1
|
Chang BZ, Huang XL, Chen DZ, Jin RC, Yang GF. How biofilm and granular sludge cope with dissolved oxygen exposure in anammox process: Performance, bioaccumulation characteristics and bacterial evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123986. [PMID: 39742762 DOI: 10.1016/j.jenvman.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
In order to study the resistance mechanisms of biofilm and granular sludge to various dissolved oxygen (DO) exposures in anaerobic ammonium oxidation (anammox) process, a biofilm - granular sludge anammox reactor was established and operated. Experimental results showed that DO levels of ≤0.41 mg L-1 hardly affected the total nitrogen removal efficiency (TNRE). Higher DO levels of 1.96-2.08 mg L-1 promoted biomass disintegration and decreased specific anammox activity and extracellular polymeric substance (EPS) levels in granular sludge, but did not decrease EPS significantly in biofilm. The relative abundance of anammox genus Candidatus Kuenenia in granular sludge and biofilm decreased to 13.93% and 1.93%, respectively. NO3--N was accumulated due to the increased NOB genus Nitrospira in granular sludge and biofilm. The inhibition effects of 1.96-2.08 mg L-1 DO on anammox system were reversible, and the TNRE was quickly restored to (82.21 ± 2.39)% with AnAOB accumulation after removing aeration. This study provided theoretical support for the development of coupled biological nitrogen removal system based on anammox with other aerobic processes.
Collapse
Affiliation(s)
- Ben-Ze Chang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China
| | - Xiao-Lan Huang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China
| | - Dong-Zhi Chen
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China
| | - Ren-Cun Jin
- Department of Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, PR China
| | - Guang-Feng Yang
- Department of Environmental Science and Engineering, Zhejiang Ocean University, No.1 Haida South Road, Zhoushan, 316022, PR China; Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316022, PR China.
| |
Collapse
|
2
|
Wu H, Bai X, Li L, Li Z, Wang M, Zhang Z, Zhu C, Xu Y, Xiong H, Xie X, Tian X, Li J. Two-stage partial nitrification-denitrification and anammox process for nitrogen removal in vacuum collected toilet wastewater at ambient temperature. ENVIRONMENTAL RESEARCH 2024; 262:119917. [PMID: 39251178 DOI: 10.1016/j.envres.2024.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Vacuum collected toilet wastewater (VCTW) contains high and fluctuating contents of organics and nitrogen, which exerts technological challenges to biological treatment processes. A partial nitrification-denitrification and anammox (PND-AMX) process was developed in sequencing batch reactor (SBR) and moving bed biofilm reactor (MBBR) to achieve effective nitrogen removal in VCTW at low ambient temperature. Stable PND was achieved, and nitrogen removal efficiency in SBR could be manipulated by adjusting influent COD/N ratios. As temperature ≥18 °C, 91.0% nitrogen was removed in PND-AMX process. In spite of the decreased anammox activity at 13-18 °C, more than 90% nitrogen removal could be obtained by adjusting SBR influent COD/N to 2.43 ± 0.32 with methanol. In MBBR reactor, Candidatus Kuenenia was the dominant anammox bacteria and contributed to more than 90% nitrogen removal capacity. Co-existing anammox and denitrifying bacteria synergistically contributed to the removal of ammonium, nitrite, nitrate, and COD in MBBR.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaolei Bai
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhaoxin Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Cheng Zhu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Yuanmin Xu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Huiqin Xiong
- Nanjing Jianye District Water Bureau, Nanjing, 210017, China
| | - Xin Xie
- Nanjing Jianye District Water Facilities Comprehensive Maintenance Center, Nanjing, 210017, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
3
|
Jing J, Sun L, Chen Z, Guo X, Qu Y. Simultaneous selenite reduction and nitrogen removal using Paracoccus sp.: Reactor performance, microbial community, and mechanism. ENVIRONMENTAL RESEARCH 2024; 240:117564. [PMID: 37918763 DOI: 10.1016/j.envres.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Selenium-containing wastewater has a high concentration of nitrogen compounds (ammonia nitrogen [NH4+-N]), leading to water pollution. Thus, the simultaneous reduction of selenium and removal of nitrogen compounds during wastewater treatment has become the top priority. However, the exogenous bacteria that can simultaneously reduce selenite and remove ammonia nitrogen and colonize in the wastewater treatment systems have not been reported. Additionally, the effects and the underlying mechanism of biofortification on the reduction and removal efficiency of the microorganisms remain unclear. In this study, we investigated the simultaneous selenite reduction and nitrogen removal efficiency of Paracoccus sp. (strain SSJ) isolated from selenium-contaminated soil and explored biofortification effects on the composition and structure of the microbial community. Using sequencing biofilm batch reactors (SBBRs), the structural and functional characteristics of the microbial community were systematically compared between the control (group A) and biofortified (group B) groups. Strain SSJ could simultaneously reduce 63.28% of selenite and remove 93.05% of NH4+-N within 24 h. Moreover, no accumulation of nitrate nitrogen (NO3--N) and nitrite nitrogen (NO2--N) was observed in the reaction process. The performance and stability of the SBBRs enhanced by strain SSJ were greatly improved. Illumina sequencing results showed that strain SSJ was surprisingly colonized, and Paracoccus was the predominant genus in group B (relative abundance: 13.93%). Moreover, PICRUSt2 analysis results suggested that the microbial community in group B demonstrated increased rates of ammonia nitrogen removal through ammonia assimilation and selenite reduction through sulfur metabolism and glutathione-mediated selenite reduction pathway. In summary, our findings shed light on the mechanism for simultaneous selenite reduction and nitrogen removal by biofortification and provide novel microbial resources for the treatment of selenite-containing wastewater.
Collapse
Affiliation(s)
- Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Lu Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xinyu Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
4
|
Wen X, Huang J, Zeng G, Liu D, Chen S. Microbial activity along the depth of biofilm in the simultaneous partial nitrification, anammox and denitrification (SNAD) system. ENVIRONMENTAL TECHNOLOGY 2024; 45:771-778. [PMID: 36151756 DOI: 10.1080/09593330.2022.2128889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous partial nitrification, anammox and denitrification (SNAD) is a sustainable and cost-effective technology for nitrogen removal from low-strength wastewater. However, knowledge of the biofilm microenvironment of the SNAD system is currently unsatisfactory. The purpose of this study was to evaluate organic carbon effects on the microenvironment and microbial growth in the SNAD biofilm system. Microelectrodes were used to investigate microbial activity in-depth within biofilms. ORP distribution of the SNAD system was positively related to anammox activity(R2 = 0.9), and had some influence on microbial community structure. The synergistic effect of anammox bacteria and denitrifiers could be achieved when the abundance ratio of anammox bacteria to denitrifying bacteria is greater than 1.2.
Collapse
Affiliation(s)
- Xin Wen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, People's Republic of China
- Provincial and Ministerial Co-Constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Jiansheng Huang
- Provincial and Ministerial Co-Constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, Chongqing University of Science and Technology, Chongqing, People's Republic of China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Guoming Zeng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Deshao Liu
- Provincial and Ministerial Co-Constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| | - Shuangkou Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Guo Y, Sanjaya EH, Wang T, Rong C, Luo Z, Xue Y, Chen H, Li YY. The phosphorus harvest from low-temperature mainstream wastewater through iron phosphate crystallization in a pilot-scale partial nitritation/anammox reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160750. [PMID: 36493823 DOI: 10.1016/j.scitotenv.2022.160750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The phosphorus harvest along nitrogen removal in the partial nitritation/anammox (PNA) reactor is promising for saving space and simplifying the management of mainstream wastewater treatment facilities. In this study, the phosphorus recovery from the low-temperature mainstream wastewater was explored through iron phosphate crystallization in a pilot-scale PNA reactor. With the COD-alleviated municipal wastewater as the influent, the ammonium concentration of about 50 mg/L and the phosphorus concentration ranged from 5.4 to 7.1 mg/L, under the temperature of 15 °C and the addition of external ferrous iron of 14 mg/L, the achieved nitrogen removal efficiency and the phosphorus removal efficiency were 37.6 % and 62.7 %, respectively. The good settleability of sludge indicated that the formed iron phosphate was well combined with the biomass. The quantitative analysis confirmed that the main iron phosphate in dry sludge was graftonite, and qualitative analysis confirmed that the equivalent of P2O5 content in the sludge was 5.8 %, which was suitable as fertilizer on agricultural land to realize the direct recycle of discharged phosphorus. In all, this study proposed a pioneering scheme to realize the nitrogen removal and phosphorus cycle in human society and given a meaningful reference for further research and application.
Collapse
Affiliation(s)
- Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eli Hendrik Sanjaya
- Department of Chemistry, State University of Malang (Universitas Negeri Malang), Jl. Semarang No. 5, Malang, East Java 65145, Indonesia
| | - Tianjie Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science & Technology, Changsha 410004, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
6
|
Wei Z, Li D, Li S, Hao T, Zeng H, Zhang J. Improving mechanical stability of anammox granules with organic stress by limited filamentous bulking. BIORESOURCE TECHNOLOGY 2023; 370:128558. [PMID: 36587769 DOI: 10.1016/j.biortech.2022.128558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Under organic stress, the limited filamentous bulking (FB) was demonstrated to improve anammox capability by inhibiting granule disintegration and washout. The accumulation of internal stress played a more important role than the adverse physicochemical properties (low viscoelasticity and hydrophobicity) of granules in limiting granular strength by consuming the granular elastic energy. Different from the floc-forming heterotrophic bacteria (HB) that stored its growth stress as internal stress by pushing the surrounded anammox micro-colonies outwards under the spatial constraint of elastic anammox "shell", the filamentous HB grew into a uniform network structure within granules, endowed granules low internal stress and acted as the granular skeleton due to its rich amyloid substance, which was benefited from the elimination of inhomogeneous growth and the consequent expansion competition for living space. Combined with the mechanical instability and sticking-spring models, controlling FB at limited level was effective for improving granular strength without affecting sludge-water separation.
Collapse
Affiliation(s)
- Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Wei Z, Li D, Li S, Hao T, Zeng H, Zhang J. Improving anammox performance by limited filamentous bulking for wastewater treatment with organic stress. BIORESOURCE TECHNOLOGY 2023; 369:128506. [PMID: 36535612 DOI: 10.1016/j.biortech.2022.128506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, the filamentous bulking was demonstrated to improve anammox capability and anammox bacteria (AnAOB) population density under organic stress. The selective heterotrophic bacteria (HB) washout that involved in shear detachment, enmeshment and biomass washout was triggered. The microbial spatial distribution and granular detachment properties revealed that the filamentous bulking transferred the "location advantage" of HB from granules interior to surface, and endowed granular surface low shear tolerance for shear detachment, ultimately resulted in selective HB detachment. The detached filaments-mediated enmeshment provided additional selective pressure for free HB-flocs, eventually achieving the retention time differentiation between AnAOB (34 - 141 days) and HB (3 - 15 days), and a high anammox population density. Controlling dissolved oxygen level was crucial for regulating sludge bulking. Collectively, the filamentous bulking was developed as an effective anti-organic stress strategy to broaden the application of granular anammox process in actual wastewater treatment.
Collapse
Affiliation(s)
- Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Zhu Z, Zhang L, Li X, Zhang Q, Wang S, Peng Y. Robust nitrogen removal from municipal wastewater by partial nitrification anammox at ultra-low dissolved oxygen in a pure biofilm system. BIORESOURCE TECHNOLOGY 2023; 369:128453. [PMID: 36503089 DOI: 10.1016/j.biortech.2022.128453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Efficient nitrogen removal from municipal wastewater applying a pure biofilm system has promise. In this study, a partial nitrification anammox (PNA) pure biofilm system was established in a sequencing batch reactor with anaerobic/oxic/anoxic operation; using this reactor, robust nitrogen removal from municipal wastewater at ambient temperature was achieved with a nitrogen removal efficiency (NRE) of 93.3 %. Partial nitrification with anammox could be coupled at dominant nitrite-oxidizing bacteria (NOB) abundance by controlling ultra-low dissolved oxygen (<0.1 mg/L) in the aerobic section where the contribution to nitrogen removal was 79.4 %. Microorganisms with different oxygen affinity spatially distributed on the carrier. Ammonia-oxidizing bacteria (AOB) dominated on the surface of the carrier, while anammox bacteria dominated on the interior of the carrier, with their relative abundance increasing from 0.26 % to 1.78 %. The intercalary NOB were inhibited by the restricted oxygen transfer. Overall, this study provides a new approach to realize PNA in biofilm system.
Collapse
Affiliation(s)
- Zhuo Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
9
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
10
|
Li D, Wei Z, Li S, Zeng H, Zhang J. Insight into dead space effects in granular anammox process with organic stress. BIORESOURCE TECHNOLOGY 2022; 359:127504. [PMID: 35738318 DOI: 10.1016/j.biortech.2022.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
In this study, the dead space was demonstrated to enhance the robustness of anammox nitrogen (N)-removal under organic stress. Different from the "yellow aggregates" that inhabit in mixing space were assembled by anammox and heterotrophic micro-colonies, the "red granules" that inhabit in dead space were formed by initial anammox aggregates that growing outward with higher anammox-activity, settleability and sludge stability, which endowed the dead space the role of "anammox-stabilizer" with prominent anammox N-removal contribution (63.8%) especially under high organic stress. The extracellular polymeric substances (EPS) dynamic balance test revealed that the high and stable EPS contents in dead space were attributed to the low EPS degradation rate and low proportion of heterotrophic bacteria (HB)-produced EPS, respectively. The weak hydrodynamic forces were the key to less HB-colonization and high granular stability in dead space. Retaining a certain dead space is necessary to prevent anammox bacteria (AnAOB) loss under organic stress.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Dai H, Sun Y, Wan D, Abbasi HN, Guo Z, Geng H, Wang X, Chen Y. Simultaneous denitrification and phosphorus removal: A review on the functional strains and activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155409. [PMID: 35469879 DOI: 10.1016/j.scitotenv.2022.155409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Eutrophication has attracted extensive attention owing to its harmful effects to the organisms and aquatic environment. Studies on the functional microorganisms with the ability of simultaneously nitrogen (N) and phosphorus (P) removal is of great significance for alleviating eutrophication. Thus far, several strains from various genera have been reported to accomplish simultaneous N and P removal, which is primarily observed in Bacillus, Pseudomonas, Paracoccus, and Arthrobacter. The mechanism of N and P removal by denitrifying P accumulating organisms (DPAOs) is different from the traditional biological N and P removal. The denitrifying P removal (DPR) technology based on the metabolic function of DPAOs can overcome the problem of carbon source competition and sludge age contradiction in traditional biological N and P removal processes and can be applied to the treatment of urban sewage with low C/N ratio. This paper reviews the mechanism of N and P removal by DPAOs from the aspect of the metabolic pathways and enzymatic processes. The research progress on DPR processes is also summarized and elucidated. Further research should focus on the efficient removal of N and P by improving the performance of functional microorganisms and development of new coupling processes. This review can serve as a basis for screening DPAOs with high N and P removal efficiency and developing new DPR processes in the future.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Ferro TN, de Carvalho KQ, de Lima MX, Barana AC, Kreutz C, Gauza OR, Passig FH. Influence of HRT and carbon source on the enhancement of nutrient removal in an Anaerobic-Oxic-Anoxic (AOA) system. ENVIRONMENTAL TECHNOLOGY 2022; 43:2478-2491. [PMID: 33502954 DOI: 10.1080/09593330.2021.1882586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The eutrophication and increase in toxicity promoted by the continuous or abundant supply of nutrients in water bodies threaten the safety of drinking water and human health. In this regard, this study proposes the investigation of wastewater treatment focusing on the simultaneous removal of nitrogen and phosphorus in the anaerobic-oxic-anoxic (AOA) system. The AOA system was operated in three different stages to verify the influence of the external carbon source addition in the anoxic reactor and the reduction of hydraulic retention time (HRT) in the anaerobic and oxic reactors for nutrient removal optimization. Results showed that the best performance of the AOA system on nutrient removal was obtained in Stage 3, with the reduction of the HRT in the anaerobic and oxic reactors (HRT = 4 h) while maintaining HRT of 6.4 h in the anoxic reactor with no addition of the external carbon source. Under these conditions, the average removal efficiencies reached 98% for Chemical Oxygen Demand (COD), 88% for Total Ammonia Nitrogen (TAN), 81% for Total Kjeldahl Nitrogen (TKN), and 70% for Total Phosphorus (TP). The results also demonstrate that the highest phosphorus removal efficiency was achieved in the anoxic reactor, thus indicating the occurrence of denitrifying phosphorous removal by Denitrifying Phosphate Accumulating Organisms (DNPAOs). This configuration was efficient regarding the simultaneous removal of nitrogen and phosphorus; besides, the advantages of this system include robust configuration and excellent performance on the nutrient removal.
Collapse
Affiliation(s)
- Thayse Nathalie Ferro
- Environmental Sciences and Technology Graduate Program, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | - Karina Querne de Carvalho
- Civil Construction Academic Department, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | - Mateus Xavier de Lima
- Civil Engineering Graduate Program, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | - Ana Cláudia Barana
- Department of Food Engineering, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Cristiane Kreutz
- Environmental Academic Department, The Federal University of Technology - Paraná (UTFPR), Campo Mourão, Brazil
| | - Olga Regina Gauza
- Chemistry and Biology Academic Department, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| | - Fernando Hermes Passig
- Chemistry and Biology Academic Department, The Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil
| |
Collapse
|
13
|
Zhao Y, Zhang Q, Peng Y, Peng Y, Li X, Jiang H. Advanced nitrogen elimination from domestic sewage through two stage partial nitrification and denitrification (PND) coupled with simultaneous anaerobic ammonia oxidation and denitrification (SAD). BIORESOURCE TECHNOLOGY 2022; 343:125986. [PMID: 34653628 DOI: 10.1016/j.biortech.2021.125986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The start-up, efficient, and secure operation of Anammox treating low ammonia sewage, is an important research focus. In this study, a partial nitrification-denitrification coupled with simultaneous Anammox and denitrification (PND-SAD) process was achieved in sequencing batch reactor/up-flow anaerobic sludge bed (SBR-UASB). The key measures to maintain high efficiency PND were: (i) controlling dissolved oxygen in the SBR below 0.5 mg/L, which is not only conducive to PN, but also promotes the contribution of simultaneous nitrification and denitrification to nitrogen removal; (ii) monitoring the nitrate (NO3--N) of SBR effluent and discharging sludge to wash out nitrate oxidation bacteria when the NO3--N exceeds 1.0 mg/L. The nitrite accumulation rate reached 97.6%. SBR effluent and domestic sewage entered the UASB. Although Candidatus Brocadia only accounted for 0.8%, its contribution to nitrogen removal reached 76.8%. In PND-SAD system, the aerobic HRT was only 3.8 h, nitrogen removal efficiency up to 97.3%.
Collapse
Affiliation(s)
- Yueru Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environment Investment Co., Ltd., Beijing 101101, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
14
|
Combined impact of TiO2 nanoparticles and antibiotics on the activity and bacterial community of partial nitrification system. PLoS One 2021; 16:e0259671. [PMID: 34780518 PMCID: PMC8592496 DOI: 10.1371/journal.pone.0259671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.
Collapse
|
15
|
Lu X, Duan H, Oehmen A, Carvalho G, Yuan Z, Ye L. Achieving combined biological short-cut nitrogen and phosphorus removal in a one sludge system with side-stream sludge treatment. WATER RESEARCH 2021; 203:117563. [PMID: 34419918 DOI: 10.1016/j.watres.2021.117563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Biological nitrogen (N) removal via the short-cut pathway (NH4+-N→NO2--N→N2) is economically attractive in wastewater treatment plants (WWTPs). However, biological phosphorus (P) removal processes remain a bottleneck in these systems due to the strong inhibitory effect of nitrite or its protonated form (HNO2, free nitrous acid - FNA) on polyphosphate accumulating organisms (PAOs). In this study, a novel combined nitrogen and phosphorus removal strategy was verified and achieved in a biological short-cut nitrogen removal system via side-stream sludge treatment with FNA, and the mechanisms impacting this process were investigated. The side-stream FNA treatment process applied here led to a significant reduction in the real sludge retention time (SRT) in the mainstream (approximately 2.7 days) based on the biocidal effect of FNA to the majority of the organisms. This work also found that around 40% of the P uptake activity was still maintained at a much higher FNA level of 38 μg N/L with potential PAOs, which highly broadened the current knowledge of PAOs community. An economic analysis revealed advantages of the proposed as compared to conventional biological nitrogen and phosphorus removal (13% savings in total cost), biological short-cut nitrogen removal (via FNA treatment) with chemical phosphorus precipitation (21% savings) and conventional biological nitrogen removal with chemical precipitation (27% savings). Overall, this study presents a novel and viable retrofit strategy in integrating biological short-cut nitrogen removal with EBPR for next generation WWTPs.
Collapse
Affiliation(s)
- Xuanyu Lu
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
16
|
Huang W, Zhou J, He X, He L, Lin Z, Shi S, Zhou J. Simultaneous nitrogen and phosphorus removal from simulated digested piggery wastewater in a single-stage biofilm process coupling anammox and intracellular carbon metabolism. BIORESOURCE TECHNOLOGY 2021; 333:125152. [PMID: 33872997 DOI: 10.1016/j.biortech.2021.125152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A Single-stage biofilm process coupling Anammox and Intracellular Carbon metabolism (SAIC) was constructed for treating simulated digested piggery wastewater with low carbon/nitrogen ratio (C/N) in this study. TN removal in SAIC system increased by more than 12.77% compared to the reference, and the maximum total phosphorus (TP) removal efficiency reached to 83.70% (C/N = 1.5). Denitrification driven by intracellular carbon, mainly poly-β-hydroxybutyrate (PHB, 78.57%), contributed 32.60% of TN elimination at most, and at least 67.40% should be attributed to anammox. Phosphorus was thought to be mainly removed through biological route, while chemical precipitation also explained around 10% of removed TP. Furthermore, commensalism of glycogen accumulating organisms (GAOs), phosphate accumulating organisms (PAOs), nitrifiers and anammox bacteria was revealed by combining 16S rRNA amplicon sequencing and metagenomics. As a result, multiple metabolic pathways including anammox, (partial) nitrification, endogenous (partial) denitrification and biological P-removal played synergistic effect in SAIC system.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
17
|
Shahid K, Ramasamy DL, Kaur P, Sillanpää M, Pihlajamäki A. Effect of modified anode on bioenergy harvesting and nutrients removal in a microbial nutrient recovery cell. BIORESOURCE TECHNOLOGY 2021; 332:125077. [PMID: 33823475 DOI: 10.1016/j.biortech.2021.125077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The microbial nutrient recovery cell i.e. modified microbial fuel cell containing a middle recovery chamber can be used to purify wastewater and remove valuable nutrients, while simultaneously generating electricity. The study investigated nutrient removal and microorganism interactions with carbon (CB- HT and CB- APTES) and stainless steel (SSB-HT) modified anodes used in microbial nutrient recovery cells. The removal efficiencies of ammonium ions were found higher in carbon-based CB-APTES (~98%) and CB-HT (~98.27%) systems in comparison to SSB-HT (~87.16%) system. On comparing further, the removal efficiencies of chemical oxygen demand (~99.5%) and total phosphorus (~99%) in CB- APTES system were superior to the cases of CB- HT, and SSB- HT systems. Besides, the CB-APTES based microbial fuel cell (MFC) displayed an average stable voltage of 0.5 V and a maximum power density of ~ 850 mW/m2.
Collapse
Affiliation(s)
- Kanwal Shahid
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| | - Deepika Lakshmi Ramasamy
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Parminder Kaur
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Arto Pihlajamäki
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
18
|
Xu X, Ma S, Jiang H, Yang F. Start-up of the anaerobic hydrolysis acidification (ANHA)- simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) process for simultaneous nitrogen and phosphorus removal for domestic sewage treatment. CHEMOSPHERE 2021; 275:130094. [PMID: 33676280 DOI: 10.1016/j.chemosphere.2021.130094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/13/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
The simultaneous partial nitrification, anammox and denitrification (SNAD) process has been widely used in domestic sewage biological denitrification technology because of its high efficiency and low consumption. However, the simultaneous removal of another important pollution element, phosphorus, has been difficult, and its C/N ratio limitation of the influent is strict. The start-up of the anaerobic hydrolysis acidification (ANHA)- simultaneous partial nitrification, anammox and denitrification (SNAD)/enhanced biological phosphorus removal (EBPR) coupling process achieves the treatment of urban sewage for carbon, nitrogen and phosphorus removal. Under optimal conditions, the final total nitrogen and total phosphorus removal rates reached 91.59% and 89.10%, respectively. High-throughput sequencing technology showed that the ANHA reactor was mainly Lactococcus. At the same time, the main bacteria in the SNAD/EBPR process were anammox bacteria (AnAOB, Candidatus_Kuenenia, Candidatus_Brocadia) primarily existing in biofilms, while the ammonium oxidizing bacteria (AOB, Nitrosomonas), denitrifying polyphosphate-accumulating organisms (DPAOs, Pseudomonas, Flavobacterium, Bdellovibrio) and Denitrifying bacteria (DNB, Thauera, Denitratisoma, Rhodobacteraceae).were mainly found in the suspended sludge. These conclusions provide valuable information for the full-scale treatment of domestic sewage.
Collapse
Affiliation(s)
- Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Shiqi Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongbin Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
19
|
Zhu M, Zhang M, Yuan Y, Zhang P, Du S, Ya T, Chen D, Wang X, Zhang T. Responses of microbial communities and their interactions to ibuprofen in a bio-electrochemical system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112473. [PMID: 33819654 DOI: 10.1016/j.jenvman.2021.112473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ibuprofen has caused great concerns due to their potential environmental risks. However, their removal efficiency and their effects on microbial interactions in bio-electrochemical system remain unclear. To address these issues, a lab-scale bio-electrochemical reactor integrated with sulfur/iron-mediated autotrophic denitrification (BER-S/IAD) system exposing to 1000 μg L-1 ibuprofen was operated for about two months. Results revealed that the BER-S/IAD system obtained efficient simultaneous denitrification (98.93%) and phosphorus (82.67%) removal, as well as an excellent ibuprofen removal performance (96.98%). Ibuprofen had no significant impacts on the nitrate (NO3--N) removal and the ammonia (NH4+-N) accumulation, but decreased the total nitrogen (TN) and total phosphorus (TP) removal efficiencies. MiSeq sequencing analysis revealed that ibuprofen significantly (P < 0.05) decreased the microbial community diversity and changed their overall structure. Some bacteria related to denitrification and phosphorus removal, such as Pseudomonas and Thiobacillus, decreased significantly (P < 0.05). Moreover, molecular ecological network (MEN) analysis revealed that ibuprofen decreased the network's size and complexity, and enhanced the negative correlations of Proteobacteria and Firmicutes. Besides, ibuprofen decreased the links of some keystone bacteria related to denitrification and phosphorus removal. This research could provide a new dimension for our comprehending of the responses of microbial communities and their interactions to ibuprofen in bio-electrochemical system.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Du
- Beijing Guo Dian Fu Tong Science and Technology Development Co., Ltd., Beijing, 100090, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Daying Chen
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Wu P, Zhang X, Wang Y, Wang C, Ma L, Wani Victor Jenario F, Liu W, Xu L. Development of a novel denitrifying phosphorus removal and partial denitrification anammox (DPR + PDA) process for advanced nitrogen and phosphorus removal from domestic and nitrate wastewaters. BIORESOURCE TECHNOLOGY 2021; 327:124795. [PMID: 33579566 DOI: 10.1016/j.biortech.2021.124795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A novel energy-efficient DPR + PDA (denitrifying phosphorus removal and partial denitrification anammox) process for enhanced nitrogen and phosphorus removal was developed in the combined ABR-CSTR reactor. After 220 days operation, excellent total inorganic nitrogen (TIN) and phosphorus removal (97.57% and 95.66%, respectively) were obtained under external C/NO3--N of 0.7, with the effluent TIN and PO43--P concentrations of 3.51 mg/L and 0.28 mg/L, respectively. At the steady period, DPR contributed major TN removal (58.65%), while PDA mediated an increasingly considerable impact and finally achieved 37.07%, in which anammox accounted for a significant percentage. Batch tests demonstrated that efficient PD with nitrate-to-nitrite transformation ratio of 97.67% supplying stable nitrite for anammox, and phosphorus was mainly removed using nitrate as electron acceptor via DPR with the ideal phosphorus release/uptake rate (7.73/22.17 mgP/gVSS/h). Accumulibacter (6.24%) dominated high phosphorus removal performance, while Thauera (8.26%) and Candidatus Brocadia (2.57%) represented the superior nitrogen removal performance.
Collapse
Affiliation(s)
- Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China.
| | - Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Francis Wani Victor Jenario
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, China
| |
Collapse
|
21
|
Xiao R, Ni BJ, Liu S, Lu H. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis. WATER RESEARCH 2021; 191:116817. [PMID: 33461083 DOI: 10.1016/j.watres.2021.116817] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 05/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) represents a promising technology for wastewater nitrogen removal. Organics management is critical to achieving efficient and stable performance of anammox or integrated processes, e.g., denitratation-anammox. The aim of this systematic review is to synthesize the state-of-the-art knowledge on the multifaceted impacts of organics on wastewater anammox community structure and function. Both exogenous and endogenous organics are discussed with respect to their effects on the biofilm/granule structure and function, as well as the interactions between anammox bacteria (AnAOB) and a broad range of coexisting functional groups. A global core community consisting of 19 taxa is identified and a co-occurrence network is constructed by meta-analysis on the 16S rDNA sequences of 149 wastewater anammox samples. Correlations between core taxa, keystone taxa, and environmental factors, including COD, nitrogen loading rate (NLR) and C/N ratio are obtained. This review provides a holistic understanding of the microbial responses to different origins and types of organics in wastewater anammox reactors, which will facilitate the design and operation of more efficient anammox-based wastewater nitrogen removal process.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|
22
|
Zhang X, Wang C, Wu P, Xia Y, Chen Y, Liu W, Xu L, Faustin F. A novel denitrifying phosphorus removal and partial nitrification, anammox (DPR-PNA) process for advanced nutrients removal from high-strength wastewater. CHEMOSPHERE 2021; 265:129165. [PMID: 33302198 DOI: 10.1016/j.chemosphere.2020.129165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
This study developed a novel DPR-PNA (denitrifying phosphorus removal, partial nitrification and anammox) process for sustaining high-strength wastewater treatment in a modified continuous flow reactor without external carbon source. After 259-days operation, a synchronous highly-efficient total inorganic nitrogen, PO43--P and CODcr removal efficiencies of 88.5%, 89.5% and 90.1% were obtained, respectively even influent nitrogen loading rate up to 3.2 kg m-3 d-1. Batch tests revealed that denitrifying phosphorus accumulating organisms (DPAOs) using NO3--N as electron acceptors significantly enriched (74% in total PAOs), which emerged remarkable positive impacts on deep-level nutrient removal as the key limiting factor. Furthermore, the NO2--N inhibitory threshold value (∼20.0 mg L-1) for DPAOs was identified, which demonstrated as an inhibitory component in excessive recycling NOx--N. From the molecular biology perspective, Dechloromonas-DPAOs group (18.59%) dominated the excellent dephosphatation performance, while Nitrosomonas-AOB (ammonia oxidizing bacteria) group (16.26%) and Candidatus_Brocadia-AnAOB (anammox bacteria) group (15.12%) were responsible for the desirable nitrogen loss process. Overall, the present work highlighted the novel DPR-PNA process for nutrients removal is a promising alternation for wastewater of high nitrogen but low carbon.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China.
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Ya Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China
| | - Fangnigbe Faustin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| |
Collapse
|
23
|
Song D, Liu C, Sun Z, Liu Q, Wang P, Sun S, Cheng W, Qiu L, Ma J, Qi J. Tailoring the distribution of microbial communities and gene expressions to achieve integrating nitrogen transformation in a gravity-driven submerged membrane bioreactor. WATER RESEARCH 2020; 187:116382. [PMID: 32947113 DOI: 10.1016/j.watres.2020.116382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
A pilot-scale upgraded gravity-driven submerged membrane (GDSM) reactor was constructed to enhance nitrogen removal. It was artificially formed multiple stratified environments (dissolved oxygen (DO) and substrate supply (TOC, TN, COD, NH4+-N, NO2--N, and NO3--N)) by embedding moving water baffles to control water-flow process in bulk liquid with slow-flowing liquid state. Significant diversity and relative abundance of microorganisms associated with nitrogen transformation paths (i.e., ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite oxidizing bacteria, and denitrifying bacteria) were tailored to distribute on different spatial and temporal regions, and performed their dominant functions. The process simultaneously integrated diverse and effective nitrogen transformation paths (i.e., nitrification, partial nitrification, denitrification, anammox, and dissimilatory nitrate reduction) to achieve high nitrogen removal, with NH4+-N, TN, and COD eliminated by 94.68 ± 2.55%, 55.16 ± 5.53%, and 80.17 ± 6.75%, respectively. Gene expressions involved in the nitrogen transformations were estimated by qPCR to explore the shifts of dominant nitrogen transforming bioreactions in multiple stratified environments. Pearson correlation coefficients supported that the functional genes had more stable and active ability by complementing each other. As a result, an endogenous integration of diverse nitrogen transformation paths was achieved in a single system by artificially tailoring the distributions of microbial communities and gene expressions with enhanced nitrogen removal.
Collapse
Affiliation(s)
- Dan Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Qianliang Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Panpan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
| | - Wei Cheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Qiu
- School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jingyao Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
24
|
Zhang X, Wang C, Wu P, Yin W, Xu L. New insights on biological nutrient removal by coupling biofilm-based CANON and denitrifying phosphorus removal (CANDPR) process: Long-term stability assessment and microbial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138952. [PMID: 32388374 DOI: 10.1016/j.scitotenv.2020.138952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/11/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
It was difficult to obtain a stable and efficient biological nutrient removal for high-strength wastewater treatment, the possibility of exploiting innovative CANDPR process, integrating biofilm-based completely autotrophic nitrogen removal over nitrite (CANON) with denitrifying phosphorus removal (DPR) was evaluated to resolve the difficulty. Results revealed that the excellent NH4+-N, PO43--P and COD removal efficiencies of 96%, 96% and 91%, were achieved respectively under a high nitrogen loading rate (0.79 kg·m-3·d-1) without adding organic matters during 320 days operation. Promoting NOx--N recirculation demonstrated as an efficient strategy for further nutrient depletion, facilitating the enhanced NO3--N removal to 100% with the considerably high P-uptake performance. Batch tests confirmed that denitrifying phosphorus accumulating organisms (DPAOs) using NO3--N as electron acceptors accounting for 68% in total PAOs. Dechloromonas was identified as dominating genus in DPR, while Nitrosomonas (1.31%), Candidatus_Kuenenia (5.53%) and Candidatus_Brocadia (1.77%) contributed to the desirable nitrogen removal, indicating that cooperative consortia of DPAOs, AOB and AnAOB were harvested during long-term operation. The CANDPR process was verified to be energy-saving and treatment-reliable for renovating of existing plants.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China.
| | - Wen Yin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| |
Collapse
|
25
|
Yuan C, Wang B, Peng Y, Hu T, Zhang Q, Li X. Nutrient removal and microbial community in a two-stage process: Simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) followed by anammox. BIORESOURCE TECHNOLOGY 2020; 310:123471. [PMID: 32388357 DOI: 10.1016/j.biortech.2020.123471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This study developed a two-stage process, including simultaneous enhanced biological phosphorus-removal and semi-nitritation (EBPR-SN) sequencing batch reactor (SBR), followed by Anammox SBR, to achieve advanced nitrogen (N) and phosphorus (P) removal from real sewage with low carbon/nitrogen (2.82). The long-term operation suggested that removal efficiencies for TIN (86.2 ± 3.5%) and P (95.0 ± 5.5%) were stably obtained, with nitrite accumulation ratio of 98.7% in EBPR-SN SBR. Mechanism analysis indicated contribution of anammox to N-removal being 57.3%-73.7% and superior P-removal due to the majority of removed organics (~74.5%) being stored by polyphosphate-accumulating organisms (PAOs). In EBPR-SN SBR, high-throughput sequencing showed ammonium-oxidizing bacteria was 0.03% while nitrite-oxidizing bacteria was not detected, and PAOs accounted for 30.07%. In Anammox SBR, Candidatus Brocadia (9.75%) was the only anammox bacteria. Remarkably, short aerobic hydraulic retention time (4.29 h) with low DO (0.3-1.2 mg/L) during the whole process provided desirable energy-saving.
Collapse
Affiliation(s)
- Chuansheng Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Tiantian Hu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Yuan C, Peng Y, Ji J, Wang B, Li X, Zhang Q. Advanced nitrogen and phosphorus removal from municipal wastewater via simultaneous enhanced biological phosphorus removal and semi-nitritation (EBPR-SN) combined with anammox. Bioprocess Biosyst Eng 2020; 43:2039-2052. [PMID: 32594316 DOI: 10.1007/s00449-020-02392-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/13/2020] [Indexed: 01/04/2023]
Abstract
In this study, a novel laboratory-scale synchronous enhanced biological phosphorus removal and semi-nitritation (termed as EBPR-SN) combined with anammox process was put forward for achieving nutrient elimination from municipal wastewater at 27 ℃. This process consisted of two 10 L sequencing batch reactors (SBRs), i.e. EBPR-SN SBR followed by Anammox SBR. The EBPR-SN SBR was operated for 400 days with five periods and the Anammox SBR was operated starting on period IV. Eventually, for treating municipal wastewater containing low chemical oxygen demand/nitrogen (COD/N) of 3.2 (mg/mg), the EBPR-SN plus Anammox system performed advanced total inorganic nitrogen (TIN) and P removal, with TIN and P removal efficiencies of 81.4% and 94.3%, respectively. Further analysis suggested that the contributions of simultaneous partial nitrification denitrification, denitrification, and anammox to TIN removal were 15.0%, 45.0%, and 40.0%, respectively. The enriched phosphorus-accumulating organisms (PAOs) in the EBPR-SN SBR facilitated P removal. Besides, the EBPR-SN SBR achieved P removal and provided stable anammox substrates, suggesting a short sludge retention time (SRT 12 d) could achieve synergy between ammonia-oxidizing bacteria and PAOs. These results provided an alternative process for treating municipal wastewater with limited organics.
Collapse
Affiliation(s)
- Chuansheng Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China.
| | - Jiantao Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse TechnologyEngineering Research Center of Beijing, Beijing University of Technology, No.100, Ping Le Yuan, Chao Yang District, Beijing, 100124, China
| |
Collapse
|
27
|
Lu J, Zhang Y, Wu J, Wang J. Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system. BIORESOURCE TECHNOLOGY 2020; 305:123037. [PMID: 32105846 DOI: 10.1016/j.biortech.2020.123037] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The efficient removal of nitrogen pollutants in the aquaculture systems is still a challenge due to the low concentration of organic carbon and high concentration of dissolved oxygen (DO) in the wastewater. The simultaneous partial nitrification, anammox and denitrification (SNAD) bioreactor was firstly used for the treatment of aquaculture wastewater in recirculating aquaculture system. The bioreactor operated for 180 days without adding extra organic carbon. After 60-day operation, the bioreactor reached the stable stage with the average concentration of ammonia/nitrate/nitrite/COD in the effluent with 0.26/0.75/0.47/0.27 mg/L. The Pseudoxanthomonas was the dominant genus in the biofilm samples. The typical nitrogen functional bacteria and genes for nitrification, anammox and denitrification were detected with different abundance in different procedures along the bioreactor. Network analysis revealed the significant correlations between nitrogen functional bacteria and genes. The SNAD bioreactor achieved the effective removal for nitrogen and COD under high DO conditions in recirculating aquaculture system.
Collapse
Affiliation(s)
- Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| | - Yuxuan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Jianhua Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| |
Collapse
|
28
|
Zhang W, Peng Y, Zhang L, Li X, Zhang Q. Simultaneous partial nitritation and denitritation coupled with polished anammox for advanced nitrogen removal from low C/N domestic wastewater at low dissolved oxygen conditions. BIORESOURCE TECHNOLOGY 2020; 305:123045. [PMID: 32105845 DOI: 10.1016/j.biortech.2020.123045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/26/2023]
Abstract
Simultaneous partial nitritation and denitritation (SPND) coupled with anammox was established in this study to treat domestic wastewater. Two lab-scale bioreactors, namely SPND-SBR and ANA-UASB, were used in the two-stage system. In SPND-SBR, stable nitrogen removal efficiency of 51.1% was achieved with a high ammonia oxidation rate of 0.117 kg N/(m3·d). Besides, successful out-selection of nitrite-oxidizing bacteria (NOB) under low-DO of 0.1 mg/L during the steady period, resulting in an average effluent NO2--N/NH4+-N ratio of 1.04. In ANA-UASB, the abundance of Candidatus Brocadia and Candidatus Kuenenia increased from 8.21% and 4.01% to 21.33% and 6.41% with low influent substrate contents of only 38 mg N/L. The effluent total inorganic nitrogen (TIN) was only 8.4 ± 1.1 mg N/L and the nitrogen removal efficiency reached 88.24%. Overall, the study demonstrated that the novel low-DO two-stage process for nitrogen removal is a promising technique for wastewater of low C/N ratio.
Collapse
Affiliation(s)
- Wen Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
29
|
Wu P, Zhang X, Wang X, Wang C, Faustin F, Liu W. Characterization of the start-up of single and two-stage Anammox processes with real low-strength wastewater treatment. CHEMOSPHERE 2020; 245:125572. [PMID: 31846786 DOI: 10.1016/j.chemosphere.2019.125572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In order to promote the application of anaerobic ammonium oxidation (Anammox) for municipal wastewater treatment, single and two-stage Anammox processes were started up for real low-strength wastewater treatment under similar conditions for the comparison. Results showed that the anaerobic baffled reactor (ABR)-Nitritation-Anammox and the ABR-Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process took 75 days and 101 days to start up with a total nitrogen removal rate of 86-92% and 81-87% under steady state, respectively. The 16 S rRNA sequencing analysis revealed that the phylum of Proteobacteria dominated in CANON system and Anammox system with the relative abundance of 35.39% and 15.27%, respectively. Phylogenetic analysis showed that Anammox species, related to Ca. Brocadia Sinica JPN1 and Ca. Kuenenia stuttgartiensis, dominated in these two systems, respectively. The nitrogen removal performance of two-stage process was 5% higher than that of single stage process, while the start-up period and dominated Anammox species were different.
Collapse
Affiliation(s)
- Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China.
| | - Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Xinzhu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Fangnigbe Faustin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China
| |
Collapse
|
30
|
Ji J, Peng Y, Wang B, Li X, Zhang Q. A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation. WATER RESEARCH 2020; 170:115363. [PMID: 31816567 DOI: 10.1016/j.watres.2019.115363] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
For achieving energy-efficient wastewater treatment, a novel simultaneous nitrogen and phosphorus removal (SNPR) process, which integrated anammox, endogenous partial-denitrification and denitrifying dephosphatation in a sequencing batch reactor with granular sludge was developed to treat mainstream wastewater. After 200 days of operation, a simultaneous high-level nitrogen and phosphorus removal of 93.9% and 94.2%, respectively was achieved with an average influent C/N ratio of 2.9. Anammox pathway contributed 82.9% of the overall nitrogen removal because of the stable nitrite production from nitrate via endogenous partial-denitrification. In addition, phosphorus was mainly removed via denitrifying dephosphatation utilizing nitrate as the electron acceptor, resulting in a significant saving of carbon sources and oxygen demands. Further, adsorption/precipitation of phosphorus occurred in this novel SNPR process, which displaced the energy source to the metabolism of glycogen accumulating organisms (GAOs) for nitrite production and alleviated competition between phosphorus accumulating organisms (PAOs) and anammox for electron acceptor. Using 16S rRNA gene amplicon sequencing analysis, the study found that anammox bacteria (8.4%), GAOs (1.5%) and PAOs (1.1%) co-existed in this system, potentially resulting in simultaneous endogenous partial-denitrification, anammox and denitrifying dephosphatation. The above results demonstrated that the novel SNPR process is a promising technique for energy-efficient wastewater treatment.
Collapse
Affiliation(s)
- Jiantao Ji
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
31
|
|
32
|
Fan Z, Zeng W, Wang B, Guo Y, Meng Q, Peng Y. Microbial community at transcription level in the synergy of GAOs and Candidatus Accumulibacter for saving carbon source in wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 297:122454. [PMID: 31786040 DOI: 10.1016/j.biortech.2019.122454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The microbial community in endogenous denitrification and denitrifying phosphorus removal treatment at transcription level was unknown. This study first confirmed the expression of actually active bacteria in endogenous denitrification and denitrifying phosphorus removal system to treat low C/N municipal wastewater. No external carbon source was added to influent wastewater. The cDNA high throughput sequencing showed that Candidatus Accumulibacter was the most effective polyphosphate accumulating organisms (PAOs) that actually worked rather than Dechloromonas, which was different from the result at gene level. Reverse transcriptional PCR (RT-PCR) and analysis of Variance (ANOVA) suggested that the ratios of dead or dormant bacteria could monitor wastewater treatment process. Identification of active microbial community at transcription level demonstrated that the synergy of endogenous denitrification by glycogen accumulating organisms (GAOs) and denitrifying phosphorus removal by Candidatus Accumulibacter fully utilized the internal carbon source, and effectively solved the problem of carbon source deficiency in municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhiwei Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Baogui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yu Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingan Meng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
33
|
Optimization of Wastewater Phosphorus Removal in Winter Temperatures Using an Anaerobic–Critical Aerobic Strategy in a Pilot-Scale Sequencing Batch Reactor. WATER 2019. [DOI: 10.3390/w12010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological phosphorus removal using an anaerobic–aerobic sequencing batch reactor (SBR) in a low temperature can be difficult to remove, and aeration always accounts for nearly half of the total electricity costs at many wastewater treatment plants. In this study, a pilot-scale anaerobic–critical aerobic SBR (A–CA SBR) was developed for synthetic domestic wastewater. More importantly, the phase, whose concentration of diffused oxygen was controlled at 1.0–1.5 mg/L, was defined as a critical aerobic phase, which reduced expenses during the operation. To be specific, half of the ammonia was removed within 10 days and no NO3−–N was accumulated during the process. From the SEM and metagenome analysis, Rhodocyclus, Zooglea, Dechloromonas, and Simplicispira had the ability to remove phosphorus and NO3−–N simultaneously, which proved the existence of a potential double-layer sludge structure under an A–CA operational condition. All of the results disclose that the pilot-scale A–CA SBR is a reliable manipulation strategy for phosphorus removal under low temperatures, which can hopefully apply to practical wastewater remediation.
Collapse
|
34
|
Fu J, Lin Z, Zhao P, Wang Y, He L, Zhou J. Establishment and efficiency analysis of a single-stage denitrifying phosphorus removal system treating secondary effluent. BIORESOURCE TECHNOLOGY 2019; 288:121520. [PMID: 31132597 DOI: 10.1016/j.biortech.2019.121520] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
For advanced phosphorus and nitrogen removal, denitrifying phosphorus removal (DPR) was used to treat secondary effluent of sewage plants based on alternating anoxic/anaerobic process within single-stage biofilter. Under the hydraulic load of 3 m3/(m2·h), average removal rates of TP and TN in the system were 61.05% and 90.54%. 82.7% of the NO3--N removal occurred in the upper of the packing layer. TP removal occurred in upper and lower of the packing layer, accounting for 42.02% and 57.98% of the total removal, respectively. Biomass and bioactivity decreased proportional to the height incensement of packing layer. Nitrogen and phosphorus removal rates increased with anaerobic time while decreased with hydraulic load. 16S rDNA sequencing results showed dominant DNPAOs in the system included Acinetobacter and Dechloromonas, while dominant denitrifying bacteria included Flavobacterium, Comamonadaceae, Hydrogenophaga, Thauera and Azospira. The study further provided an effective and feasible way for advanced wastewater treatment.
Collapse
Affiliation(s)
- Jiahao Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
35
|
Xu X, Qiu L, Wang C, Yang F. Achieving mainstream nitrogen and phosphorus removal through Simultaneous partial Nitrification, Anammox, Denitrification, and Denitrifying Phosphorus Removal (SNADPR) process in a single-tank integrative reactor. BIORESOURCE TECHNOLOGY 2019; 284:80-89. [PMID: 30925426 DOI: 10.1016/j.biortech.2019.03.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous partial Nitrification, Anammox, and Denitrification (SNAD) is a promising and energy-efficient nitrogen removal process, which is powerless to eliminate phosphorus and confronted the problem of excessive effluent nitrate once applied in municipal sewage treatment characterized with high C/N ratio (≥2). Herein, by coupling SNAD with denitrifying phosphorus removal (DPR) process in a single-tank reactor, a novel integrative process (termed as SNADPR) was designed to treat municipal sewage. The removal efficiencies of TN, PO43--P, and COD under the optimized conditions (T = 30 °C, HRT = 24 h, DO = 0.45 mg/L) were 89.15 ± 2.19%, 92.93 ± 0.60%, and 99.17 ± 1.58%, respectively. Distinctive microbial community distribution was harvested, where anammox bacteria (AnAOB, Candidatus_Kuenenia and Candidatus_Brocadia) were mainly located in biofilm, whereas denitrifying polyphosphate-accumulating organisms (DPAOs, Dechloromonas and Pseudomonas) and ammonium oxidizing bacteria (AOB, Nitrosomonas) basically lived in suspended floc. The SRT separation between biofilm and floc was reached by conserving AnAOB-rich biofilm and termly discharging phosphorus-rich floc.
Collapse
Affiliation(s)
- Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Linyuan Qiu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chao Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
36
|
Chen R, Yao J, Ailijiang N, Liu R, Fang L, Chen Y. Abundance and diversity of nitrogen-removing microorganisms in the UASB-anammox reactor. PLoS One 2019; 14:e0215615. [PMID: 31009503 PMCID: PMC6476503 DOI: 10.1371/journal.pone.0215615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
Anaerobic ammonium oxidation is considered to be the most economical and low-energy biological nitrogen removal process. So far, anammox bacteria have not yet been purified from cultures. Some nitrogen-removing microorganisms cooperate to perform the anammox process. The objective of this research was to analyze the abundance and diversity of nitrogen-removing microorganisms in an anammox reactor started up with bulking sludge at room temperature. In this study, the ammonia-oxidizing archaea phylum Crenarchaeota was enriched from 9.2 to 53.0%. Nitrosomonas, Nitrosococcus, and Nitrosospira, which are ammonia-oxidizing bacteria, increased from 3.2, 1.7, and 0.1% to 12.8, 20.4, and 3.3%, respectively. Ca. Brocadia, Ca. Kuenenia, and Ca. Scalindua, which are anammox bacteria, were detected in the seeding sludge, accounting for 77.1, 11.5, and 10.6%. After cultivation, the dominant genus changed to Ca. Kuenenia, accounting for 82.0%. Nitrospirae, nitrite oxidation bacteria, decreased from 2.2 to 0.1%, while denitrifying genera decreased from 12.9 to 2.1%. The results of this study contribute to the understanding of nitrogen-removing microorganisms in an anammox reactor, thereby facilitating the improvement of such reactors. However, the physiological and metabolic functions of the ammonia-oxidizing archaea community in the anammox reactor need to be investigated in further studies.
Collapse
Affiliation(s)
- Rui Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Junqin Yao
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- * E-mail:
| | - Nuerla Ailijiang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Ruisang Liu
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Lei Fang
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
| | - Yinguang Chen
- College of Resources and Environmental Science, Xinjiang University, Urumqi, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
37
|
Sun FL, Fan LL, Wang YS, Huang LY. Metagenomic analysis of the inhibitory effect of chromium on microbial communities and removal efficiency in A 2O sludge. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:523-529. [PMID: 30710781 DOI: 10.1016/j.jhazmat.2019.01.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
This is the first study exploring the effects of persistent Cr(VI) treatment on microbial communities and function as well as the process efficiency of an A2O system. The inhibitory effect was clearly higher at a high Cr(VI) concentration than a low Cr(VI) concentration, and different Cr(VI) concentrations had distinct effects on the microbial communities as well as on the performance efficiency of the system. Functional annotation analysis indicated that Cr(VI) stress inhibited most of the metabolic pathway and functional genes of the microbial communities, especially those involved in the denitrification pathway. Network analysis was used to investigate the co-occurrence patterns between denitrification genes and microbial taxa; the results indicated that microorganisms with functional genes had high diversity and were adversely affected by Cr(VI) exposure. This study is the first to establish a relationship between Cr(VI) stress and microbial communities and function as well as to determine the underlying mechanisms and roles of Cr(VI) in A2O sludge.
Collapse
Affiliation(s)
- Fu-Lin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518000, China.
| | - Lei-Lei Fan
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563002, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Li-Yan Huang
- Hebei Zhengrun Environmental Technology Co. Ltd, Shijiazhuang 050000, China
| |
Collapse
|
38
|
Zhou X, Zhang Q, Sun H, Zhao Q. Efficient nitrogen removal from synthetic domestic wastewater in a novel step-feed three-stage integrated anoxic/oxic biological aerated filter process through optimizing influent flow distribution ratio. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1277-1282. [PMID: 30602253 DOI: 10.1016/j.jenvman.2018.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/28/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
In this study, a novel step-feed three-stage integrated anoxic/oxic biological aerated filter (STIAOBAF) process was developed to enhance nitrogen removal from the synthetic domestic wastewater through optimizing influent flow distribution ratio (IFDR) for three stage reactors (R1, R2, R3). Long-term operation demonstrated that the maximum nitrogen removal efficiency was achieved at the IFDR of 30%:50%:20%. The corresponding effluent total nitrogen (TN) was less than 10 mg/L, superior to the first A grade discharge standard of China (Effluent TN < 15 mg/L). The IFDR was further optimized to 32%:49%:19% by response surface methodology (RSM) model, thus obtaining the highest TN removal efficiency of 81.4%. Nitrogen profiles suggested the 2nd stage reactor was the greatest significant contributor for nitrogen removal of the whole system. Microbial community analysis revealed that Chloroflexi, Bacteroidetes, Firmicutes, and Acidobacteria were abundant in anoxic zones, while Planctomycetes, Bacteroidetes and Verrucomicrobia were rich in oxic zones. Nitrogen removal-associated functional bacterial groups (Nitrospira, Thauera, Azospira and Candidatus Kuenenia) were also identified, supporting high-rate nitrogen removal through the combination of anoxic denitrification with aerobic simultaneous nitrification and denitrification (SND). The STIAOBAF will offer a compact and robust alternative for advanced nitrogen removal from the sewage.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qi Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Hailong Sun
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
39
|
Zou Y, Xu X, Wang X, Yang F, Zhang S. Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO) recycling. BIORESOURCE TECHNOLOGY 2018; 268:539-548. [PMID: 30121027 DOI: 10.1016/j.biortech.2018.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
This study presents a new way to achieve energy neutral wastewater treatment based on a combined nitrification, anammox, and denitrification (SNAD) process and photobioreactor (PBR) configuration with external recycling instead of aeration, and without an additional carbon source, using fixed-film-activated sludge technology (IFAS). The SNAD-PBR process achieved total nitrogen (TN) and phosphorus removal efficiencies of 90 and 100%, respectively. In addition, dissolved oxygen (DO) was controlled in the range 0.4-1.2 mg/L by the introduction of an external recycling system. The presence of microalgae to serve as a carbon source in the SNAD reactor enabled the denitrifiers to survive. When the reflux ratio was 1:3, the lower COD/N protected the activity of the anammox bacteria, not suppressed by the heterotrophic denitrifiers. Microbial community analysis by Illumina MiSeq sequencing revealed that the new environment was more suitable for Candidatus Brocadia when a reflux system was introduced.
Collapse
Affiliation(s)
- Yu Zou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xiaojing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Shushen Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
40
|
Cho K, Choi M, Lee S, Bae H. Negligible seeding source effect on the final ANAMMOX community under steady and high nitrogen loading rate after enrichment using poly(vinyl alcohol) gel carriers. CHEMOSPHERE 2018; 208:21-30. [PMID: 29859423 DOI: 10.1016/j.chemosphere.2018.05.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m3·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea
| | - Minkyu Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea; Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
| | - Seockheon Lee
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-Gu, Seoul 02792, Republic of Korea.
| | - Hyokwan Bae
- Department of Civil and Environmental Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
41
|
Li J, Li J, Gao R, Wang M, Yang L, Wang X, Zhang L, Peng Y. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms. BIORESOURCE TECHNOLOGY 2018; 265:498-505. [PMID: 30017367 DOI: 10.1016/j.biortech.2018.07.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 05/14/2023]
Abstract
The one-stage nitritation/anammox (anaerobic ammonium oxidation) process is an energy-saving technology, which has been successfully developed and widely applied to treat industrial wastewaters. For the one-stage nitritation/anammox process, key functional microbes generally include anaerobic ammonia oxidation bacteria (AnAOB), ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB), and heterotrophic bacteria (HB). Cooperation and competition among the key functional microbes are critical to the stability and performance of anammox process. Based upon key functional microorganisms, this review summarizes and discusses the optimized strategies that promote the operation of one-stage nitritation/anammox process. In particular, the review focuses on strategies related to: (1) the retention of anammox biomass through granular sludge or biofilm, (2) the balanced relationship between AOB and AnAOB, (3) the NOB suppression and (4) the HB management by controlling the influent organic matter. In addition, the review proposes further research to address the existing challenges.
Collapse
Affiliation(s)
- Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Ming Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lan Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoling Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
42
|
Wang D, Wang G, Yang F, Liu C, Kong L, Liu Y. Treatment of municipal sewage with low carbon-to-nitrogen ratio via simultaneous partial nitrification, anaerobic ammonia oxidation, and denitrification (SNAD) in a non-woven rotating biological contactor. CHEMOSPHERE 2018; 208:854-861. [PMID: 30068028 DOI: 10.1016/j.chemosphere.2018.06.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 05/12/2023]
Abstract
In this study, a non-woven rotating biological contactor was evaluated for the treatment of municipal sewage via simultaneous partial nitrification, anaerobic ammonia oxidation (anammox), and denitrification (SNAD). Fluorescence in situ hybridization analysis showed that the dominant bacterial group in the aerobic outer layer of the biofilm was ammonia-oxidizing bacteria (65.13%), whereas anammox (47.17%) and denitrifying (38.91%) bacteria were present in the anaerobic inner layer. Response surface methodology was applied to develop mathematical models for the interaction between C/N and dissolved oxygen (DO) for chemical oxygen demand (COD) and total nitrogen (TN) removal. Results showed that the optimum region for SNAD was at C/N = 1.4-2.3 and DO = 0.2-0.8 mg/L. The most optimal operating condition was determined at C/N = 2.3 and DO = 0.2 mg/L, with actual removal rates of COD and TN were 83.12% and 79.13%, respectively, which are in close model consistency with model prediction (84% and 80%).
Collapse
Affiliation(s)
- Dong Wang
- Key Laboratory of Offshore Marine Environmental Research of Liaoning Higher Education, School of Marine Science-Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian, 116023, PR China
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Qinggongyuan 1, Dalian, 116034, PR China; Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, 85287, USA.
| | - Fenglin Yang
- School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, PR China
| | - Changfa Liu
- Key Laboratory of Offshore Marine Environmental Research of Liaoning Higher Education, School of Marine Science-Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian, 116023, PR China
| | - Liang Kong
- Key Laboratory of Offshore Marine Environmental Research of Liaoning Higher Education, School of Marine Science-Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian, 116023, PR China
| | - Ying Liu
- Key Laboratory of Offshore Marine Environmental Research of Liaoning Higher Education, School of Marine Science-Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian, 116023, PR China
| |
Collapse
|
43
|
Rout PR, Dash RR, Bhunia P, Rao S. Role of Bacillus cereus GS-5 strain on simultaneous nitrogen and phosphorous removal from domestic wastewater in an inventive single unit multi-layer packed bed bioreactor. BIORESOURCE TECHNOLOGY 2018; 262:251-260. [PMID: 29715628 DOI: 10.1016/j.biortech.2018.04.087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
This work evaluates the performance efficiency of a newly developed single unit packed bed bioreactor for nutrient removal from domestic wastewater. The packing materials, including dolochar, and a mixture of waste organic solid substance, were immobilized with a simultaneous nitrifying, denitrifying and phosphate removing bacterial strain, Bacillus cereus GS-5 and packed in the bioreactor alternatively in multiple layers. The bioreactor was operated continuously for a period of 70 days using both synthetic and real domestic wastewater (NH4+-N 30-100 mg/L, NO3--N 10-100 mg/L, PO43--P 5-20 mg/L and COD 250-1000 mg/L). The innovative single unit bioreactor exhibited simultaneous removal of NH4+-N (87.1-93.1%), NO3--N (69.4-88.4%), PO43--P (84-100%), and even COD (69.8-92.1%), in a remarkable disparity to traditional distinct aerobic-anaerobic treatment systems. This work advocated for a promising and feasible application prospect of the developed single unit packed bed bioreactor in domestic wastewater treatment emphasizing on nutrient removal.
Collapse
Affiliation(s)
- Prangya Ranjan Rout
- Department of Biotechnology, MITS Gwalior, Madhya Pradesh 474005, India; School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha 751013, India.
| | - Rajesh Roshan Dash
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha 751013, India
| | - Puspendu Bhunia
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha 751013, India
| | - Surampalli Rao
- Civil Engineering Department, University of Nebraska-Lincoln, NE, United States
| |
Collapse
|
44
|
Wang X, Zhu M, Li N, Du S, Yang J, Li Y. Effects of CeO 2 nanoparticles on bacterial community and molecular ecological network in activated sludge system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:516-523. [PMID: 29605611 DOI: 10.1016/j.envpol.2018.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The increasing use of cerium oxide nanoparticles (CeO2 NPs) has caused concerns regarding their potential environmental risks. However, their effects on bacterial communities and network interactions in activated sludge process are still unclear. In this study, we carried out long-term exposure experiments (210 d) to investigate the influence of CeO2 NPs on wastewater treatment performance, bacterial community structure and network interactions in activated sludge systems. The results showed that long-term exposure to 1 mg/L CeO2 NPs induced the deterioration of denitrifying process, which was consistent with the inhibition of enzyme activities of nitrite oxidoreductase and nitrate reductase under CeO2 NPs. CeO2 NPs decreased the bacterial diversity and altered the overall bacterial community structure in activated sludge. Some dominant denitrifying bacteria, such as Flexibacter and Acinetobacter decreased significantly. Molecular ecological network analysis showed that CeO2 NPs decreased the network complexity of bacterial community, and probably promoted the competition in bacterial communities of activated sludge. These changes of denitrifying bacteria and the bacterial network may be relevant to the deterioration of denitrifying process. This study provides insights into how the bacteria community and their molecular ecological network respond to CeO2 NPs in activated sludge systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minghan Zhu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nankun Li
- Appraisal Center for Environment & Engineering, Ministry of Environmental Protection, Beijing, 100012, China
| | - Shuai Du
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingdan Yang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
45
|
Sun J, Chen L, Rene ER, Hu Q, Ma W, Shen Z. Biological nitrogen removal using soil columns for the reuse of reclaimed water: Performance and microbial community analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:100-109. [PMID: 29597106 DOI: 10.1016/j.jenvman.2018.03.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/11/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
The main aim of this study was to remove nitrogen compounds from reclaimed water and reuse the water in semi-arid riverine lake systems. In order to assess the nitrogen removal efficiencies in different natural environments, laboratory scale column experiments were performed using sterilized soil (SS), silty clay (SC), soil with submerged plant (SSP) and biochar amendment soil (BCS). The initial concentration of NO3--N and the flow rate was maintained constant at 15 mg L-1 and 0.6 ± 0.1 m d-1, respectively. Among the tested columns, both SSP and BCS were able to achieve NO3--N levels <0.2 mg L-1 in the treated reclaimed water. The results from bacterial community structure analysis, using 454 pyrosequencing of 16s rRNA genes, showed that the dominant denitrifier was Bacillus at the genera level.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Lei Chen
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Eldon R Rene
- UNESCO-IHE, Institute for Water Education, Department of Environmental Engineering and Water Technology, Westvest 7, 2611AX Delft, The Netherlands
| | - Qian Hu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Zhenyao Shen
- School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
46
|
Wang C, Liu S, Xu X, Zhang C, Wang D, Yang F. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. CHEMOSPHERE 2018; 203:457-466. [PMID: 29635157 DOI: 10.1016/j.chemosphere.2018.04.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chaolei Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Dong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environment Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| |
Collapse
|
47
|
Lyu W, Huang L, Xiao G, Chen Y. Effects of carbon sources and COD/N ratio on N 2O emissions in subsurface flow constructed wetlands. BIORESOURCE TECHNOLOGY 2017; 245:171-181. [PMID: 28892687 DOI: 10.1016/j.biortech.2017.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N2O emissions than those of the sodium acetate systems. The higher amount of N2O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO2--N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N2O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N2O emissions in microbial communities.
Collapse
Affiliation(s)
- Wanlin Lyu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| | - Guangquan Xiao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| |
Collapse
|
48
|
Liu C, Li W, Li X, Zhao D, Ma B, Wang Y, Liu F, Lee DJ. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor. BIORESOURCE TECHNOLOGY 2017; 243:1237-1240. [PMID: 28720275 DOI: 10.1016/j.biortech.2017.07.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The nitrite accumulation in handling nitrate and sulfide-laden wastewater in a continuous-flow upflow anaerobic sludge blanket reactor was studied. At sulfide/nitrate-nitrogen ratio of 1:0.76 and loading rates of 1.2kg-Sm-3d-1 and 0.4kg-Nm-3d-1, the elemental sulfur and nitrite accumulation rates peaked at 90% and 70%, respectively, with Acrobacter, Azoarcus and Thauera presenting the functional strains in the studied reactor. The accumulated nitrite was proposed a promising feedstock for anaerobic ammonia oxidation process. An integrated partial autotrophic denitrification-anaerobic ammonia oxidation-aeration process for handling the ammonia and sulfide-laden wastewaters is proposed for further studies.
Collapse
Affiliation(s)
- Chunshuang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Wenfei Li
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xuechen Li
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Dongfeng Zhao
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Bin Ma
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongqiang Wang
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Fang Liu
- College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
49
|
Wen X, Gong B, Zhou J, He Q, Qing X. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. WATER RESEARCH 2017; 119:201-211. [PMID: 28460292 DOI: 10.1016/j.watres.2017.04.052] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 05/12/2023]
Abstract
Simultaneous partial nitrification, anammox and denitrification (SNAD) process was studied in a sequencing batch biofilm reactor (SBBR) fed with synthetic wastewater in a range of 2200 mgN/L ∼ 50 mgN/L. Important was an external real-time precision dissolved oxygen (DO) intelligent control system that consisted of feed forward control system and feedback control system. This DO control system permitted close control of oxygen supply according to influent concentration, effluent quality and other environmental factors in the reactor. In this study the operation was divided into six phases according to influent nitrogen applied. SNAD system was successfully set up after adding COD into a CANON system. And the presence of COD enabled the survival of denitrifiers, and made Thauera and Pseudomonas predominant as functional denitrifiers in this system. Denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH) and 16S rRNA amplicon pyrosequencing were used to analyze the microbial variations of different substrate concentrations. Results indicated that the relative population of ammonia oxidizing bacteria (AOB) members decreased when influent ammonia concentration decreased from 2200 mg/L to 50 mg/L, while no dramatic drop of the percent of anammox bacteria was seen. And Nitrosomonas europaea was the predominant AOB in SNAD system treating sewage, while Candidatus Brocadia was the dominant anammox bacteria.
Collapse
Affiliation(s)
- Xin Wen
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Benzhou Gong
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China
| | - Jian Zhou
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Xiaoxia Qing
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400045, PR China; Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
50
|
Wang S, Liu Y, Niu Q, Ji J, Hojo T, Li YY. Nitrogen removal performance and loading capacity of a novel single-stage nitritation-anammox system with syntrophic micro-granules. BIORESOURCE TECHNOLOGY 2017; 236:119-128. [PMID: 28399415 DOI: 10.1016/j.biortech.2017.03.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The operation performance of a novel micro-granule based syntrophic system of nitritation and anammox was studied by controlling the oxygen concentration and maintaining a constant temperature of 25°C. With the oxygen concentration of around 0.11 (<0.15)mg/L, the single-stage nitritation-anammox system was startup successfully at a nitrogen loading rate (NLR) of 1.5kgN/m3/d. The reactor was successfully operated at volumetric N loadings ranging from 0.5 to 2.5kgN/m3/d with a high nitrogen removal of 82%. The microbial community was composed by ammonia oxidizing bacteria (AOB) and anammox bacteria forming micro-granules with an average diameter of 0.8mm and good settleability. Results from pyrosequencing analysis revealed that Ca. Kuenenia and Nitrosomonas were selected and enriched in the community over the startup period, and these were identified as the dominant anammox bacteria and AOB species, respectively.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 26# Jinjing Road, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, 26# Jinjing Road, Tianjin 300384, China
| | - Yuan Liu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|