1
|
Sun S, Qiao Z, Sun K, Huo D. Assembly process and co-occurrence network of microbial community in response to free ammonia gradient distribution. Microbiol Spectr 2024; 12:e0105124. [PMID: 39058029 PMCID: PMC11370247 DOI: 10.1128/spectrum.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Microorganisms are crucial components of the aquatic ecosystem due to their immense diversity and abundance. They are vital in sustaining ecological services, especially in maintaining essential biogeochemical cycles. Recent years have seen a substantial increase in surplus nitrogenous pollutants in aquatic ecosystems due to the heightened occurrence of anthropogenic activities. Elevated levels of free ammonia (FA, NH3), stemming from the discharge of excess nitrogenous pollutants, have caused notable fluctuations in aquatic ecosystems, leading to water eutrophication and various ecological challenges. The impact of these oscillations on microbial communities in aquatic ecosystems has not been extensively studied. This study employed 16S rRNA gene amplicon sequencing to systematically investigate the dynamics, co-occurrence networks, and assembly processes of microbial communities and their subcommunities (abundant, moderate, and rare) in the Luanhe River Diversion Project in China. Our findings indicate that NH3 concentration significantly influences the dynamics of microbial communities, with a notable decrease in community Richness and Phylogenetic Distance alongside increased community dissimilarity under higher NH3 conditions. The analysis revealed that certain microbial groups, particularly Actinobacteriaota, were notably more prevalent in environments with elevated NH3 levels, suggesting their potential resilience or adaptive responses to NH3 stress. Additionally, through co-occurrence network analysis, we observed dynamic changes in network topology and increased connectedness under NH3 stress. Key nodes, identified as connectors and module hubs, played crucial roles in maintaining network structure, particularly Cyanobacteria and Actinobacteriaota. Furthermore, stochastic processes, particularly drift and dispersal limitation, predominantly shaped the microbial communities. Within the three subcommunities, the impact of drift became more pronounced as the effect of dispersal limitation diminished. Overall, elucidating the dynamics of microbial communities in aquatic ecosystems exposed to NH3 can enhance our comprehension of the ecological mechanisms of microbial communities and provide new insights into the conservation of microbial community diversity and ecological functions. IMPORTANCE The research presented in this paper explores how varying concentrations of free ammonia impact microbial communities in aquatic ecosystems. By employing advanced gene sequencing techniques, the study reveals significant changes in microbial diversity and network structures in response to increased ammonia levels. Key findings indicate that high ammonia concentrations lead to a decrease in microbial richness and diversity while increasing community dissimilarity. Notably, certain microbial groups, like Actinobacteria, show resilience to ammonia stress. This research enhances our understanding of how pollution affects microbial ecosystems and underscores the importance of maintaining balanced ammonia levels to preserve microbial diversity and ecosystem health.
Collapse
Affiliation(s)
- Shengjie Sun
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Zhiyi Qiao
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Kexin Sun
- Frasergen Bioinformatics Co., Ltd, Wuhan, China
| | - Da Huo
- CAS Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Beraud-Martínez LK, Betancourt-Lozano M, Gómez-Gil B, Asaff-Torres A, Monroy-Hermosillo OA, Franco-Nava MÁ. Methylotrophic methanogenesis induced by ammonia nitrogen in an anaerobic digestion system. Anaerobe 2024; 88:102877. [PMID: 38866129 DOI: 10.1016/j.anaerobe.2024.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES This lab-scale study aimed to investigate the effect of total ammonia nitrogen (TAN) stress on the methanogenic activity and the taxonomic and functional profiles of the microbial community of anaerobic sludge (AS) from a full-scale bioreactor. METHODS The AS was subjected to a stepwise increase in TAN every 14 days at concentrations of 1, 2, 2.5, 3, 3.5, and 4 g TAN/L (Acclimated-AS or AAS). This acclimation stage was followed by an ammonia stress stage (4 g/L). A blank-AS (BAS) was maintained without TAN during the acclimation stage. In the second stress stage (ST), the BAS was divided into two new treatments: a control (BAS') and one that received a shock load of TAN of 4 g/L (SBAS'). Methane production was measured, and a metagenomic analysis was conducted to describe the microbial community. RESULTS A decrease in the relative abundance of Methanothrix soehngenii of 16 % was related to a decrease of 23 % in the methanogenic capacity of AAS when comparing with the final stage of BAS. However, recovery was observed at 3.5 g TAN/L, and a shift to methylotrophic metabolism occurred, indicated by a 4-fold increase in abundance of Methanosarcina mazei. The functional analysis of sludge metagenomes indicated that no statistical differences (p > 0.05, RM ANOVA) were found in the relative abundance of methanogenic genes that initiate acetoclastic and hydrogenotrophic pathways (acetyl-CoA synthetase, ACSS; acetate kinase, ackA; phosphate acetyltransferase, pta; and formylmethanofuran dehydrogenase subunit A, fwdA) into the BAS and AAS during the acclimation phase. The same was observed between groups of genes associated with methanogenesis from methylated compounds. In contrast, statistical differences (p < 0.05, one-way ANOVA) in the relative abundance of these genes were recorded during ST. The functional profiles of the genes involved in acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways were brought to light for acclimatation and stress experimental stages. CONCLUSIONS TAN inhibited methanogenic activity and acetoclastic metabolism. The gradual acclimatization to TAN leads to metabolic and taxonomic changes that allow for the subsequent recovery of methanogenic functionality. The study highlights the importance of adequate management of anaerobic bioprocesses with high nitrogen loads to maintain the methanogenic functionality of the microbial community.
Collapse
Affiliation(s)
- Liov Karel Beraud-Martínez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A. C. Unidad Mazatlán, Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa, 82112, Mexico
| | - Ali Asaff-Torres
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C. Unidad Hermosillo, Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304, Hermosillo, Sonora, Mexico
| | - Oscar Armando Monroy-Hermosillo
- Universidad Autónoma Metropolitana. Biotechnology Department, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Cd. México, Mexico
| | - Miguel Ángel Franco-Nava
- Tecnológico Nacional de México, Campus Mazatlán, Calle Corsario 1 No. 203 Col. Urías, A.P. 757, Mazatlán, Sinaloa, 82070, Mexico.
| |
Collapse
|
3
|
Bele V, Goyette B, An C, Achouri IE, Chaib O, Rajagopal R. A robust, low-temperature, closed-loop anaerobic system for high-solid mixed farm wastes: advancing agricultural waste management solutions in Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33654-7. [PMID: 38777978 DOI: 10.1007/s11356-024-33654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
This study investigates the effectiveness of low-temperature (20 ± 1 °C) anaerobic digestion (AD) for two organic multiple farm substrate combinations: Set 1 comprising chicken manure (CM), dairy manure (DM), and waste corn silage (CS) and Set 2 comprising CM, DM, pig manure (PM), and CS. Inoculum adaptation steps were carried out using CM and CM+DM for Set 1 and Set 2, respectively. Over three consecutive operating cycles spanning 245 days with increasing organic loads, 4.3 and 2.8 g VS L-1 d-1 for Sets 1 and 2 during Cycles 1 to 5.1 and 4.6 g VS L-1 d-1for Sets 1 and 2 during Cycle 3, a closed-loop two-stage liquid-solid AD system was employed, with performance assessed via stability ratios of short-chain volatile fatty acids and alkalinity. Results demonstrate that mono-digestion of CM with adapted inoculum yielded the highest biogas production of 424 ± 4 L over 77 days, indicating superior performance by Set 1 during Phase I, whereas a similar performance was observed during Phase 2, where Sets 1 and 2 exhibited highest specific methane yields of 0.233 ± 0.028 and 0.262 ± 0.004 L g-1 VSfed, respectively, over 68 days. Analysis of heavy metal concentrations in digestates revealed a significant decrease compared to initial raw substrate concentrations, highlighting their role as nutrients for microbial growth. This study, the first of its kind, highlights the potential of low-temperature AD systems to manage diverse organic residues/byproducts and offers insights into effective performance monitoring without compromising system integrity.
Collapse
Affiliation(s)
- Vaibhavi Bele
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Bernard Goyette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Inès Esma Achouri
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Oumaima Chaib
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
4
|
Umego EC, Barry-Ryan C. Review of the valorization initiatives of brewing and distilling by-products. Crit Rev Food Sci Nutr 2023; 64:8231-8247. [PMID: 37039081 DOI: 10.1080/10408398.2023.2198012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Beer and spirits are two of the most consumed alcoholic beverages in the world, and their production generates enormous amounts of by-product materials. This ranges from spent grain, spent yeast, spent kieselguhr, trub, carbon dioxide, pot ale, and distilled gin spent botanicals. The present circular economy dynamics and increased awareness on resource use for enhanced sustainable production practices have driven changes and innovations in the management practices and utilization of these by-products. These include food product development, functional food applications, biotechnological applications, and bioactive compounds extraction. As a result, the brewing and distilling sector of the food and drinks industry is beginning to see a shift from conventional uses of by-products such as animal feed to more innovative applications. This review paper therefore explored some of these valorization initiatives and the current state of the art.
Collapse
Affiliation(s)
- Ekene Christopher Umego
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| | - Catherine Barry-Ryan
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| |
Collapse
|
5
|
Singh A, Rana MS, Tiwari H, Kumar M, Saxena S, Anand V, Prajapati SK. Anaerobic digestion as a tool to manage eutrophication and associated greenhouse gas emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160722. [PMID: 36493813 DOI: 10.1016/j.scitotenv.2022.160722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Eutrophicated inland water bodies are noticed to be one of the contributing factors to greenhouse gas (GHGs) emissions. Direct discharge of untreated or partially treated water is a major concern. Microalgae-based technology and management are regarded as one of the potential nature-based approaches to combat eutrophication. In turn, the microalgae facilitate the recovery of GHGs contributing compounds in the form of organic biomass. The recovered algal biomass can be harnessed for the production of biofuels and other bio-products, like biofertilizer, using anaerobic digestion. By virtue, circular bio-economy can be achieved alongside mitigating GHGs emissions. Before implementing, it is vital to thoroughly explore the links between the process and potential alternatives for wastewater treatment, waste valorization, biofuel production, and land usage. Thus, the present review discusses the impact of eutrophication on ecology and environment, current technologies for mitigating eutrophication and GHGs, and energy recovery through the anaerobic digestion of algal biomass. Further, the processes at the intercept of wastewater treatment and biogas production were reviewed to leverage the potential of anaerobic digestion for making a circular bioeconomy framework.
Collapse
Affiliation(s)
- Amit Singh
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mohit Singh Rana
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshit Tiwari
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sarthak Saxena
- IITB-Monash Research Academy, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Vishal Anand
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Rajagopal R, Bele V, Saady NMC, Hickmann FMW, Goyette B. Anaerobic Digestion of Pig-Manure Solids at Low Temperatures: Start-Up Strategies and Effects of Mode of Operation, Adapted Inoculum, and Bedding Material. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090435. [PMID: 36134981 PMCID: PMC9495977 DOI: 10.3390/bioengineering9090435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
The objective of this study was to obtain start-up strategies for the operation of a dry anaerobic digestion (DAD) system treating pig-manure (PM) solids at low-temperatures, and evaluate the effects of operation mode, adapted inoculum, and bedding material on the performance. A DAD system coupled with an inoculum system (two-stage DAD) was operated at 20 ± 1 °C to digest PM solids (Total Solids, TS: 27%) with wheat straw or woodchips as bedding materials (TS substrate-mixture: 45%) using a liquid inoculum. Static DAD was also operated in parallel for comparison purposes. Overall, the percolation–recirculation mode of operation was superior to the static mode; the former had more than a 3-fold increase in specific methane yield in cycle 3. Using the adapted inoculum in cycle-2 improved methane yield by 7% and 26% for cycles 1 and 3, respectively, under the percolation–recirculation mode of operation. In addition, the digestate resulting from the digestion of woodchips + PM solids had better physical characteristics than wheat straw + PM solids. Thus, anaerobic digestion of pig-manure solids at low-temperatures with appropriate start-up strategies, inoculum, and bedding material is a promising technology for transforming PM solids into biogas and using its digestate as biofertilizer.
Collapse
Affiliation(s)
- Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
- Correspondence:
| | - Vaibhavi Bele
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Noori M. Cata Saady
- Civil Engineering Department, Memorial University of Newfoundland, St. John’s, NL A1B 3X5, Canada
| | - Felipe M. W. Hickmann
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
- Département des Sciences Animales, Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, Porto Alegre 91540-000, Brazil
| | - Bernard Goyette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
7
|
Feng L, Zhao W, Liu Y, Chen Y, He S, Ding J, Zhao Q, Wei L. Inhibition mechanisms of ammonia and sulfate in high-solids anaerobic digesters for food waste treatment: Microbial community and element distributions responses. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Astals S, José Chávez-Fuentes J, Capson-Tojo G, Hutňan M, Jensen PD. The interaction between lipids and ammoniacal nitrogen mitigates inhibition in mesophilic anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:244-252. [PMID: 34700165 DOI: 10.1016/j.wasman.2021.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Ammoniacal nitrogen and long chain fatty acids (LCFA) are common inhibitors of the anaerobic digestion process. However, the interaction between these inhibitors has received little attention. Understanding the interaction between these inhibitors is important to optimise the operation of anaerobic digesters treating slaughterhouse waste or using fat, oil and grease (FOG) as co-substrate among others. To study the interaction between ammoniacal nitrogen and LCFA inhibition, 20 different conditions were trialled in mesophilic batch tests. Experimental conditions included 5 mixtures between slaughterhouse wastewater and LCFA (100:0, 75:25, 50:50, 20:80, 0:100 on a VS basis), each one tested at 4 different ammoniacal nitrogen concentrations (0, 1, 3, 6 gNadded·L-1). Experimental and modelling results showed that ammoniacal nitrogen inhibition was less severe in LCFA-rich mixtures, indicating that LCFA mitigated ammoniacal nitrogen inhibition to a certain extent. However, the positive interaction between inhibitors did not only depend on the LCFA concentration. A protective LCFA coat that limited the diffusion of free ammonia into the cell and/or provided a localised lower pH in the vicinity of the microbial cell could explain the experimental results. However, ammoniacal nitrogen and LCFA inhibition comprise up to 6 different but interrelated inhibitors (i.e. NH3, NH4+, LCFA, VFA, H2 and pH) and therefore the specific mechanism could not be elucidated. Nonetheless, these results suggest that LCFA do not exacerbate TAN-related inhibition and that LCFA-rich substrates can be utilised as co-substrates in mesophilic N-rich digesters.
Collapse
Affiliation(s)
- Sergi Astals
- Advanced Water Management Centre, The University of Queensland, QLD 4072, Australia; Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Juan José Chávez-Fuentes
- Institute of Chemical and Environmental Engineering, Slovak University of Technology in Bratislava, 81237 Bratislava, Slovakia
| | - Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, QLD 4072, Australia; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Miroslav Hutňan
- Institute of Chemical and Environmental Engineering, Slovak University of Technology in Bratislava, 81237 Bratislava, Slovakia
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, QLD 4072, Australia
| |
Collapse
|
9
|
Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2021; 338:125514. [PMID: 34265593 DOI: 10.1016/j.biortech.2021.125514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The expanding interest towards biogas generation from biowaste via complex anaerobic digestion (AD) opened new avenues in the improvement of biogas production processes and their up-gradation. The adsorption/removal of impurities particularly hydrogen sulfide (H2S) and carbon dioxide (CO2) from the biogas stream will significantly improve the efficiency of biogas for its further use as a renewable energy fuel. The production and up-gradation of biogas rely upon the types of feedstocks, AD condition, microbial diversity, purification methods along with the application of various additives. In that context, this review aims to emphasize the current state of the art in the field of biogas production via AD using diverse bio-waste. Further, this review will critically explore the biogas up-gradation technologies adopted so far and their pros and cons. Finally, techno-economic and environmental impact assessment of the biogas production process will be underlined to make the process cost-effective and environmentally sustainable.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Rakesh Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
10
|
Quispe-Cardenas E, Rogers S. Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions. WATER RESEARCH 2021; 204:117596. [PMID: 34530226 DOI: 10.1016/j.watres.2021.117596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
This study explored microbial adaptation to high ammonia concentrations (<1000 mg/L to 4000 mg/L) during anaerobic digestion (AD) under psychrophilic and mesophilic conditions, the latter of which yielded precipitates facilitating investigation of microbial response. The experimental setup was performed at bench-scale using microbial consortia from four different operating anaerobic digesters treating different organic wastes (WW-wastewater sludge, MN-manure, FW- food waste and CO-co-digestion (FW & MN)). Adaptation experiments were conducted with semi-continuous flow mode to resemble large-scale operation. Metagenome and 16S RNA analysis were performed for the first time in a psychrophilic reactor during an ammonia acclimation process. These analyses were also performed in mesophilic reactor exposed to precipitates and high ammonia levels. Diversity reduced when adaptation occurred successfully from 1.1 to 4 g/L of total ammonia nitrogen (TAN) under psychrophilic conditions, while the microbial community became more diverse under mesophilic conditions with ammonia inhibition. We report for the first time Methanocorposculum as a robust hydrogenotrophic methanogen at high ammoniacal concentrations under psychrophilic conditions. Additionally, Methanosarcina was present in low and high ammoniacal concentrations in mesophilic conditions, but there was a shift in species dominance. Methanosarcina barkeri stands out as a more resilient methanogen compared to Methanosarcina mazei, which initially dominated at <1.1 g/L TAN. We also explored the effects of sudden precipitates on methanogenic communities and methane production when they occurred under mesophilic conditions in two reactors. Methane production declined by more than 50% when precipitates occurred and was accompanied by pH reduction and VFA accumulation. Diversity data corroborated that methanogens were severely reduced. These two reactors were not able to recover with 50 days of added operation, demonstrating potential for long-term negative impacts of precipitate formation on AD performance stemming from negative impact to methanogenic communities.
Collapse
Affiliation(s)
| | - Shane Rogers
- Institute for a Sustainable Environment, Clarkson University, Potsdam 13699, NY, USA; Civil and Environmental Engineering, Clarkson University, Potsdam 13699, NY, USA.
| |
Collapse
|
11
|
Ling Z, Thakur N, El-Dalatony MM, Salama ES, Li X. Protein biomethanation: insight into the microbial nexus. Trends Microbiol 2021; 30:69-78. [PMID: 34215486 DOI: 10.1016/j.tim.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
Biomethanation of carbohydrates (e.g., lignocellulosic biomass) and lipids (e.g., waste oils) has been well studied. However, investigations on the biomethanation of protein-rich biowastes (PRBs) and associated microbial communities have not been reported. This review summarizes the challenges in the metabolic process of anaerobic digestion of PRBs and the microbial instability associated with it. We discuss the diversity of bacterial and archaeal communities via metagenomics under PRB mono- and codigestion. A stable community structure with enhanced metabolic activity is a core factor in PRB biomethanation. The application of strategies such as codigestion of PRBs with carbon-rich biomass and microbial stimulation/augmentation would make PRB biomethanation more feasible.
Collapse
Affiliation(s)
- Zhenmin Ling
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Nandini Thakur
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Marwa M El-Dalatony
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
12
|
Schneider C, Evangelio Oñoro A, Hélix-Nielsen C, Fotidis IA. Forward-osmosis anaerobic-membrane bioreactors for brewery wastewater remediation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Thermophilic Anaerobic Co-Digestion of Exhausted Sugar Beet Pulp with Cow Manure to Boost the Performance of the Process: The Effect of Manure Proportion. WATER 2020. [DOI: 10.3390/w13010067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sugar beet by-products are a lignocellulosic waste generated from sugar beet industry during the sugar production process and stand out for their high carbon content. Moreover, cow manure (CM) is hugely produced in rural areas and livestock industry, which requires proper disposal. Anaerobic digestion of such organic wastes has shown to be a suitable technology for these wastes valorization and bioenergy production. In this context, the biomethane production from the anaerobic co-digestion of exhausted sugar beet pulp (ESBP) and CM was investigated in this study. Four mixtures (0:100, 50:50, 75:25, and 90:10) of cow manure and sugar beet by-products were evaluated for methane generation by thermophilic batch anaerobic co-digestion assays. The results showed the highest methane production was observed in mixtures with 75% of CM (159.5 mL CH4/g VolatileSolids added). Nevertheless, the hydrolysis was inhibited by volatile fatty acids accumulation in the 0:100 mixture, which refers to the assay without CM addition. The modified Gompertz model was used to fit the experimental results of methane productions and the results of the modeling show a good fit between the estimated and the observed data.
Collapse
|
14
|
Mutschlechner M, Praeg N, Illmer P. Soil-Derived Inocula Enhance Methane Production and Counteract Common Process Failures During Anaerobic Digestion. Front Microbiol 2020; 11:572759. [PMID: 33193175 PMCID: PMC7606279 DOI: 10.3389/fmicb.2020.572759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Although soil-borne methanogens are known to be highly diverse and adapted to extreme environments, their application as potential (anaerobic) inocula to improve anaerobic digestion has not been investigated until now. The present study aimed at evaluating if soil-derived communities can be beneficial for biogas (methane, CH4) production and endure unfavorable conditions commonly associated with digestion failure. Nine study sites were chosen and tested for suitability as inoculation sources to improve biogas production via in situ measurements (CH4 fluxes, physical and chemical soil properties, and abundance of methanogens) and during a series of anaerobic digestions with (a) combinations of both sterile or unsterile soil and diluted fermenter sludge, and (b) pH-, acetate-, propionate-, and ammonium-induced disturbance. Amplicon sequencing was performed to assess key microbial communities pivotal for successful biogas production. Four out of nine tested soil inocula exerted sufficient methanogenic activity and repeatedly allowed satisfactory CH4/biogas production even under deteriorated conditions. Remarkably, the significantly highest CH4 production was observed using unsterile soil combined with sterile sludge, which coincided with both a higher relative abundance of methanogens and predicted genes involved in CH4 metabolism in these variants. Different bacterial and archaeal community patterns depending on the soil/sludge combinations and disturbance variations were established and these patterns significantly impacted CH4 production. Methanosarcina spp. seemed to play a key role in CH4 formation and prevailed even under stressed conditions. Overall, the results provided evidence that soil-borne methanogens can be effective in enhancing digestion performance and stability and, thus, harbor vast potential for further exploitation.
Collapse
Affiliation(s)
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Synergistic effects of rice straw and rice bran on enhanced methane production and process stability of anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2020; 314:123775. [PMID: 32652449 DOI: 10.1016/j.biortech.2020.123775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the synergistic effects of rice straw (RS) and rice bran (RB) addition on methane production and process stability of anaerobic digestion of food waste (FW). Positive synergistic effect (Synergy index (SI) = 1.03-1.24 > 1) was noticed in all the co-digestion reactors. The optimum mixing ratio of FW:RS:RB (volatile solid (VS) basis) was 60:10:30 with the maximum SI (1.24), achieving 27.4% increase in methane yield (235.4 mL/g-VS) and around 5 days shorter of λ (3.7 days) compared to the mono-digestion of FW (184.8 mL/g-VS and 8.2 days). Remarkably high concentration of volatile fatty acids (VFAs) was also accumulated in the mono-digestion of FW, especially propionic acid, which to a great extent caused the methane production to stagnate. Results from this study demonstrate that co-digestion of FW and RS with RB has high potentials for energy recovery from AD of the mixed feedstocks and its stable operation.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
16
|
Magdalena JA, Greses S, González-Fernández C. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate. Sci Rep 2019; 9:18374. [PMID: 31804573 PMCID: PMC6895168 DOI: 10.1038/s41598-019-54914-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are regarded as building blocks with a wide range of applications, including biofuel production. The traditional anaerobic digestion used for biogas production can be alternatively employed for VFAs production. The present study aimed at maximizing VFAs productions from Chlorella vulgaris through anaerobic digestion by assessing the effect of stepwise organic loading rates (OLR) increases (3, 6, 9, 12 and 15 g COD L-1 d-1). The biological system was proven to be robust as organic matter conversion efficiency into VFAs increased from 0.30 ± 0.02 COD-VFAs/CODin at 3 g COD L-1 d-1 to 0.37 ± 0.02 COD-VFAs/CODin at 12 g COD L-1d-1. Even though, the hydrolytic step was similar for all studied scenario sCOD/tCOD = 0.52-0.58), the highest OLR (15 g COD L-1 d-1) did not show any further increase in VFAs conversion (0.29 ± 0.01 COD-VFAs/CODin). This fact suggested acidogenesis inhibition at 15 g COD L-1d-1. Butyric (23-32%), acetic (19-26%) and propionic acids (11-17%) were the most abundant bioproducts. Population dynamics analysis revealed microbial specialization, with a high presence of Firmicutes followed by Bacteroidetes. In addition, this investigation showed the microbial adaptation of Euryarchaeota species at the highest OLR (15 g COD L-1d-1), evidencing one of the main challenges in VFAs production (out-competition of archaea community to avoid product consumption). Stepwise OLR increase can be regarded as a tool to promote VFAs productions. However, acidogenic inhibition was reported at the highest OLR instead of the traditional hydrolytic barriers. The operational conditions imposed together with the high VFAs and ammonium concentrations might have affected the system yields. The relative abundance of Firmicutes (74%) and Bacteroidetes (20%), as main phyla, together with the reduction of Euryarchaeota phylum (0.5%) were found the best combination to promote organic matter conversion into VFAs.
Collapse
Affiliation(s)
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
17
|
Qi G, Meng W, Zha J, Zhang S, Yu S, Liu J, Ren L. A novel insight into the influence of thermal pretreatment temperature on the anaerobic digestion performance of floatable oil-recovered food waste: Intrinsic transformation of materials and microbial response. BIORESOURCE TECHNOLOGY 2019; 293:122021. [PMID: 31514121 DOI: 10.1016/j.biortech.2019.122021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The intrinsic reason determining digestion performance of 100-160 °C preheated food waste after recovering floatable oil (FO-recovered FW) was investigated using two-dimensional correlated infrared spectroscopy, three-dimensional fluorescence spectroscopy and high-throughput 16S rRNA amplicon sequencing. The results indicated that thermal temperature significantly affected CH4 production of FO-recovered FW due to different structural alteration degree of starch, protein, cellulose and lipid components. Fragmentation of starch mainly occurred at 100 °C. The hydrolytic and acidogenic rate of starch was promoted and accordingly induced rapid growth of carbohydrate-fermenting bacteria, which resulted in severe acidification. Protein hydrolysis and cellulose H-bonds cleavage occurring at 120-160 °C accelerated the accessible sites interacting with microbial hydrolytic enzymes, and growth of Cloacimonetes and Syntrophomonas enhanced CH4 production. Non-degradable humic acid-like organics remarkably formed at 160 °C caused a carbon loss and digestion inhibiting/deteriorating. Pretreatment at 120 °C was feasible for promoted methane production based on energy assessment.
Collapse
Affiliation(s)
- Guangxia Qi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Wei Meng
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Zha
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Simeng Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Shuyao Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lianhai Ren
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
18
|
Tian H, Mancini E, Treu L, Angelidaki I, Fotidis IA. Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate. CHEMOSPHERE 2019; 231:415-422. [PMID: 31146133 DOI: 10.1016/j.chemosphere.2019.05.140] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
High ammonia levels inhibit anaerobic digestion (AD) process and bioaugmentation with ammonia tolerant methanogenic culture is proposed to alleviate ammonia inhibition. In the current study, hydrogenotrophic Methanoculleus bourgensis was bioaugmented in an ammonia-inhibited continuous reactor fed mainly with microalgae (a protein-rich biomass), at extreme ammonia levels (i.e. 11 g NH4+-N L-1). The results showed 28% increase in methane production immediately after bioaugmentation. Moreover, volatile fatty acids decreased rapidly from more than 5 g L-1 to around 1 g L-1, with a fast reduction in propionate concentration. High throughput 16s rRNA gene sequencing demonstrated that the bioaugmented M. bourgensis doubled its relative abundance after bioaugmentation. "Microbiological domino effect", triggered by the bioaugmented M. bourgensis establishing a newly efficient community, was proposed as the working mechanism of the successful bioaugmentation. Additionally, a strong aceticlastic methanogenesis was found at the end of the experiment evidenced by the dominant presence of Methanosarcina soligelidi and the low abundance of syntrophic acetate oxidising bacteria at the final period. Overall, for the first time, this study proved the positive effect of bioaugmentation on ammonia inhibition alleviation of the microalgae-dominating fed reactor, paving the way of efficient utilization of other protein-rich substrates in the future.
Collapse
Affiliation(s)
- Hailin Tian
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, DK
| | - Enrico Mancini
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, DK
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, DK
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, DK
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, DK.
| |
Collapse
|
19
|
Mahdy A, Wandera SM, Bi S, Song Y, Qiao W, Dong R. Response of the microbial community to the methanogenic performance of biologically hydrolyzed sewage sludge with variable hydraulic retention times. BIORESOURCE TECHNOLOGY 2019; 288:121581. [PMID: 31158775 DOI: 10.1016/j.biortech.2019.121581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Hyperthermophilic biological hydrolysis of sewage sludge was applied before long-term anaerobic digestion to investigate how shortening hydraulic retention times (HRT, 20-5d) affected methanogenic performances and microbial dynamics. Results indicated that although the three different HRTs provided a stable process with a steady-state of methane production, both methane yield (161 L kg-VSin-1, 25% higher) and volatile solids removal (VS, 50%, 2-fold higher) increased during longer HRTs. Redundancy analysis results indicated that Sporosarcina and Methnosarcina positively correlated to VS removal and methane yield, and negatively correlated to volatile fatty acids (VFAs) accumulation. The relative abundance of Coprothermobacter (>60%), syntrophic acetate oxidation bacteria (SAOB), and Methanospirillum (8-15%), increased during shorter HRTs. A slight shift to two-stage acetate conversion was observed during shorter HRTs. The results demonstrated that HRTs played a key role in shaping microbial structure, leading to a new steady-state of microbial community profiles and process performances at variable HRTs.
Collapse
Affiliation(s)
- Ahmed Mahdy
- College of Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Simon M Wandera
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaojie Bi
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China
| | - Yunlong Song
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China
| |
Collapse
|
20
|
Zamorano-López N, Greses S, Aguado D, Seco A, Borrás L. Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Solé-Bundó M, Garfí M, Matamoros V, Ferrer I. Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:974-981. [PMID: 30743981 DOI: 10.1016/j.scitotenv.2019.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Microalgal-based wastewater treatment plants are conceived as low cost and low energy consuming systems. The operation of these plants involves the management of primary sludge and microalgal biomass. The aim of this study is to analyse the anaerobic co-digestion of both by-products in terms of biogas production and contaminants of emerging concern removal. The co-digestion of microalgae and primary sludge (25/75% on a volatile solids basis) was investigated in continuous reactors and compared to microalgae mono-digestion at a hydraulic retention time of 20days. Results showed how the co-digestion enhanced the anaerobic digestion of microalgal biomass, since primary sludge is a more readily biodegradable substrate, which increased the methane production by 65% and reduced the risk of ammonia toxicity. Regarding the contaminants, musk fragrances (galaxolide and tonalide) and triclosan showed the highest abundance on primary sludge (0.5-25μg/g TS), whereas caffeine, methyl dihydrojasmonate and triphenyl phosphate were barely detected in both substrates (<0.1μg/g TS). The removal of these contaminants was compound-depending and ranged from no removal to up to 90%. On the whole, microalgae mono-digestion resulted in a higher removal of selected contaminants than the co-digestion with primary sludge.
Collapse
Affiliation(s)
- Maria Solé-Bundó
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
22
|
Schneider C, Rajmohan RS, Zarebska A, Tsapekos P, Hélix-Nielsen C. Treating anaerobic effluents using forward osmosis for combined water purification and biogas production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1021-1030. [PMID: 30180310 DOI: 10.1016/j.scitotenv.2018.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Forward osmosis (FO) can be used to reclaim nutrients and high-quality water from wastewater streams. This could potentially contribute towards relieving global water scarcity. Here we investigated the feasibility of extracting water from four real and four synthetic anaerobically digested effluents, using FO membranes. The goal of this study was to 1) evaluate FO membrane performance in terms of water flux and nutrient rejection 2) examine the methane yield that can be achieved and 3) analyse FO membrane fouling. Out of the four tested real anaerobically digested effluents, swine manure and potato starch wastewater achieved the highest combined average FO water flux (>3 liter per square meter per hour (LMH) with 0.66 M MgCl2 as initial draw solution concentration) and methane yield (>300 mL CH4 per gram of organic waste expressed as volatile solids (VS)). Rejection of total ammonia nitrogen (TAN), total Kjeldahl nitrogen (TKN) and total phosphorous (TP) was high (up to 96.95%, 95.87% and 99.83%, respectively), resulting in low nutrient concentrations in the recovered water. Membrane autopsy revealed presence of organic and biological fouling on the FO membrane. However, no direct correlation between feed properties and methane yield and fouling potential was found, indicating that there is no inherent trade-off between high water flux and high methane production.
Collapse
Affiliation(s)
- Carina Schneider
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Rajath Sathyadev Rajmohan
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Agata Zarebska
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Panagiotis Tsapekos
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark; University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
23
|
Li Y, Lu J, Xu F, Li Y, Li D, Wang G, Li S, Zhang H, Wu Y, Shah A, Li G. Reactor performance and economic evaluation of anaerobic co-digestion of dairy manure with corn stover and tomato residues under liquid, hemi-solid, and solid state conditions. BIORESOURCE TECHNOLOGY 2018; 270:103-112. [PMID: 30212770 DOI: 10.1016/j.biortech.2018.08.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic co-digestion of tomato residues, dairy manure, and corn stover at ratios of 20:48:32, 40:36:24, and 60:24:16 (volatile solid basis) were compared for liquid anaerobic digestion (L-AD), hemi-solid state AD (HSS-AD), and solid state AD (SS-AD) systems. The highest methane yield (353.5 L/kg-VSadded) and volumetric methane productivity (24.5 m3methane/m3reactor volume) were both obtained with 20% tomato residues addition under L-AD and HSS-AD conditions, respectively. Total solid and feedstock mixing ratio affected the degradation of protein and lipids during AD, but not cellulose and hemicellulose. Economic analysis results indicated that capital and labor costs have the dominant effect on total investment. SS-AD of tomato residues, dairy manure, and corn stover at ratios of 20:48:32 (VS basis) has the highest net present value (2.6 million US$) and shortest payback period (10.1 year), which indicated SS-AD was financially attractive under analysis conditions.
Collapse
Affiliation(s)
- Yangyang Li
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiaxin Lu
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Fuqing Xu
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 44691, USA
| | - Yu Li
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Danyang Li
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shuyan Li
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Hongyu Zhang
- Beijing Building Materials Academy of Science Research/State Key Laboratory of Solid Waste Reuse for Building Material, Beijing 100041, China
| | - Yue Wu
- Department of Mechanical Engineering, Marquette University, 53233, USA
| | - Ajay Shah
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, 44691, USA
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Pollution Prevention-control and Remediation, College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Tsapekos P, Kougias P, Alvarado-Morales M, Kovalovszki A, Corbière M, Angelidaki I. Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Lu Y, Liaquat R, Astals S, Jensen P, Batstone D, Tait S. Relationship between microbial community, operational factors and ammonia inhibition resilience in anaerobic digesters at low and moderate ammonia background concentrations. N Biotechnol 2018; 44:23-30. [DOI: 10.1016/j.nbt.2018.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
|
26
|
Solé-Bundó M, Salvadó H, Passos F, Garfí M, Ferrer I. Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules 2018; 23:E2096. [PMID: 30134563 PMCID: PMC6225242 DOI: 10.3390/molecules23092096] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
This study aims at optimizing the anaerobic digestion (AD) of biomass in microalgal-based wastewater treatment systems. It comprises the co-digestion of microalgae with primary sludge, the thermal pretreatment (75 °C for 10 h) of microalgae and the role of the hydraulic retention time (HRT) in anaerobic digesters. Initially, a batch test comparing different microalgae (untreated and pretreated) and primary sludge proportions showed how the co-digestion improved the AD kinetics. The highest methane yield was observed by adding 75% of primary sludge to pretreated microalgae (339 mL CH₄/g VS). This condition was then investigated in mesophilic lab-scale reactors. The average methane yield was 0.46 L CH₄/g VS, which represented a 2.9-fold increase compared to pretreated microalgae mono-digestion. Conversely, microalgae showed a low methane yield despite the thermal pretreatment (0.16 L CH₄/g VS). Indeed, microscopic analysis confirmed the presence of microalgae species with resistant cell walls (i.e., Stigioclonium sp. and diatoms). In order to improve their anaerobic biodegradability, the HRT was increased from 20 to 30 days, which led to a 50% methane yield increase. Overall, microalgae AD was substantially improved by the co-digestion with primary sludge, even without pretreatment, and increasing the HRT enhanced the AD of microalgae with resistant cell walls.
Collapse
Affiliation(s)
- Maria Solé-Bundó
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Humbert Salvadó
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08007 Barcelona, Spain.
| | - Fabiana Passos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Antonio Carlos Avenue 6627, 31270-090 Belo Horizonte, Brazil.
| | - Marianna Garfí
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain.
| |
Collapse
|
27
|
Peng X, Zhang S, Li L, Zhao X, Ma Y, Shi D. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community. BIORESOURCE TECHNOLOGY 2018; 262:148-158. [PMID: 29704762 DOI: 10.1016/j.biortech.2018.04.076] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
A long-term high solids anaerobic digestion of food waste was conducted to identify microbial mechanisms of ammonia inhibition during digestion and to clarify correlations between ammonia accumulation, microbial community dynamics (diversity, composition, and interactions), and process stability. Results show that the effects of ammonia on process performance and microbial community were indirectly caused by volatile fatty acid accumulation. Excess free ammonia blocked acetate metabolism, leading to process instability. Accumulated acetate caused feedback inhibition at the acetogenesis stage, which resulted in considerable accumulation of propionate, valerate, and other long-chain fatty acids. This high concentration of volatile fatty acids reduced the abundance of syntrophic acetogenic bacteria and allowed hydrolytic fermentative bacteria to dominate. The normally interactive and orderly metabolic network was broken, which further exacerbated the process instability. These results improve the understanding of microbial mechanisms which contribute to process instability and provide guidance for the microbial management of anaerobic digesters.
Collapse
Affiliation(s)
- Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - ShangYi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xiaofei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yao Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
28
|
Wirth R, Lakatos G, Böjti T, Maróti G, Bagi Z, Rákhely G, Kovács KL. Anaerobic gaseous biofuel production using microalgal biomass – A review. Anaerobe 2018; 52:1-8. [DOI: 10.1016/j.anaerobe.2018.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
|
29
|
Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules 2018; 23:molecules23051098. [PMID: 29734773 PMCID: PMC6099730 DOI: 10.3390/molecules23051098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
Biogas generation is the least complex technology to transform microalgae biomass into bioenergy. Since hydrolysis has been pointed out as the rate limiting stage of anaerobic digestion, the main challenge for an efficient biogas production is the optimization of cell wall disruption/hydrolysis. Among all tested pretreatments, enzymatic treatments were demonstrated not only very effective in disruption/hydrolysis but they also revealed the impact of microalgae macromolecular composition in the anaerobic process. Although carbohydrates have been traditionally recognized as the polymers responsible for the low microalgae digestibility, protease addition resulted in the highest organic matter solubilization and the highest methane production. However, protein solubilization during the pretreatment can result in anaerobic digestion inhibition due to the release of large amounts of ammonium nitrogen. The possible solutions to overcome these negative effects include the reduction of protein biomass levels by culturing the microalgae in low nitrogen media and the use of ammonia tolerant anaerobic inocula. Overall, this review is intended to evidence the relevance of microalgae proteins in different stages of anaerobic digestion, namely hydrolysis and methanogenesis.
Collapse
|
30
|
Tian H, Fotidis IA, Mancini E, Treu L, Mahdy A, Ballesteros M, González-Fernández C, Angelidaki I. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics. BIORESOURCE TECHNOLOGY 2018; 247:616-623. [PMID: 28985610 DOI: 10.1016/j.biortech.2017.09.148] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 05/27/2023]
Abstract
Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10g NH4+-N L-1, was performed in mesophilic (37±1°C) continuously stirred tank reactors. The reactors were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7g NH4+-N L-1). Overall, this study demonstrated for the first time that acclimation of methanogenic communities to extreme ammonia levels in continuous AD process is possible, by developing a specialised acclimation AD microbiome.
Collapse
Affiliation(s)
- Hailin Tian
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark.
| | - Enrico Mancini
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark; Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), Viale dell'Università, 16, 35020 Legnaro, Padova, Italy
| | - Ahmed Mahdy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Mercedes Ballesteros
- Biotechnological Processes for Energy Production Unit - IMDEA Energy, 28935 Móstoles, Madrid, Spain; Biofuels Unit - Research Center for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain
| | | | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Liu T, Sun L, Müller B, Schnürer A. Importance of inoculum source and initial community structure for biogas production from agricultural substrates. BIORESOURCE TECHNOLOGY 2017; 245:768-777. [PMID: 28926908 DOI: 10.1016/j.biortech.2017.08.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the importance of inoculum source for start-up and operation of biogas processes. Three different inocula with different community structure were used to initiate six laboratory continuous stirred tank reactor (CSTR) processes operated with a grass manure mixture as substrate. The processes were evaluated by chemical and microbiological analysis, by targeting the overall bacterial community and potential cellulose-degrading bacteria. As expected, the results showed a large difference in community structure in the inocula and in process performance during the first hydraulic retention time (HRT). However, the performance and overall microbial community structure became similar in the reactors over time. An inoculum from a high-ammonia process, characterized by low diversity and low degradation efficiency, took the longest time to reach stability and final methane yield. The overall bacterial community was mainly shaped by the operating conditions but, interestingly, potential cellulose-degrading bacteria seemed mainly to originate from the substrate.
Collapse
Affiliation(s)
- Tong Liu
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-75007 Uppsala, Sweden
| | - Li Sun
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-75007 Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-75007 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, P.O. Box 7025, SE-75007 Uppsala, Sweden.
| |
Collapse
|