1
|
Rana MS, Ariyadasa TU, Prajapati SK. Effect of iron oxide nanoparticles on mixotrophic cultivation of Chlorella spp. for biofuel production. BIORESOURCE TECHNOLOGY 2024; 410:131241. [PMID: 39151571 DOI: 10.1016/j.biortech.2024.131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The current study investigated the effect of iron oxide nanoparticles (IONPs) on mixotrophic microalgae cultivation in wastewater for biofuel production. Optimal IONPs doses of 10 and 20 mg L-1 increased Chlorella pyrenoidosa growth by 16% and lipid accumulation by 53 %, respectively, compared with the control group. Conversely, the protein content declined drastically, while carbohydrates remained relatively unchanged. A maximum of 15% rise in biomass growth was observed for Chlorella sorokiniana IITRF at an IONPs dose of 20 mg L-1, with no significant variation in biochemical composition. Microalgae grown under mixotrophic conditions with IONPs in a biofilm reactor were more suitable for biogas production than biodiesel, increasing biogas and methane content by 38 and 48%, respectively. The findings suggest that low doses of IONPs can enhance microalgal biomass, biogas production and methane content. Further, metabolomics studies are warranted to investigate the interaction between microalgae and nanoparticles to achieve high-quality biodiesel.
Collapse
Affiliation(s)
- Mohit Singh Rana
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Patnaik R, Kumar Bagchi S, Rawat I, Bux F. Nanotechnology for the enhancement of algal cultivation and bioprocessing: Bridging gaps and unlocking potential. BIORESOURCE TECHNOLOGY 2024; 406:131025. [PMID: 38914236 DOI: 10.1016/j.biortech.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Algae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO2 utilization, real-time monitoring, cost-effective harvesting, etc. Synthetic nanoparticles are extensively used due to ease of manufacturing and targeted application. Nonetheless, there is a growing interest in transitioning to environmentally friendly options like natural and 'green' nanoparticles which are produced from renewable/biological sources by using eco-friendly solvents. Presently, natural, and 'green' nanoparticles are predominantly utilized in algal harvesting, with limited application in other areas, the reasons for which remain unclear. This review aims to critically evaluate research on nanotechnology-based algae system enhancement, identify research gaps and propose solutions using natural and 'green' nanoparticles for a sustainable future.
Collapse
Affiliation(s)
- Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sourav Kumar Bagchi
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
3
|
Ramírez-Romero A, da Costa Magalhães B, Matricon L, Sassi JF, Steyer JP, Delrue F. Aqueous phase recycling: impact on microalgal lipid accumulation and biomass quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32701-7. [PMID: 38438644 DOI: 10.1007/s11356-024-32701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024]
Abstract
The potential success of microalgal biofuels greatly depends on the sustainability of the chosen pathway to produce them. Hydrothermal liquefaction (HTL) is a promising route to convert wet algal biomass into biocrude. Recycling the resulting HTL aqueous phase (AP) aims not only to recover nutrients from this effluent but also to use it as a substrate to close the photosynthetic loop and produce algal biomass again and process this biomass again into new biocrude. With that purpose, the response to AP recycling of five Chlorellaceae strains was monitored over five cultivation cycles. After four successive cycles of dynamic growth under nutrient-replete conditions, the microalgae were cultivated for a prolonged fifth cycle of 18 days in order to assess the impact of the AP on lipid and biomass accumulation under nutrient-limited conditions. Using AP as a substrate reduced the demand for external sources of N, S, and P while producing a significant amount of biomass (2.95-4.27 g/L) among the strains, with a lipid content ranging from 16 to 36%. However, the presence of the AP resulted in biomass with suboptimal properties, as it slowed down the accumulation of lipids and thus reduced the overall energy content of the biomass in all strains. Although Chlorella vulgaris NIES 227 did not have the best growth on AP, it did maintain the best lipid productivity of all the tested strains. Understanding the impact of AP on microalgal cultivation is essential for further optimizing biofuel production via the HTL process.
Collapse
Affiliation(s)
- Adriana Ramírez-Romero
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France.
- Laboratoire de Biotechnologie de L'Environnement (LBE), INRAE, Univ Montpellier, 102 Avenue Des Etangs, 11100, Narbonne, France.
| | - Bruno da Costa Magalhães
- Institut de Recherches Sur La Catalyse Et L'Environnement de Lyon (IRCELYON), UMR 5256, CNRS, Université Claude Bernard Lyon1, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Lucie Matricon
- CEA LITEN, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jean-François Sassi
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France
| | - Jean-Philippe Steyer
- Laboratoire de Biotechnologie de L'Environnement (LBE), INRAE, Univ Montpellier, 102 Avenue Des Etangs, 11100, Narbonne, France
| | - Florian Delrue
- MicroAlgae Processes Platform-CEA, CEA Tech Région Sud, 13108, Saint-Paul-Lez-Durance, France
| |
Collapse
|
4
|
Jung M, Kim YE, Lee N, Yu H, Lee J, Lee SY, Lee YC, Oh YK. Simultaneous enhancement of lipid biosynthesis and solvent extraction of Chlorella using aminoclay nanoparticles. BIORESOURCE TECHNOLOGY 2023; 384:129314. [PMID: 37311525 DOI: 10.1016/j.biortech.2023.129314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Magnesium aminoclay nanoparticles (MgANs) exert opposing effects on photosynthetic microalgae by promoting carbon dioxide (CO2) uptake and inducing oxidative stress. This study explored the potential application of MgAN in the production of algal lipids under high CO2 concentrations. The impact of MgAN (0.05-1.0 g/L) on cell growth, lipid accumulation, and solvent extractability varied among three tested oleaginous Chlorella strains (N113, KR-1, and M082). Among them, only KR-1 exhibited significant improvement in both total lipid content (379.4 mg/g cell) and hexane lipid extraction efficiency (54.5%) in the presence of MgAN compared to those of controls (320.3 mg/g cell and 46.1%, respectively). This improvement was attributed to the increased biosynthesis of triacylglycerols and a thinner cell wall based on thin-layer chromatography and electronic microscopy, respectively. These findings suggest that using MgAN with robust algal strains can enhance the efficiency of cost-intensive extraction processes while simultaneously increasing the algal lipid content.
Collapse
Affiliation(s)
- Mikyoung Jung
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Young-Eun Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Environmental Measurement and Analysis Center, National Institute of Environmental Research, Incheon 22689, South Korea
| | - Nakyeong Lee
- Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea; Division of Environmental Materials, Honam National Institute of Biological Resources, Mokpo 58762, South Korea
| | - Hyoji Yu
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea
| | - Jiye Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Soo Youn Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, Daejeon 34129, South Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-si 13120, South Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea; Institute for Environment & Energy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
5
|
Panbehkar Bisheh M, Amini Rad H. Optimization of the culture of Chlorella sorokiniana PA.91 by RSM: effect of temperature, light intensity, and MgAC-NPs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50896-50919. [PMID: 36807861 DOI: 10.1007/s11356-023-25779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 04/16/2023]
Abstract
The unique physicochemical properties of magnesium amino clay nanoparticles (MgAC-NPs) tends to be beneficial in the application as a co-additive in treating microalgae. Also, MgAC-NPs can create oxidative stress in the environment, concurrently elective control bacteria in mixotrophic culture, and stimulate CO2 biofixation. The condition of the cultivation of newly isolated strains, Chlorella sorokiniana PA.91, was optimized for the first time for MgAC-NPs at various temperatures and light intensities in the culture medium of municipal wastewater (MWW) by central composite design in the response surface methodology (RSM-CCD). This study examined synthesized MgAC-NP with their FE-SEM, EDX, XRD, and FT-IR characteristics. The synthesized MgAC-NPs were naturally stable, cubic shaped, and within the size range of 30-60 nm. The optimization results show that at culture conditions of 20 °C, 37 μmol m-2 s-1, and 0.05 g L-1, microalga MgAC-NPs have the best growth productivity and biomass performance. Maximum dry biomass weight (55.41%), specific growth rate (30.26%), chlorophyll (81.26%), and carotenoids (35.71%) were achieved under the optimized condition. Experimental results displayed that C.S. PA.91 has a high capacity for lipid extraction (1.36 g L-1) and significant lipid efficiency (45.1%). Also, in 0.2 and 0.05 g L-1 of the MgAC-NPs, COD removal efficiency 91.1% and 81.34% from C.S. PA.91 showed, respectively. These results showed the potential of C.S. PA.91-MgAC-NPs for nutrient removal in wastewater treatment plants and their quality as sources of biodiesel.
Collapse
Affiliation(s)
- Masoumeh Panbehkar Bisheh
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, 47148-7313, Iran
| | - Hasan Amini Rad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, 47148-7313, Iran.
| |
Collapse
|
6
|
Saratale RG, Cho SK, Bharagava RN, Patel AK, Varjani S, Mulla SI, Kim DS, Bhatia SK, Ferreira LFR, Shin HS, Saratale GD. A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. BIORESOURCE TECHNOLOGY 2022; 363:127926. [PMID: 36100182 DOI: 10.1016/j.biortech.2022.127926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Biocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance. Application of nanobiocatalyst can overcome the drawbacks mainly, stability and reusability, thus reflecting the importance of biomass-based biorefinery to make it profitable and sustainable. This review provides an in-depth, comprehensive analysis of nanobiocatalysts systems concerning nano supports and biocatalytic performance characteristics. Furthermore, the effects of nanobiocatalyst on waste biomass to biofuel and valued bioproducts in the biorefinery approach and their critical assessment are discussed. Lastly, this review elaborates commercialization and market outlooks of the bioconversion process using nanobiocatalyst, followed by different strategies to overcome the limitations and future research directions on nanobiocatalytic-based industrial bioprocesses.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560 064, India
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Farolândia, Aracaju, SE, Brazil
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
7
|
Khalifeh F, Salari H, Zamani H. Mechanism of MnO 2 nanorods toxicity in marine microalgae Chlorella sorokiniana during long-term exposure. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105669. [PMID: 35667325 DOI: 10.1016/j.marenvres.2022.105669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Due to the increasing production and use of nanomaterials (NMs), their potential toxic impacts on the environment should be considered for a safe application of NMs. In this regard, the potential hazards of MnO2 nanorods (NRs) on the green microalgae Chlorella sorokiniana during long-term exposure were investigated. Exposure to the high concentration of MnO2 NRs (100 and 200 mg L-1) significantly reduced the cell number of C. sorokiniana over 20 days of the experiment. The different concentrations of MnO2 NRs (25-200 mg L-1) induced the remarkable increase in the chlorophyll (a+b) content of algal cells due to the shading effect of NRs. For more than 72 h, the chlorophyll content of microalgae decreased due to the aggregation of NRs and the possible effects of oxidative stress. Long-term exposure to high concentrations of NRs caused a significant decrease in the primary and secondary metabolites of microalgae, including carotenoids, phenolic compounds, proteins, lipids, and carbohydrates. Oxidative stress was one of the possible toxic mechanisms of MnO2 NRs to microalgae validated by an increase in lipid peroxidation induced by exposure to NRs. The algal cells increased the catalase activity and the amount of extracellular polymeric substances in response to NRs toxicity. The low level of Mn ions in the culture media indicated that MnO2 NRs dissolution was not the cause of the observed reduction in the microalgae growth. Moreover, the bulk form of MnO2 was not involved in the toxic impact of MnO2, which was documented by an insignificant decrease in the growth, pigment, and lipid peroxidation of C. sorokiniana. These results may provide an additional insight into the potential hazards of MnO2 NRs on the aquatic ecosystem.
Collapse
Affiliation(s)
- Fatemeh Khalifeh
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | - Hadi Salari
- Department of Chemistry, School of Science, Shiraz University, Shiraz, Iran
| | - Hajar Zamani
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran.
| |
Collapse
|
8
|
Danouche M, El Ghachtouli N, Aasfar A, Bennis I, El Arroussi H. Pb(II)-phycoremediation mechanism using Scenedesmus obliquus: cells physicochemical properties and metabolomic profiling. Heliyon 2022; 8:e08967. [PMID: 35243087 PMCID: PMC8866896 DOI: 10.1016/j.heliyon.2022.e08967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 01/23/2023] Open
Abstract
This study highlights the mechanisms of Pb(II)-phycoremediation using the Pb(II) tolerant strain of Scenedesmus obliquus. First, monitoring of cell growth kinetics in control and Pb(II)-doped medium revealed significant growth inhibition, while the analyses through flow cytometry and Zetasizer revealed no difference in cell viability and size. Residual weights of control and Pb(II)-loaded cells assessed by thermogravimetric analysis were 31.34% and 57.8%, respectively, indicating the uptake of Pb(II) into S. obliquus cells. Next, the use of chemical extraction to distinguish between the intracellular and extracellular uptake indicated the involvement of both biosorption (85.5%) and bioaccumulation (14.5%) mechanisms. Biosorption interaction of Pb(II) ions and the cell wall was confirmed using SEM-EDX, FTIR, zeta potential, zero-charge pH, and contact angle analyses. Besides, the biochemical characterization of control and Pb(II)-loaded cells revealed that the bioaccumulation of Pb(II) induces significant increases in the carotenoids and lipids content, while it decreases in the chlorophyll, carbohydrates, and proteins content. Finally, the metabolomic analysis indicated an increase in the relative abundance of fatty acid methyl esters, alkanes, aromatic compounds, and sterols. However, the alkenes and monounsaturated fatty acids decreased. Such metabolic adjustment may represent an adaptive strategy that prevents high Pb(II)-bioaccumulation in cellular compartments.
Collapse
Affiliation(s)
- M. Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - N. El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Corresponding author.
| | - A. Aasfar
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - I. Bennis
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
| | - H. El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
9
|
Kashyap M, Samadhiya K, Ghosh A, Anand V, Lee H, Sawamoto N, Ogura A, Ohshita Y, Shirage PM, Bala K. Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as neutral lipid inducer and antibacterial agent. ENVIRONMENTAL RESEARCH 2021; 201:111499. [PMID: 34146525 DOI: 10.1016/j.envres.2021.111499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The current research focuses on the Intracellular biosynthesis of Ag/AgCl nanohybrids in microalgae, Scenedesmus sp. The effect of biosynthesis process on growth and lipid profile of cells is key element of this study. Ag/AgCl nanohybrids synthesized intracellularly were characterized by UV-Vis spectrophotometer, Powder X-Ray Diffraction (P-XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). 10-20 nm and 10-50 nm sized spherical shaped nanoparticles of polycrystalline nature were grown using 0.5 and 1 mM of AgNO3 precursor, respectively and Scenedesmus sp. as reducing agent. Total lipid content of the cells treated with 0.5 mM and 1 mM AgNO3 was static and found to be 43.2 ± 0.01 μg/mL and 48.2 ± 0.02 μg/mL respectively at 120 h of Ag/AgCl nanoparticles biosynthesis. FAME (Fatty Acid Methyl Ester) profile was improved due to intracellular nanoparticles biosynthesis with maximum C16:0 (palmitic acid) (35.7%) in cells treated with 0.5 mM AgNO3 used for Ag/AgCl nanohybrids synthesis. Palmitic acid in cells exposed to 0.5 mM concentration of metallic precursor increased by 75.86%. Synthesized nanoparticles were tested on four bacterial strains to establish its antibacterial efficiency showing appropriate zone of inhibition at varying concentrations. Present study efficiently demonstrates the utility of microalgae integrating nanoparticles biosynthesis and lipid accumulation.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Kanchan Samadhiya
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Atreyee Ghosh
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Vishal Anand
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Hyunju Lee
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan
| | - Naomi Sawamoto
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan
| | - Atsushi Ogura
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan; School of Science and Technology, Meiji University, Kawasaki, Japan
| | | | | | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, IIT Indore, India.
| |
Collapse
|
10
|
Romero N, Visentini FF, Márquez VE, Santiago LG, Castro GR, Gagneten AM. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. ENVIRONMENTAL RESEARCH 2020; 189:109857. [PMID: 32777636 DOI: 10.1016/j.envres.2020.109857] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The toxic effects of silver nanoparticles (AgNPs) on the physiology and morphology of the green microalga Chlorella vulgaris were studied. AgNPs were characterized by particle size distribution, ζ potential measurement, and atomic force microscopy (AFM). Chlorella vulgaris was exposed to 90-1440 μg/L of AgNPs range in Bold's Basal Medium for 96 h. The inhibition of algae growth rate and changes in the concentrations of chlorophyll-a, chlorophyll-b, pheophytin, and carotenoids was determined at the beginning and end of the trial. Cell diameter and volume, carbohydrate, total lipids, and protein content were also determined. Our data strongly suggest that the toxic effects of the AgNPs resulted in concentration and time-dependent. AgNPs altered C. vulgaris growth kinetics and cell metabolism expressed in photosynthetic pigments and biochemical composition. Our study confirmed the cytotoxicity of AgNPs through the algal growth inhibition with an EC50 value of 110 μg/L. Also, changes of chlorophyll-a, chlorophyll-b, pheophytin, and carotenoids concentrations were observed associated with a color shift from green to pale brown of algae cultures exposed to AgNPs for 96 h. Furthermore, algae cell concentration, diameter, and volume, plus total lipid, protein, and carbohydrates contents in the presence of AgNPs, were significantly altered compared to untreated cells. In synthesis, this study highlighted AgNPs toxic effects on morphological and physiological traits of C. vulgaris and warns about possible impacts on energy flow and aquatic food web structure, and on the transfer efficiency of energy to higher trophic levels.
Collapse
Affiliation(s)
- Natalí Romero
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria - Paraje El Pozo S/n (3000), Santa Fe, Argentina; CONICET, Predio CONICET "Dr. Alberto Cassano", Colectora Ruta Nac. Nº 168, Km. 0, Paraje El Pozo (3000), Santa Fe, Argentina
| | - Flavia F Visentini
- CONICET, Predio CONICET "Dr. Alberto Cassano", Colectora Ruta Nac. Nº 168, Km. 0, Paraje El Pozo (3000), Santa Fe, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos (ITA), Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL), Santiago Del Estero 2829, Santa Fe, Argentina
| | - Vanina E Márquez
- Laboratorio de Fermentaciones, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria - Paraje El Pozo S/n (3000), Santa Fe, Argentina
| | - Liliana G Santiago
- CONICET, Predio CONICET "Dr. Alberto Cassano", Colectora Ruta Nac. Nº 168, Km. 0, Paraje El Pozo (3000), Santa Fe, Argentina; Área de Biocoloides y Nanotecnología, Instituto de Tecnología de Alimentos (ITA), Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL), Santiago Del Estero 2829, Santa Fe, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química - Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET (CCT La Plata), Calle 50 Nº 227, La Plata, 1900, Buenos Aires, Argentina
| | - Ana M Gagneten
- Laboratorio de Ecotoxicología, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria - Paraje El Pozo S/n (3000), Santa Fe, Argentina.
| |
Collapse
|
11
|
|
12
|
Kim YE, Matter IA, Lee N, Jung M, Lee YC, Choi SA, Lee SY, Kim JR, Oh YK. Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. BIORESOURCE TECHNOLOGY 2020; 307:123270. [PMID: 32253126 DOI: 10.1016/j.biortech.2020.123270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Improving the content and production of high-value ketocarotenoid pigments is critical for the commercialization of microalgal biorefineries. This study reported the use of magnesium aminoclay (MgAC) nanoparticles for enhancement of astaxanthin production by Haematococcus pluvialis in photoautotrophic cultures. Addition of 1.0 g/L MgAC significantly promoted cellular astaxanthin biosynthesis (302 ± 69 pg/cell), presumably by inducing tolerable oxidative stress, corresponding to a 13.7-fold higher production compared to that in the MgAC-untreated control (22 ± 2 pg/cell). The lipid content and cell size of H. pluvialis improved by 13.6- and 2.1-fold, respectively, compared to that of the control. Despite reduced cell numbers, the overall astaxanthin production (10.3 ± 0.4 mg/L) improved by 40% compared to the control (7.3 ± 0.6 mg/L), owing to improved biomass production. However, an MgAC dosage above 1.0 g/L inhibited biomass production by inducing electrostatic cell wall destabilization and aggregation. Therefore, MgAC-induced stimulation of algae varies widely based on their morphological and physiological characteristics.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Ibrahim A Matter
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea; Agricultural Microbiology Department, National Research Centre, Cairo 12622, Egypt
| | - Nakyeong Lee
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Mikyoung Jung
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| | - Sun-A Choi
- Climate Change Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Soo Youn Lee
- Climate Change Research Division, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Jung Rae Kim
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - You-Kwan Oh
- Department of Chemical & Biomolecular Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| |
Collapse
|
13
|
Kim J, Kim YE, Park M, Song YE, Seol E, Kim JR, Oh YK. Microbial Enrichment and Community Analysis for Bioelectrochemical Acetate Production from Carbon Dioxide. ACTA ACUST UNITED AC 2020. [DOI: 10.7849/ksnre.2020.2056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Sun XM, Ren LJ, Zhao QY, Zhang LH, Huang H. Application of chemicals for enhancing lipid production in microalgae-a short review. BIORESOURCE TECHNOLOGY 2019; 293:122135. [PMID: 31540787 DOI: 10.1016/j.biortech.2019.122135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 05/05/2023]
Abstract
Microalgae have attracted great attention as a promising sustainable resource for biofuel production. In studies aiming to improve lipid accumulation, many key enzymes involved in lipid biosynthesis were identified and confirmed, but genetic engineering remains a challenge in most species of microalgae. In an alternative approach, various chemical modulators can be used to directly regulate the lipid biosynthesis pathway, with similar effects to gene overexpression and interference approaches, including improving the precursor supply and blocking competing pathways. The produced lipid can be protected from being converted into other metabolites by the chemicals such as lipase inhibitors. In addition, a few chemicals were also demonstrated to greatly influence cell growth and lipid accumulation by indirect regulation of the lipid biosynthesis pathway, such as increasing cell permeability or regulating oxidative stress. Thus, adding chemical modulators can be a useful alternative strategy for improving lipid accumulation in large-scale cultivation of microalgae.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Quan-Yu Zhao
- Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Li-Hui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, Jiangsu Province, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, School of Pharmacy, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
15
|
Choi SA, Lee SY, Lee J, Cho JM, Lee JS, Kim SW, Kim DY, Park SK, Jin CS, Oh YK. Rapid induction of edible lipids in Chlorella by mild electric stimulation. BIORESOURCE TECHNOLOGY 2019; 292:121950. [PMID: 31398549 DOI: 10.1016/j.biortech.2019.121950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
In this work, a new stress-based method for rapid induction of triacylglycerol (TAG) and total and polyunsaturated fatty acid accumulations in Chlorella sp. by mild electric stimulation is presented. When a cathodic current of 31 mA (voltage: 4 V) was applied to the algal cells for 4 h, the TAG content of the electro-treated cells was sharply increased to a level 2.1 times that of the untreated control. The contents of the polyunsaturated linoleic (C18:2n6) and linolenic (C18:3n3) acids in the electro-treated cells were also 36 and 57% higher than those in the untreated cells, respectively. Cyclic voltammetry and various biochemical analyses indicate that TAG and fatty acid formations are electro-stimulated via de novo fatty acid biosynthesis and metabolic transformation in the Chlorella cells.
Collapse
Affiliation(s)
- Sun-A Choi
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jun Muk Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115, Indonesia
| | - Dong-Yeon Kim
- CO(2) Energy Vector Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Se-Kook Park
- Energy ICT-ESS Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Chang-Soo Jin
- Energy ICT-ESS Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - You-Kwan Oh
- School of Chemical & Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
16
|
Nguyen MK, Moon JY, Bui VKH, Oh YK, Lee YC. Recent advanced applications of nanomaterials in microalgae biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Abstract
Microalgae have been considered as one of the most promising biomass feedstocks for various industrial applications such as biofuels, animal/aquaculture feeds, food supplements, nutraceuticals, and pharmaceuticals. Several biotechnological challenges associated with algae cultivation, including the small size and negative surface charge of algal cells as well as the dilution of its cultures, need to be circumvented, which increases the cost and labor. Therefore, efficient biomass recovery or harvesting of diverse algal species represents a critical bottleneck for large-scale algal biorefinery process. Among different algae harvesting techniques (e.g., centrifugation, gravity sedimentation, screening, filtration, and air flotation), the flocculation-based processes have acquired much attention due to their promising efficiency and scalability. This review covers the basics and recent research trends of various flocculation techniques, such as auto-flocculation, bio-flocculation, chemical flocculation, particle-based flocculation, and electrochemical flocculation, and also discusses their advantages and disadvantages. The challenges and prospects for the development of eco-friendly and economical algae harvesting processes have also been outlined here.
Collapse
|
18
|
Influence of Nitrogen Source and Growth Phase on Extracellular Biosynthesis of Silver Nanoparticles Using Cultural Filtrates of Scenedesmus obliquus. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, silver nanoparticles (AgNPs) were green-synthesized extracellularly by the action of bioactive compounds in cultural filtrates of green microalga Scenedesmus obliquus (KY621475). The influences of six different nitrogen sources (i.e., NaNO3, CO(NH4)2, (NH4)2CO3, KNO3, NH4NO3, and (NH4)2SO4) on extracellular biosynthesis of AgNPs were observed by UV–Visible spectroscopy (380–425 nm) and confirmed using high-resolution transmission electron microscopy (HRTEM). The highest biomass production was observed in the case of urea and ammonium carbonate treatments, which, surprisingly, showed negative activity for AgNPs biosynthesis. Considering their coupling and compatible presence in cultural filtrates, reductases (especially nitrate reductase) as reduction agents are assumed to play a key role in the extracellular biosynthesis of AgNPs. The cultural filtrates of the potassium and sodium nitrate treatments produce AgNPs of relatively small size (5–10 and 4–10 nm, respectively), smaller than those produced by filtrate of ammonium nitrate treatment. The antimicrobial activity of produced AgNPs was a function mainly of particle size, which was influenced by the nitrogen source of the microalgal culture. The AgNPs produced from the KNO3 and NaNO3 cultural filtrates performed the best as antimicrobial agents.
Collapse
|
19
|
Miron SM, Brendlé J, Josien L, Fourcade F, Rojas F, Amrane A, Limousy L. Development of a new cathode for the electro-Fenton process combining carbon felt and iron-containing organic–inorganic hybrids. CR CHIM 2019. [DOI: 10.1016/j.crci.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Zhang X, Chen J, Wu D, Li J, Tyagi RD, Surampalli RY. Economical lipid production from Trichosporon oleaginosus via dissolved oxygen adjustment and crude glycerol addition. BIORESOURCE TECHNOLOGY 2019; 273:288-296. [PMID: 30448680 DOI: 10.1016/j.biortech.2018.11.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The effect of dissolved oxygen concentration on lipid accumulation in Trichosporon oleaginosus has been investigated. The experiment was performed in 15 L fermenters. The dissolved oxygen concentration varied by adjusting the agitation and aeration. High dissolved oxygen level at 50%-60% enhanced cell growth. Maintaining low dissolved oxygen concentration at 20%-30% during lipogenesis phase led to high final lipid content (51%) in Trichosporon oleaginosus. The consumptions of energy and cost of the process were evaluated. The energy consumption in the dissolved oxygen level optimized process was 41% less than that with dissolved oxygen level at 50%-60%. In addition, the cost was also reduced around one time in the dissolved oxygen level optimized process compared to the one with dissolved oxygen level at 50%-60%. The study provided a feasible way of enhancing lipid accumulation in Trichosporon oleaginosus and reducing the consumption of energy and cost of lipid production from Trichosporon oleaginosus.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China.
| | | | - Rao Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105 Lincoln, NE 68588-6105, USA
| |
Collapse
|
21
|
Prospecting for Oleaginous and Robust Chlorella spp. for Coal-Fired Flue-Gas-Mediated Biodiesel Production. ENERGIES 2018. [DOI: 10.3390/en11082026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prospecting for robust and high-productivity strains is a strategically important step in the microalgal biodiesel process. In this study, 30 local strains of Chlorella were evaluated in photobioreactors for biodiesel production using coal-fired flue-gas. Three strains (M082, M134, and KR-1) were sequentially selected based on cell growth, lipid content, and fatty acid composition under autotrophic and mixotrophic conditions. Under autotrophic conditions, M082 and M134 showed comparable lipid contents (ca. 230 mg FAME [fatty acid methyl esters derived from microalgal lipids]/g cell) and productivities (ca. 40 mg FAME/L·d) versus a reference strain (KR-1) outdoors with actual flue-gas (CO2, 13%). Interestingly, under mixotrophic conditions, M082 demonstrated, along with maximal lipid content (397 mg FAME/g cell), good tolerance to high temperature (40 °C). Furthermore, the fatty acid methyl esters met important international standards under all of the tested culture conditions. Thus, it was concluded that M082 can be a feedstock of choice for coal-fired, flue-gas-mediated biodiesel production.
Collapse
|
22
|
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. BIORESOURCE TECHNOLOGY 2018. [PMID: 29523378 DOI: 10.1016/j.biortech.2018.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung-Ran Hwang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
23
|
Chen J, Li J, Zhang X, Tyagi RD, Dong W. Ultra-sonication application in biodiesel production from heterotrophic oleaginous microorganisms. Crit Rev Biotechnol 2018; 38:902-917. [DOI: 10.1080/07388551.2017.1418733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jiaxin Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
- Eau, Terre et Environnement, INRS, Québec, Canada
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| | | | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, P.R. China
| |
Collapse
|
24
|
Brendlé J. Organic–inorganic hybrids having a talc-like structure as suitable hosts to guest a wide range of species. Dalton Trans 2018; 47:2925-2932. [DOI: 10.1039/c7dt03902f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sol–gel process involving hydrolysis and condensation reactions is an attractive way to form siloxane based hybrid materials since it is a one-step method performed under mild conditions.
Collapse
Affiliation(s)
- J. Brendlé
- Axe Transferts
- Réactivité
- Matériaux pour des Procédés Propres
- Institut de Science des Matériaux de Mulhouse UMR CNRS 7361
- Université de Haute Alsace
| |
Collapse
|
25
|
He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 2017; 7:15526. [PMID: 29138451 PMCID: PMC5686080 DOI: 10.1038/s41598-017-15667-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 11/09/2022] Open
Abstract
Carbon nanotubes (CNTs), α-Fe2O3 nanoparticles (nano Fe2O3) and MgO nanoparticles (nano MgO) were evaluated for the effects on algae growth and lipid production. Nano Fe2O3 promoted cell growth in the range of 0-20 mg·L-1. CNTs, nano Fe2O3 and nano MgO inhibited cell growth of Scenedesmus obliquus at 10, 40 and 0.8 mg·L-1 respectively. Neutral lipid and total lipid content increased with the increasing concentration of all tested nanoparticles. The maximum lipid productivity of cultures exposed to CNTs, nano Fe2O3 and nano MgO was observed at 5 mg·L-1, 5 mg·L-1 and 40 mg·L-1, with the improvement by 8.9%, 39.6% and 18.5%. High dose exposure to nanoparticles limited increase in lipid productivity, possibly due to the repression on cell growth caused by nanoparticles-catalyzed reactive oxygen species (ROS) generation, finally leading to reduction in biomass and lipid production. Reduced accumulation of fatty acids of C18:3n3, C18:3n6 and C20:2 was observed in cells exposed to nanoparticles.
Collapse
Affiliation(s)
- Meilin He
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongquan Yan
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Pei
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingzhu Wu
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Temesgen Gebreluel
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanmei Zou
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhai Wang
- Jiangsu Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Praveenkumar R, Kim B, Lee J, Vijayan D, Lee K, Nam B, Jeon SG, Kim DM, Oh YK. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. BIORESOURCE TECHNOLOGY 2016; 220:661-665. [PMID: 27634024 DOI: 10.1016/j.biortech.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Effective enhancement of neutral lipid (especially triacylglycerol, TAG) content in microalgae is an important issue for commercialization of microalgal biorefineries. Pressure is a key physical factor affecting the morphological, physiological, and biochemical behaviors of organisms. In this paper, we report a new stress-based method for induction of TAG accumulation in microalgae (specifically, Chlorella sp. KR-1 and Ch. sp. AG20150) by very-short-duration application of mild pressure. Pressure treatments of 10-15bar for 2h resulted in a considerable, ∼55% improvement of the 10-100g/Lcells' TAG contents compared with the untreated control. The post-pressure-treatment increase of cytoplasmic TAG granules was further confirmed by transmission electron microscopy (TEM). Notwithstanding the increased TAG content, the total lipid content was not changed by pressurization, implying that pressure stress possibly induces rapid remodeling/transformation of algal lipids rather than de novo biosynthesis of TAG.
Collapse
Affiliation(s)
- Ramasamy Praveenkumar
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere 33720, Finland
| | - Bohwa Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiye Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Durairaj Vijayan
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Kyubock Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bora Nam
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Sang Goo Jeon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - You-Kwan Oh
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea.
| |
Collapse
|