitrate concentrations (100-1000 mgNO3--N/L), sludge retention time (SRT) (30-90 d), and HRT (24-48 h) in AnoxMBBR, and constant SRT (infinite) and HRT (48 h) in the AeMBR. The best system performances were observed at 1000 mgNO3--N/L concentration, SRT of 90 d and HRT of 48 h, and the average removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and nitrate‑nitrogen (NO3-N) were 74.2%, 99.7%, and 89.1%, respectively. Besides, the AeMBR was achieved above 99% NH4+-N removal and not adversely affected by varying operation conditions of AnoxMBBR. A slight increase in selected phthalic acid ester (PAE) concentrations (diethyl phthalate (DEP), di (2-Ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP)) was detected in the AnoxMBR, and complete PAEs removal was attained in the AeMBR. Mg, Al, Si, Na, Fe was detected by SEM-EDX analyses in both biofilm of AnoxMBBR and the cake layers of AeMBR. Nitrobacter and Nitratireductor which showed a relatively high abundance played an important role in the removal of NH4+-N and COD in LFL. The results confirmed that the proposed sequence is efficient for COD removal, nitrogen removal, and PAEs being an acceptable treatment for landfill leachates.
Collapse
Affiliation(s)
- Ahmet Duyar
- Department of Environmental Engineering, Suleyman Demirel University, 32260 Isparta, Turkey; University-Industry-Public Collaboration, Research-Development-Application Centre, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Vildan Ciftcioglu
- Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras Turkey
| | - Kevser Cirik
- Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey; Research and Application Center for Environmental Concerns, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| | - Gokhan Civelekoglu
- Department of Environmental Engineering, Akdeniz University, 07058 Antalya, Turkey.
| | - Serhan Uruş
- Department of Chemistry, Kahramanmaras Sutcu Imam University, 46050 Kahramanmaras¸ Turkey.
| |
Collapse
|
29
|
Hassan M, Zhu G, Yang Z, Lu Y. Simultaneous removal of sulfamethoxazole and enhanced denitrification process from simulated municipal wastewater by a novel 3D-BER system. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:23-38. [PMID: 34150216 PMCID: PMC8172732 DOI: 10.1007/s40201-020-00562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, at an electric current intensity at 60 mA, more than 90.50 ± 4.76% of Sulfamethoxazole (SMX) was degraded. The strengthening of bacterial metabolisms and the sustainment of electrical stimulation contributed to the rapid removal of SMX and nitrates from simulated wastewater by a novel 3D-BER system. From the literature, very few studies have been performed to investigate the high risk of nitrates and antibiotics SMX found in wastewater treatment. The highest antibiotic SMX and nitrogen removal efficiency was 96.45 ± 2.4% (nitrate-N), 99.5 ± 1.5% (nitrite-N), 88.45 ± 1.4% (ammonia-N), 78.6 ± 1.0% (total nitrogen), and SMX (90.50 ± 4.76%), respectively. These results were significantly higher as compared to control system (p < 0.05). The highest denitrification efficiency was achieved at the pH level of 7.0 ± 0.20 - 7.5 ± 0.31. Lower or higher pH value can effect on an approach of heterotrophic-autotrophic denitrification. Moreover, low current intensity did not show any significant effect on the degradation, however, enhanced the removal rate of nitrate or nitrite as well as antibiotic SMX. Based on the results of HPLC and LC-MS/MS analysis, the intermediate products were proposed after efficient biodegradation of SMX. Finally, these results is expected to provide some new insights towards the high electric currents, changes the bacterial community structure, and the activated sludge which played an important role in the biodegradation of SMX and nitrates removal more efficiently.
Collapse
Affiliation(s)
- Mahdi Hassan
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Guangcan Zhu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
- School of Information Engineering, Xizang Minzu University, Xianyang, 712082 China
| | - Zhonglian Yang
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| | - Yongze Lu
- School of Energy and Environment, Key Laboratory of Environmental Medicine Engineering of the Ministry of Education, Southeast University, Nanjing, 210096 Jiangsu China
| |
Collapse
|
30
|
Odedishemi Ajibade F, Wang HC, Guadie A, Fausat Ajibade T, Fang YK, Muhammad Adeel Sharif H, Liu WZ, Wang AJ. Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: Microbial community structure and dissolved organic carbon release conditions. BIORESOURCE TECHNOLOGY 2021; 322:124430. [PMID: 33383476 DOI: 10.1016/j.biortech.2020.124430] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Biochar was utilized to intensify constructed wetland (CW) for further organic and nitrogen removal from secondary wastewater. Four sets of non-aerated biochar amended vertical flow CW (VFCW) were developed to investigate the synergistic effects of biochar and microbes on pollutant removal. Results showed that the average COD and nitrogen removal efficiencies of VFCW1 (with 1% w/w biochar with microbe and plants) achieved 89.1 ± 5.6% and 90.2 ± 3.1% respectively, and their corresponding removal rates of 10.2 ± 0.8 mg-COD/(m3.d) and 3.57 ± 0.3 mg-TN/(m3.d) which were 35 and 52.3% higher than control. The biochar's dissolved organic carbon release in VFCWs indicated that water and acidic media portray the optimum conditions for nitrogen removal. The 16S RNA gene sequencing analysis indicated that in the biochar-amended VFCWs, bacterial phylum Proteobacteria (24.13-51.95%) followed by Chloroflexi (5.64-25.01%), Planctomycetes (8.48-14.43%), Acidobacteria (2.29-11.65%) were abundantly enhanced. Conclusively, incorporating biochar in non-aerated VFCWs is an efficient technique for enhancing nitrogen removal from secondary effluent.
Collapse
Affiliation(s)
- Fidelis Odedishemi Ajibade
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria
| | - Hong-Cheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Temitope Fausat Ajibade
- University of Chinese Academy of Sciences, Beijing 100049, PR China; Department of Civil and Environmental Engineering, Federal University of Technology Akure, PMB 704, Nigeria; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Ying-Ke Fang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hafiz Muhammad Adeel Sharif
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wen-Zong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| |
Collapse
|
31
|
Cai YM. Non-surface Attached Bacterial Aggregates: A Ubiquitous Third Lifestyle. Front Microbiol 2020; 11:557035. [PMID: 33343514 PMCID: PMC7746683 DOI: 10.3389/fmicb.2020.557035] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Bacteria are now generally believed to adopt two main lifestyles: planktonic individuals, or surface-attached biofilms. However, in recent years medical microbiologists started to stress that suspended bacterial aggregates are a major form of bacterial communities in chronic infection sites. Despite sharing many similarities with surface-attached biofilms and are thus generally defined as biofilm-like aggregates, these non-attached clumps of cells in vivo show much smaller sizes and different formation mechanisms. Furthermore, ex vivo clinical isolates were frequently reported to be less attached to abiotic surfaces when compared to standard type strains. While this third lifestyle is starting to draw heavy attention in clinical studies, it has a long history in natural and environmental sciences. For example, marine gel particles formed by bacteria attachment to phytoplankton exopolymers have been well documented in oceans; large river and lake snows loaded with bacterial aggregates are frequently found in freshwater systems; multispecies bacterial "flocs" have long been used in wastewater treatment. This review focuses on non-attached aggregates found in a variety of natural and clinical settings, as well as some recent technical developments facilitating aggregate research. The aim is to summarise the characteristics of different types of bacterial aggregates, bridging the knowledge gap, provoking new perspectives for researchers from different fields, and highlighting the importance of more research input in this third lifestyle of bacteria closely relevant to our daily life.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Yue Z, Li P, Bin L, Huang S, Fu F, Yang Z, Qiu B, Tang B. N-Acyl-homoserine lactone-mediated quorum sensing of aerobic granular sludge system in a continuous-flow membrane bioreactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Wang X, Chen Z, Shen J, Kang J, Zhang X, Li J, Zhao X. Effect of carbon source on pollutant removal and microbial community dynamics in treatment of swine wastewater containing antibiotics by aerobic granular sludge. CHEMOSPHERE 2020; 260:127544. [PMID: 32673869 DOI: 10.1016/j.chemosphere.2020.127544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
Aerobic granular sludge sequencing batch reactor (AGSBR) is a promising approach for wastewater treatment. In the paper, the effects of methanol, starch and sucrose as carbon sources on the treatment of swine wastewater (SW) containing antibiotics by aerobic granular sludge (AGS) were studied. The results revealed that the carbon sources could affect the morphology, biomass, and settleability of AGS, and AGS could maintain a better sludge performance when sucrose was used as carbon source. The pollutants (ammonium nitrogen (NH+ 4-N), organic matter and total phosphorus (TP)) in SW also had a good removal effect, and the removal rates reached 81.14%, 96.83% and 97.37% respectively. The removal efficiencies of tetracycline (TC) and oxytetracycline (OTC) from SW were the best when sucrose as co-metabolic matrix by microorganisms. The analysis of miseq pyrosequencing demonstrated that carbon sources with methanol, starch and sucrose improved the diversity of microbial community in AGS, and the dominant bacteria also changed. The dominant groups involved in TC and OTC, removal at different classification levels suggested that the formation of bacterial communities was determined by carbon sources.
Collapse
Affiliation(s)
- Xiaochun Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xiaolei Zhang
- Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ji Li
- Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Xia Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
34
|
Yan X, Zheng S, Yang J, Ma J, Han Y, Feng J, Su X, Sun J. Effects of hydrodynamic shear stress on sludge properties, N 2O generation, and microbial community structure during activated sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111215. [PMID: 32814212 DOI: 10.1016/j.jenvman.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Sludge properties are critical to the treatment performance and potentially correlate with nitrous oxide (N2O) generation during activated sludge processes. The hydrodynamic shear stress induced by aeration has a significant influence on sludge properties and is inevitable for wastewater treatment plants (WWTPs). In this study, the effects of aerobic induced hydrodynamic shear stress on sludge properties, N2O generation, and microbial community structure were investigated using three parallel sequencing batch reactors (SBRs) with identical dissolved oxygen (DO) concentrations. Results showed that with a shear stress increase from 1.5 × 10-2 N/m2 to 5.0 × 10-2 N/m2, the COD and NH4+-N removal rates were enhanced from 89.4% to 94.0% and from 93.9% to 98.0%, respectively, while the TN removal rate decreased from 66.0% to 56.5%. Settleability of the activated sludge flocs (ASFs) also increased with the enhancement of shear stress, due to variation in sludge properties including particle size, regularity, compactibility, and EPS (extracellular polymeric substances) composition. The increase in shear stress promoted oxygen diffusion within the ASFs and mitigated NO2--N accumulation, leading to a decrease in the N2O-N conversion rate from (4.8 ± 0.3)% to (2.2 ± 0.6)% (based on TN removal). Microbial analysis results showed that the functional bacteria involved in the biological nitrogen removal was closely related with shear stress. The increase in shear stress favored the enrichment of nitrite oxidizing bacteria (NOB) while suppressed the accumulation of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (DNB).
Collapse
Affiliation(s)
- Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China.
| | - Shikan Zheng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jie Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jiahui Ma
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yunping Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinglan Feng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Xianfa Su
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Jianhui Sun
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, Henan, China
| |
Collapse
|
35
|
Wang H, Li Y, Zhang S, Li D, Liu X, Wang W, Liu L, Wang Y, Kang L. Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland. BIORESOURCE TECHNOLOGY 2020; 315:123807. [PMID: 32731159 DOI: 10.1016/j.biortech.2020.123807] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
This work studied three parallel pilot-scale constructed wetlands based on sulfur-based autotrophic denitrification (SAD-CWs) with horizontal, vertical-horizontal and integrated vertical inflow for nitrogen removal of municipal tailwater. SAD system played the predominant role for nitrate removal and the integrated vertical inflow pattern was the most efficient pattern with 96.1% NO3--N and 44.3% total phosphorus (TP) removal efficiency, respectively, at the condition of 3.5 h hydraulic retention time (HRT) and 18.5-23.5 °C. Although no great and serious change for microbial community structure was observed among these systems, the diversity in term of abundance of microbes and certain function species was observed. Proteobacteria, Ignavibacterae and Chloroflexi were the dominant phyla and accounted for over 59.1%, 7.5%, and 6.0% in SAD-CWs, respectively. Moreover, the richness and diversity of denitrifies in SAD-CWs with integrated vertical inflow were both higher than that in the other two reactors, especially sulfur autotrophic denitrifying bacteria.
Collapse
Affiliation(s)
- Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Yingying Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Shengqi Zhang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Duo Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Xingchun Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Wenjing Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Ling Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China.
| | - Le Kang
- Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance,College of Life Sciences, Hebei University, China
| |
Collapse
|
36
|
Responses of Nitrogen and Phosphorus Removal Performance and Microbial Community to Fe 3O 4@SiO 2 Nanoparticles in a Sequencing Batch Reactor. Appl Biochem Biotechnol 2020; 193:544-559. [PMID: 33037594 DOI: 10.1007/s12010-020-03441-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The responses of total nitrogen (TN) and total phosphorus (TP) removal performance and microbial community to 0-1.2 g/L Fe3O4@SiO2 nanoparticles (NPs) in sequencing batch reactors were investigated. Results showed that an appropriate dose of Fe3O4@SiO2 NPs (0.3 g/L) could promote the removal efficiency of TN and TP. High-throughput sequencing results indicated that microbial richness increased, whereas microbial diversity did not vary upon exposure to 0.1-1.2 g/L Fe3O4@SiO2 NPs. The relative abundances of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria increased from 11.75%, 3.52%, and 6.77%, respectively, at 0 g/L Fe3O4@SiO2 to 27.05%, 7.21%, and 14.77%, respectively, upon exposure to 0.3 g/L Fe3O4@SiO2. At the genus level, 0.3 g/L Fe3O4@SiO2 NPs enriched norank_f_Nitrosomonadaceae, norank_f_Xanthomonadaceae, Amaricoccus, and Shinella. Real-time quantitative polymerase chain reaction results suggested that the gene copy number of ammonium-oxidizing, nitrite-oxidizing, and denitrifying bacteria population remarkably increased, whereas the number of phosphorus-accumulating organisms slightly increased under long-term exposure to 0.3 g/L Fe3O4@SiO2 NPs. Energy-dispersive spectrum analysis showed that the phosphorus content was higher at 0.3 g/L Fe3O4@SiO2 than at 0 g/L Fe3O4@SiO2. Nitrogen removal primarily occurred through a biological mechanism, while most phosphorus in wastewater may be removed by the combination of physicochemical and biological methods.
Collapse
|
37
|
Kabutey FT, Ding J, Zhao Q, Antwi P, Quashie FK. Electrical current generation from a continuous flow macrophyte biocathode sediment microbial fuel cell (mSMFC) during the degradation of pollutants in urban river sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35364-35380. [PMID: 32594445 DOI: 10.1007/s11356-020-09812-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
A new type of sediment microbial fuel cell (SMFC) with floating macrophyte Limnobium laevigatum, Pistia stratiotes, or Lemna minor L. biocathode was constructed and assessed in three phases at different hydraulic retention time (HRT) for electrical current generation during the degradation of urban river sediment. The results showed a highest voltage output of 0.88 ± 0.1 V, maximum power density of 80.22 mW m-3, highest columbic efficiency of 15.3%, normalized energy recovery of 0.030 kWh m-3, and normalized energy production of 0.005 kWh m-3 in the Lemna minor L. SMFC during phase 3 at HRT of 48 h, respectively. Highest removal efficiencies of total chemical oxygen demand of 80%, nitrite of 99%, ammonia of 93%, and phosphorus of 94% were achieved in Lemna minor L. system, and 99% of nitrate removal and 99% of sulfate removal were achieved in Pistia stratiotes and Limnobium laevigatum system during the SMFC operation, respectively. Pistia stratiotes exhibited the highest growth in terms of biomass and tap root system of 29.35 g and 12.2 cm to produce the maximum dissolved oxygen of 16.85 ± 0.2 mg L-1 compared with other macrophytes. The predominant bacterial phylum Proteobacteria of 62.86% and genus Exiguobacterium of 17.48% were identified in Limnobium laevigatum system, while the class Gammaproteobacteria of 28.77% was observed in the control SMFC. The integration of technologies with the continuous flow operation shows promising prospect in the remediation of polluted urban river sediments along with the generation of electrical current.
Collapse
Affiliation(s)
- Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
- Council for Scientific and Industrial Research-Institute for Scientific and Technological Information (CSIR-INSTI), P. O. Box M-32, Accra, Ghana
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China.
| | - Philip Antwi
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Frank Koblah Quashie
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
38
|
Zhao C, Shang D, Zou Y, Du Y, Wang Q, Xu F, Ren L, Kong Q. Changes in electricity production and microbial community evolution in constructed wetland-microbial fuel cell exposed to wastewater containing Pb(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139127. [PMID: 32438162 DOI: 10.1016/j.scitotenv.2020.139127] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m-2 and 3.873 mW·m-2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4+-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II).
Collapse
Affiliation(s)
- CongCong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - DaWei Shang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YanLing Zou
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Institute of Environment and Ecology, Shandong Normal University, Jinan 255014, PR China
| | - YuanDa Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China
| | - Liang Ren
- Jiangsu CRRC Environment CO. LTD, Jiangsu Province 215557, China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan 250014, PR China; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
39
|
Kedves A, Sánta L, Balázs M, Kesserű P, Kiss I, Rónavári A, Kónya Z. Chronic responses of aerobic granules to the presence of graphene oxide in sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121905. [PMID: 31874760 DOI: 10.1016/j.jhazmat.2019.121905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023]
Abstract
The chronic responses of aerobic granular sludge (AGS) to the presence of graphene oxide nanoparticles (GO NPs) (5, 15, 25, 35, 45, 55, 65, 75, 85, and 95 mg/L of GO NPs for 7 days) during biological wastewater treatment processes were investigated. Bioreactor performance, extracellular polymeric substance (EPS) secretion, and microbial community characteristics were assessed. The results showed that the effects of GO NPs on bioreactor performances were dependent on the dose applied and the duration for which it was applied. At concentrations of 55, 75, and 95 mg/L, GO NPs considerably inhibited the efficiency of organic matter and ammonia removal; however, nitrite and nitrate removal rates were unchanged. Biological phosphorus removal decreased even when only low concentrations of GO NPs were used. The secretion of EPS, which could alleviate the toxicity of GO NPs, also changed. The increased amount of nanoparticles also resulted in significant changes to the bacterial community structure. Based on the amplicon sequencing of 16S rRNA genes, Paracoccus sp., Klebsiella sp., and Acidovorax species were identified as the most tolerant strains.
Collapse
Affiliation(s)
- Alfonz Kedves
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Levente Sánta
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Margit Balázs
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Péter Kesserű
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - István Kiss
- Bay Zoltán Nonprofit Ltd. for Applied Research, BAY-BIO Division for Biotechnology, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary; MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged, Hungary.
| |
Collapse
|
40
|
Li Y, Liu SJ, Chen FM, Zuo JE. Development of a dynamic feeding strategy for continuous-flow aerobic granulation and nitrogen removal in a modified airlift loop reactor for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136764. [PMID: 31982758 DOI: 10.1016/j.scitotenv.2020.136764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the aerobic sludge granulation and nitrogen removal performance in a modified airlift loop reactor treating municipal wastewater under different operation conditions. Dynamic feeding and aeration control were applied to create feast/famine conditions to facilitate microbial aggregation. Experimental results demonstrated that aerobic granular sludge could be cultivated in continuous-flow reactors fed with an optimized dynamic feeding condition. Fresh granules sizing 0.4-0.6 mm were observed in the reactors after a 61-day operation, then turned to matured granules after another 33-day operation with a compact structure, a stable size of 2-4 mm, and a low SVI of ~35 mL/g. Extracellular polymeric substances (EPS) analysis results showed that both EPS contents and the ratio of protein to polysaccharides increased with the granulation process, leading to an increase of cell hydrophobicity. Granular sludge exhibited a good nitrogen removal ability with a comparable level of specific nitrification rate and denitrification rate with those measured in state-of-the-art sequential batch reactors. Microbial population analysis showed an increase in the relative abundance of functional microbes, including Zoogloea, Nitrospira, Dechloromonas, and Thauera in the cultivated granules, suggesting a potentially crucial role of these microbes in sludge granulation and nitrogen removal. The dynamic feeding strategy and the reactor configuration are considered as critical factors for aerobic granulation under continuous-flow conditions for creating feast/famine conditions and allow sludge backflow without structure damage.
Collapse
Affiliation(s)
- Yun Li
- Research Centre of Environmental Microbial Resource Development and Application Engineering, Research Institute of Tsinghua University in Shenzhen, Guangdong 518000, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China.
| | - Shu-Jie Liu
- Shenzhen Qingyan Environment Technology Co., Ltd., Guangdong 518000, China
| | - Fu-Ming Chen
- Shenzhen Qingyan Environment Technology Co., Ltd., Guangdong 518000, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Li DC, Gao JF, Zhang SJ, Gao YQ, Sun LX. Enhanced granulation process, a more effective way of aerobic granular sludge cultivation in pilot-scale application comparing to normal granulation process: From the perspective of microbial insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136106. [PMID: 31863990 DOI: 10.1016/j.scitotenv.2019.136106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Aerobic granular sludge (AGS) could be cultivated from only flocs (called normal granulation (NG) process) or mixture of flocs and crushed AGS (called enhanced granulation (EG) process), which might lead to different system performances such as granulation speed and pollutants removal efficiencies. However, the differences of mechanisms between NG and EG processes at microbial community level are still unknown. In this study, the NG and EG processes were implemented successively in a pilot-scale sequencing batch reactor (SBR) with certain amounts of additional carbon sources. Illumina MiSeq sequencing and quantitative PCR were applied to investigate the dynamics of bacterial communities during NG and EG processes and explore the possible explanations for faster EG process. The results showed that significant distinctions in bacterial diversities and community structures were observed between NG and EG processes. The major contributor to NG process was bacterial communities with 32.04% contribution. While EG process was more dependent on the interactions (73.16% contribution) between the bacterial communities and environmental variables (operational parameters and self-adaptive variable). EG process had higher relative abundances of functional bacteria than NG process. Glycogen accumulating organisms (GAOs) related bacteria with a total relative abundance of maximum 65.43% might be mainly responsible for the faster EG process. This study provided microbial insights for practical application of AGS technology that inoculating crushed AGS might be an effective way to cultivate AGS.
Collapse
Affiliation(s)
- Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Shu-Jun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Yong-Qing Gao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Li-Xin Sun
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| |
Collapse
|
42
|
Li S, Li D, Wang Y, Zeng H, Yuan Y, Zhang J. Startup and stable operation of advanced continuous flow reactor and the changes of microbial communities in aerobic granular sludge. CHEMOSPHERE 2020; 243:125434. [PMID: 31995884 DOI: 10.1016/j.chemosphere.2019.125434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 05/20/2023]
Abstract
In this study, the granular sludge was operated under low aeration condition in sequencing batch reactor (SBR) and advanced continuous flow reactor (ACFR), respectively. Through increasing the sludge retention time (SRT) from 22 days to 33 days, the ACFR was successful startup in 30 days and achieved long term stable operation. Under SBR operation condition, the aerobic granular sludge (AGS) showed good nitrogen (60%), phosphorus (96%) and COD removal performance. During stable operation of continuous-flow, the nitrogen removal efficiency was increasing to 70%, however, the phosphorus removal efficiency could only be restored to 65%. Meanwhile, the sludge discharge volume from ACFR was about half of that in SBR. Results of high-throughput pyrosequencing illustrated that methanogenic archaea (MA), ammonia oxidizing archaea (AOA), denitrifying bacteria (DNB), denitrifying polyphosphate-accumulating organisms (DPAOs) played an important role in the removal of nutrients in ACFR. This study could have positive effect on the practical application of AGS continuous flow process for simultaneous biological nutrient removal (SBNR).
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| | - Yingqiao Wang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| |
Collapse
|
43
|
Li Y, Wang Y, Wan D, Li B, Zhang P, Wang H. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure. BIORESOURCE TECHNOLOGY 2020; 300:122682. [PMID: 31901555 DOI: 10.1016/j.biortech.2019.122682] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
This work aimed to study a pilot-scale sulfur-limestone autotrophic denitrification biofilter (SLADB) to remove nitrogen from municipal tailwater. The capacity of nitrogen removal and spatial distribution of microbial community at low temperature condition were analyzed. Low temperature inhibits nitrogen removal; while prolonging hydraulic retention time (HRT) increased nitrogen removal efficiency. TN and NO3--N removal efficiency reached 81.1% and 85.3%, respectively, with HRT of 18 h at the temperature ranging from 6.4 to 9.8 °C. Proteobacteria and Chloroflexi were two dominant phyla. Along the reactor, class β-proteobacteria and ε-proteobacteria decreased, while γ-proteobacteria and Acidobacteria increased. For genus classification, Thiobacillus, Sulfurimonas, and Ferritrophicum which promote sulfur autotrophic denitrification, decreased significantly. While Anaerolineae promoting heterotrophic denitrification increased obviously. Sphingobacteriia coexisted in SLADB and were beneficial to nitrogen removal. Microbial community spatial distribution patterns were related to nitrogen removal. This study achieved reliable pilot-scale application of SLADB under low temperature for municipal tailwater.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China
| | - Dongjin Wan
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Bang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Hongjie Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China.
| |
Collapse
|
44
|
Barros ARM, Rollemberg SLDS, de Carvalho CDA, Moura IHH, Firmino PIM, Dos Santos AB. Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109850. [PMID: 31760299 DOI: 10.1016/j.jenvman.2019.109850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
This work investigated the effect of Ca2+ (100 mg L-1) addition on the formation and maintenance of aerobic granular sludge in a simultaneous fill/draw mode sequencing batch reactor (SBR), operated with a low liquid upflow velocity (0.92 m h-1), in order to verify if Ca2+ presence compensates the low selection pressure imposed. Additionally, carbon and nutrients removals, granules characteristics and microbial community were evaluated. For this, two SBRs (R1, control, and R2, Ca2+-supplemented) were operated (6-h cycle). In general, Ca2+ supplementation affected positively the sludge settleability, although a larger fraction of inert solids was found in the granules. The total extracellular polymeric substances were the same for both reactors, and no remarkable differences were observed between their polysaccharides and proteins contents. Overall, Ca2+ addition in a simultaneous fill/draw mode SBR neither accelerated the granule formation nor improved the operational performance. The microbial community structure, especially in terms of bioactivity, was not affected as well. Therefore, the effect of divalent cations might be more pronounced in conventional SBRs, in which the selection pressure is higher.
Collapse
Affiliation(s)
| | | | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ian Holanda Herbster Moura
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
45
|
Chao C, Zhao Y, Keskar J, Ji M, Wang Z, Li X. Simultaneous removal of COD, nitrogen and phosphorus and the tridimensional microbial response in a sequencing batch biofilm reactor: with varying C/N/P ratios. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
He Q, Song J, Zhang W, Gao S, Wang H, Yu J. Enhanced simultaneous nitrification, denitrification and phosphorus removal through mixed carbon source by aerobic granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121043. [PMID: 31450207 DOI: 10.1016/j.jhazmat.2019.121043] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aerobic granular sludge-based simultaneous nitrification, denitrification and phosphorus removal (SNDPR) systems were configured for the treatment of low-strength municipal wastewater. Granular characteristics, process performance, and the corresponding microbial ecology dynamics were comprehensively explored with sodium acetate and succinate as mixed carbon source. Results revealed that aerobic granules kept structural and functional resilience, while mixed carbon source largely altered and balanced the growth and competition of phosphorus/glycogen accumulating organisms (PAOs/GAOs). Appropriate ratio of mixed carbon source was vital for superb physiochemical behaviors and reliable removal performance by aerobic granules. Therefore, the aerobic granular SNDPR system could achieve deep-level nutrients removal through enhancing the anaerobic carbon uptake rate and strengthening the carbon usage efficiency. The present work could add some guiding sight into the application of aerobic granular SNDPR system for wastewater treatment.
Collapse
Affiliation(s)
- Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Shuxian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China.
| | - Jian Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
47
|
Gao S, He Q, Wang H. Research on the aerobic granular sludge under alkalinity in sequencing batch reactors: Removal efficiency, metagenomic and key microbes. BIORESOURCE TECHNOLOGY 2020; 296:122280. [PMID: 31693972 DOI: 10.1016/j.biortech.2019.122280] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Effects of additional alkalinity on the performance of aerobic granular sludge (AGS) in sequencing batch reactors (SBR) performing simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) were evaluated. Results showed that COD and ammonia-N (NH4+-N) were slightly stimulated and remained high and stable with the increase of alkalinity up to 750 mg/L, while denitrification was boosted and total inorganic nitrogen (TIN) removal efficiency increased from 60.46% to 98.62% with an additional alkalinity of 750 mg/L. However, total phosphorus (TP) removal stayed unaffected and efficient. Illumina MiSeq sequencing revealed that microbial diversity and richness shifted mostly with 500 mg/L exterior alkalinity addition. Additional alkalinity altered the bacterial compositions within aerobic granules at various levels and the enrichment of Thiothrix and Acinetobacter was accounted for the promotion of COD and TIN removal.
Collapse
Affiliation(s)
- Shuxian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
48
|
He Q, Zhang J, Gao S, Chen L, Lyu W, Zhang W, Song J, Hu X, Chen R, Wang H, Yu J. A comprehensive comparison between non-bulking and bulking aerobic granular sludge in microbial communities. BIORESOURCE TECHNOLOGY 2019; 294:122151. [PMID: 31557652 DOI: 10.1016/j.biortech.2019.122151] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Filamentous sludge bulking poses great threats to operational stability of aerobic granular sludge. Exploration of the microbial community aids knowledge of the causative factors to sludge bulking and guides directions for corresponding actions for prevention and controlling. Detailed changes of bacterial community within the non-bulking and bulking were performed and compared with a non-specific method through 1‰ (v/v) hydrogen peroxide (H2O2) addition. Results revealed that non-bulking/bulking granules maintained effective carbon and nitrogen removal, while bulking completely deteriorated enhanced biological phosphorus removal (EBPR). Excess extracellular polymeric substances (EPS) especially polysaccharide (PS) were directly linked with sludge bulking and abundant PS contributed to subsequent granular re-stability. Filamentous bulking dramatically altered the bacterial populations and 1‰ H2O2 effectively controlled bulking by eliminating causative filaments Singulisphaera and Thiothrix. Together, this study provides new insights into the non-bulking/bulking granules and could direct the prevention and control of filamentous bulking in aerobic granules.
Collapse
Affiliation(s)
- Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430072, China
| | - Shuxian Gao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jian Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Ye Q, Liang C, Chen X, Fang T, Wang Y, Wang H. Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon. J Environ Sci (China) 2019; 86:97-106. [PMID: 31787194 DOI: 10.1016/j.jes.2019.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Knowledge on methanogenic microbial communities associated with the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial to developing strategies for PAHs bioremediation. In this study, the linkage between the type of PAHs and microbial community structure was fully investigated through 16S rRNA gene sequencing on four PAH-degrading cultures. Putative degradation products were also detected. Our results indicated that naphthalene (Nap)/2-methylnaphthalene (2-Nap), phenanthrene (Phe) and anthracene (Ant) sculpted different microbial communities. Among them, Nap and 2-Nap selected for similar degrading bacteria (i.e., Alicycliphilus and Thauera) and methanogens (Methanomethylovorans and Methanobacterium). Nap and 2-Nap were probably activated via carboxylation, producing 2-naphthoic acid. In contrast, Phe and Ant shaped different bacterial and archaeal communities, with Arcobacter and Acinetobacter being Phe-degraders and Thiobacillus Ant-degrader. Methanogenic archaea Methanobacterium and Methanomethylovorans predominated Phe-degrading and Ant-degrading culture, respectively. These findings can improve our understanding of natural PAHs attenuation and provide some guidance for PAHs bioremediation in methanogenic environment.
Collapse
Affiliation(s)
- Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China
| | - Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xunwen Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Fang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Li S, Li D, Zhang S, Zeng H, Yuan Y, Zhang J. Effect of aeration modes on simultaneous nitrogen and phosphorus removal and microbial community in a continuous flow reactor with granules. BIORESOURCE TECHNOLOGY 2019; 294:122154. [PMID: 31563738 DOI: 10.1016/j.biortech.2019.122154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
In this study, a continuous flow reactor with simultaneous nitrification, denitrification and phosphorus removal (SNDPR) granular sludge was operated in the continuous aeration (CA) and intermittent aeration (IA) modes to examine the effect of aeration on the performance of continuous-flow system. Then the experimental results showed that the IA1 mode (4 h aeration and 1 h non-aeration) could improve the simultaneous nitrogen and phosphorus removal and the settleability of granules in continuous flow system. Results of high-throughput pyrosequencing illustrated that the methanogens, AOA, ANAMMOX, DNB, denitrifying polyphosphate-accumulating organisms (DPAOs) were the important participant of simultaneous biological nutrients removal (SBNR), meanwhile, the IA1 mode could effectively inhibit the growth of filamentous microorganisms (Thiothrix and Acinetobacter). Finally, a conceptual model of the SNDPR granular microbial ecosystem under IA1 mode was proposed as a base for analyzing the mechanism of simultaneous nutrient removal in continuous flow system.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shirui Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| |
Collapse
|