1
|
Pan Y, Chen W, Kang Q, Hao L, Lu J, Zhu J. Enhanced physicochemical characteristics and biological activities of low-temperature ethylenediamine/urea pretreated lignin. Bioprocess Biosyst Eng 2025; 48:367-379. [PMID: 39614883 DOI: 10.1007/s00449-024-03113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/22/2024] [Indexed: 02/27/2025]
Abstract
Low-temperature ethylenediamine (EDA)/urea pretreatment had been demonstrated to be an efficient pretreatment method for enzymatic hydrolysis and bioethanol production. For high-value utilization of the third main components of lignocellulosic biomass, the physicochemical structure characteristics and biological activities of low-temperature EDA/urea pretreated lignin (EUL) were comprehensively investigated in the present study. The results demonstrated that the pretreatment process facilitated the depolymerization of lignin, resulting in notable reduction in molecular weight and polydispersity index from 2.32 to 1.42 kg/mol and 1.44 to 1.20, respectively. The EDA/urea pretreated lignin (EUL) exhibited enhanced ultraviolet absorption capacity and the most significant DPPH radical scavenging and inhibition of Staphylococcus aureus in comparison to the primary lignin (PL) and the NaOH pretreated lignin (NL). Enhanced physicochemical characteristics and biological activities of EUL make it more suitable to be developed as sunscreen ingredient or antioxidant and antimicrobial agent in food preservation and conservation.
Collapse
Affiliation(s)
- Yongkang Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Weiwei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, 100010, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Food Laboratory of Zhongyuan, Zhengzhou University, Luohe, 462300, China.
| |
Collapse
|
2
|
Seid N, Wießner L, Aliyu H, Neumann A. Stirring the hydrogen and butanol production from Enset fiber via simultaneous saccharification and fermentation (SSF) process. BIORESOUR BIOPROCESS 2024; 11:96. [PMID: 39390133 PMCID: PMC11466926 DOI: 10.1186/s40643-024-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Enset fiber is a promising feedstock for biofuel production with the potential to reduce carbon emissions and improve the sustainability of the energy system. This study aimed to maximize hydrogen and butanol production from Enset fiber through simultaneous saccharification and fermentation (SSF) process in bottles as well as in bioreactor. The SSF process in bottles resulted in a higher butanol concentration of 11.36 g/L with a yield of 0.23 g/g and a productivity of 0.16 g/(L h) at the optimal process parameters of 5% (w/v) substrate loading, 16 FPU/g cellulase loading, and 100 rpm agitation speed from pretreated Enset fiber. Moreover, a comparable result to the bottle experiment was observed in the bioreactor with pH-uncontrolled SSF process, although with a decreased in butanol productivity to 0.095 g/(L h). However, using the pre-hydrolysis simultaneous saccharification and fermentation (PSSF) process in the bioreactor with a 7% (w/v) substrate loading led to the highest butanol concentration of 12.84 g/L with a productivity of 0.104 g/(L h). Furthermore, optimizing the SSF process parameters to favor hydrogen resulted in an increased hydrogen yield of 198.27 mL/g-Enset fiber at atmospheric pressure, an initial pH of 8.0, and 37 °C. In general, stirring the SSF process to shift the product ratio to either hydrogen or butanol was possible by adjusting temperature and pressure. At 37 °C and atmospheric pressure, the process resulted in an e-mol yield of 12% for hydrogen and 38% for butanol. Alternatively, at 30 °C and 0.55 bar overpressure, the process achieved a yield of 6% e-mol of hydrogen and 48% e-mol of butanol. This is the first study to produce hydrogen and butanol from Enset fiber using the SSF process and contributes to the development of a circular bioeconomy.
Collapse
Affiliation(s)
- Nebyat Seid
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O.B: 1176, Addis Ababa, Ethiopia.
| | - Lea Wießner
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Habibu Aliyu
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology (KIT), 76344, Karlsruhe, Germany
| | - Anke Neumann
- Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.
| |
Collapse
|
3
|
Palaniswamy S, Ashoor S, Eskasalam SR, Jang YS. Harnessing lignocellulosic biomass for butanol production through clostridia for sustainable waste management: recent advances and perspectives. Front Bioeng Biotechnol 2023; 11:1272429. [PMID: 37954017 PMCID: PMC10634440 DOI: 10.3389/fbioe.2023.1272429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
The escalating waste generation rates, driven by population growth, urbanization, and consumption patterns, have made waste management a critical global concern with significant environmental, social, and economic repercussions. Among the various waste sources, lignocellulosic biomass represents a significant proportion of agricultural, agro-industrial, and municipal wastes. Biofuels are gaining attention as a promising substitute to fossil fuels, and butanol is one such biofuel that has been identified as a potential candidate due to its compatibility with existing fuel infrastructure, lower volatility, and higher energy density. Sustainable management of lignocellulosic biomass waste and its utilization in fermentation are viable alternatives to produce butanol via the promising microbial catalyst clostridia. This review provides an overview of lignocellulosic biomass waste management, focusing on recent advances in strain development for butanol production from renewable biomass with an emphasis on future perspectives.
Collapse
Affiliation(s)
- Sampathkumar Palaniswamy
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Selim Ashoor
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Syafira Rizqi Eskasalam
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yu-Sin Jang
- Division of Applied Life Science (BK21 Four), Department of Applied Life Chemistry, Institute of Agriculture and Life Science (IALS), Gyeongsang National University (GNU), Jinju, Republic of Korea
| |
Collapse
|
4
|
Butanol recovery from synthetic fermentation broth by vacuum distillation in a rotating packed bed. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
6
|
Ismail KSK, Matano Y, Sakihama Y, Inokuma K, Nambu Y, Hasunuma T, Kondo A. Pretreatment of extruded Napier grass byhydrothermal process with dilute sulfuric acid and fermentation using a cellulose-hydrolyzing and xylose-assimilating yeast for ethanol production. BIORESOURCE TECHNOLOGY 2022; 343:126071. [PMID: 34606923 DOI: 10.1016/j.biortech.2021.126071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
One of the potential bioresources for bioethanol production is Napier grass, considering its high cellulose and hemicellulose content. However, the cost of pretreatment hinders the bioethanol produced from being economical. This study examines the effect of hydrothermal process with dilute acid on extruded Napier grass, followed by enzymatic saccharification prior to simultaneous saccharification and co-fermentation (SScF). Extrusion facilitated lignin removal by 30.2 % prior to dilute acid steam explosion. Optimum pretreatment condition was obtained by using 3% sulfuric acid, and 30-min retention time of steam explosion at 190 °C. Ethanol yield of 0.26 g ethanol/g biomass (60.5% fermentation efficiency) was attained by short-term liquefaction and fermentation using a cellulose-hydrolyzing and xylose-assimilating Saccharomyces cerevisiae NBRC1440/B-EC3-X ΔPHO13, despite the presence of inhibitors. This proposed method not only reduced over-degradation of cellulose and hemicellulose, but also eliminated detoxification process and reduced cellulase loading.
Collapse
Affiliation(s)
- Ku Syahidah Ku Ismail
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yuki Matano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuri Sakihama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yumiko Nambu
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Engineering Biology Research Centre, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Engineering Biology Research Centre, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignocellulosic and algal biomass are promising substrates for lactic acid (LA) production. However, lack of xylose utilization and/or sequential utilization of mixed-sugars (carbon catabolite repression, CCR) from biomass hydrolysates by most microorganisms limits achievable titers, yields, and productivities for economical industry-scale production. This study aimed to design lignocellulose-derived substrates for efficient LA production by a thermophilic, xylose-utilizing, and inhibitor-resistant Bacillus coagulans Azu-10. This strain produced 102.2 g/L of LA from 104 g/L xylose at a yield of 1.0 g/g and productivity of 3.18 g/L/h. The CCR effect and LA production were investigated using different mixtures of glucose (G), cellobiose (C), and/or xylose (X). Strain Azu-10 has efficiently co-utilized GX and CX mixture without CCR; however, total substrate concentration (>75 g/L) was the only limiting factor. The strain completely consumed GX and CX mixture and homoferemnatively produced LA up to 76.9 g/L. On the other hand, fermentation with GC mixture exhibited obvious CCR where both glucose concentration (>25 g/L) and total sugar concentration (>50 g/L) were the limiting factors. A maximum LA production of 50.3 g/L was produced from GC mixture with a yield of 0.93 g/g and productivity of 2.09 g/L/h. Batch fermentation of GCX mixture achieved a maximum LA concentration of 62.7 g/L at LA yield of 0.962 g/g and productivity of 1.3 g/L/h. Fermentation of GX and CX mixture was the best biomass for LA production. Fed-batch fermentation with GX mixture achieved LA production of 83.6 g/L at a yield of 0.895 g/g and productivity of 1.39 g/L/h.
Collapse
|
8
|
Li H, Wang H, Darwesh OM, Du J, Liu S, Li C, Fang J. Separation of biobutanol from ABE fermentation broth using lignin as adsorbent: A totally sustainable approach with effective utilization of lignocellulose. Int J Biol Macromol 2021; 174:11-21. [PMID: 33465363 DOI: 10.1016/j.ijbiomac.2021.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Adsorption is considered to be a promising butanol recovery method for solving the issue of inhibition in the ABE (acetone-butanol-ethanol) fermentation. As a byproduct in the second generation biobutanol industry, lignin was found to be a good adsorbent for the butanol enrichment. It is conducive to the full utilization of renewable lignocellulose biomass resource. Kinetic and equilibrium experiments indicated that lignin had a satisfactory adsorption rate and capacity that are comparable to those of many synthetic materials. Multicomponent adsorption experiments revealed that lignin had higher adsorption selectivity toward butanol than that of ethanol and acetone. The adsorption capacity of lignin for butanol first increased and then gradually decreased with increasing temperature. And maximum adsorption capacity reached 304.66 mg g-1 at 313 K. The inflection point of temperature is close to the ABE fermentation temperature of 310 K. The condensed butanol by desorption was 145 g L-1, with a satisfying regeneration performance. 1H NMR and FT-IR spectra indicated that the aromatic units of lignin formed π-systems with A/B/E. The π-system is particularly significant for butanol due to its longer hydrocarbon chain. These results could contribute to the emerging lignin-based materials for butanol separation.
Collapse
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Osama M Darwesh
- Agricultural Microbiology Department, Agricultural and Biological Research Division, National Research Centre, Cairo, Egypt
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Shan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China.
| |
Collapse
|
9
|
High temperature simultaneous saccharification and fermentation of corn stover for efficient butanol production by a thermotolerant Clostridium acetobutylicum. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Song W, Peng L, Bakhshyar D, He L, Zhang J. Mild O 2-aided alkaline pretreatment effectively improves fractionated efficiency and enzymatic digestibility of Napier grass stem towards a sustainable biorefinery. BIORESOURCE TECHNOLOGY 2021; 319:124162. [PMID: 32992273 DOI: 10.1016/j.biortech.2020.124162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Napier grass is a promising energy source on account of its strong adaptability and high productivity. Herein, an O2-aided alkaline pretreatment with mild operating conditions was developed to modify Napier grass stem structure for improving its fractionated efficiency and enzymatic digestibility. Compared with the conventional alkaline pretreatment, it could be proceeded at lower temperature (80 °C) and dilute NaOH solution (1%) to remove over 80% lignin and retain 92% cellulose. The recovered lignin possessed typical structures of native lignin and well-preserved molecular weight, anticipating feasible potential in preparation of biomaterials or aromatic chemicals. Coupled with the enzymatic hydrolysis managements of solid remain and hydrolysate after the pretreatment, the recovery yields of glucose and xylose based on the raw material feeds reached 89.7% and 90.2%, respectively. This contribution demonstrates a highly-reliable strategy to fractionate Napier grass stem for maximizing fermentation sugar production and valorizing lignin toward sustainable biorefinery processes.
Collapse
Affiliation(s)
- Weipeng Song
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lincai Peng
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Danish Bakhshyar
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Liang He
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Junhua Zhang
- BiomassChem Group, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
11
|
Mohapatra S, Ranjan Mishra R, Nayak B, Chandra Behera B, Das Mohapatra PK. Development of co-culture yeast fermentation for efficient production of biobutanol from rice straw: A useful insight in valorization of agro industrial residues. BIORESOURCE TECHNOLOGY 2020; 318:124070. [PMID: 32942093 DOI: 10.1016/j.biortech.2020.124070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Escalating environmental concerns and petroleum demands leads into the present study. In this investigation delignification of rice straw was optimized by NaOH and H2SO4 pretreatment using L16 Taguchi orthogonal array. NaOH pretreatment revealed higher delignification as compared to H2SO4 and; further subjected to separate enzymatic hydrolysis and co-fermentation (SHCF) using RSM as the SHCF demonstrated a maximum glucose and xylose yield of 575 and 205 mg/g. Further, butanol concentration of 4.32 g/L was achieved from 20 g/L of sugar loadings by co-culture of Saccharomyces cerevisiae and Pichia sp. at 72 h of incubation time which was 79.25% higher as compared to monocultures of Pichia sp. Scale-up experiments with higher sugar loadings (90 g/L) demonstrated a butanol concentration of 13.3 g/L. The release of amino acids in co-culture and monoculture systems demonstrated that the addition of S. cerevisiae promoted the butanol synthesis pathway which led to higher butanol concentration.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engg. & Technology, Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003, India
| | - Rashmi Ranjan Mishra
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | - Bikash Nayak
- Department of Biotechnology, MITS School of Biotechnology, KIIT Road, Infocity, Patia, Bhubaneswar, Odisha 751024, India
| | | | | |
Collapse
|
12
|
Poe NE, Yu D, Jin Q, Ponder MA, Stewart AC, Ogejo JA, Wang H, Huang H. Compositional variability of food wastes and its effects on acetone-butanol-ethanol fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 107:150-158. [PMID: 32283489 DOI: 10.1016/j.wasman.2020.03.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Converting food waste into butanol via acetone, butanol, and ethanol (ABE) fermentation provides the potential to recover energy and value-added chemicals from food waste. However, the high variability of food waste compositions has hindered the consistency and predictability of butanol production, impeding the development of a robust industrial fermentation process. This study characterized the compositional variation of collected food wastes and determined correlations between food waste compositional attributes and butanol yields for a better prediction of food waste fermentation with Clostridium. The total sugar, starch, fiber, crude protein, fat and ash contents (on dry basis) in the food waste samples were in a range of 0.5-53.5%, 0-25.2%, 0.6-26.9%, 5.5-21.5%, 0.1-37.9%, and 1.4-13.7%, respectively. The high variability of food waste composition resulted in a wide range (3.5-11.5 g/L) of butanol concentrations with an average of 8.2 g/L. Pearson's correlation analysis revealed that the butanol concentrations were strongly and positively correlated with equivalent glucose and starch contents in food waste, strongly and negatively correlated with fiber content, and weakly correlated with total sugar, protein, fat, and ash contents. The regression models constructed based on equivalent glucose and fiber contents reasonably predicted the butanol concentration, with the R2 of 0.80. Our study investigated the variability of food waste composition and, for the first time, unveiled relationships between food waste compositional attributes and fermentation yields, contributing to a greater understanding of food waste fermentation, which, in turn, assists in developing new strategies for increased consistency and predictability of food waste fermentation.
Collapse
Affiliation(s)
- Nicholas E Poe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Qing Jin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Amanda C Stewart
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jactone A Ogejo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
13
|
Zhao T, Tashiro Y, Sonomoto K. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 2019; 103:9359-9371. [PMID: 31720773 DOI: 10.1007/s00253-019-10198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
There is a renewed interest in acetone-butanol-ethanol (ABE) fermentation from renewable substrates for the sustainable and environment-friendly production of biofuel and platform chemicals. However, the ABE fermentation is associated with several challenges due to the presence of heterogeneous components in the renewable substrates and the intrinsic characteristics of ABE fermentation process. Hence, there is a need to select optimal substrates and modify their characteristics suitable for the ABE fermentation process or microbial strain. This "designed biomass" can be used to establish the consolidated bioprocessing systems. As there are very few reports on designed biomass, the main objectives of this review are to summarize the main challenges associated with ABE fermentation from renewable substrates and to introduce feasible strategies for designing the substrates through pretreatment and hydrolysis technologies as well as through the establishment of consolidated bioprocessing systems. This review offers new insights on improving the efficiency of ABE fermentation from designed renewable substrates.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
14
|
Li J, Du Y, Bao T, Dong J, Lin M, Shim H, Yang ST. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. BIORESOURCE TECHNOLOGY 2019; 289:121749. [PMID: 31323711 DOI: 10.1016/j.biortech.2019.121749] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Acetone-butanol-ethanol fermentation suffers from high substrate cost and low butanol titer and yield. In this study, engineered Clostridium tyrobutyricum CtΔack-adhE2 immobilized in a fibrous-bed bioreactor was used for butanol production from glucose and xylose present in the hydrolysates of low-cost lignocellulosic biomass including corn fiber, cotton stalk, soybean hull, and sugarcane bagasse. The biomass hydrolysates obtained after acid pretreatment and enzymatic hydrolysis were supplemented with corn steep liquor and used in repeated-batch fermentations. Butanol production with high titer (∼15 g/L), yield (∼0.3 g/g), and productivity (∼0.3 g/L∙h) was obtained from cotton stalk, soybean hull, and sugarcane bagasse hydrolysates, while corn fiber hydrolysate with higher inhibitor contents gave somewhat inferior results. The fermentation process was stable for long-term operation without any noticeable degeneration, demonstrating its potential for industrial application. A techno-economic analysis showed that n-butanol could be produced from lignocellulosic biomass using this novel fermentation process at ∼$2.5/gal for biofuel application.
Collapse
Affiliation(s)
- Jing Li
- College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jie Dong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Hojae Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Jiang Y, Lv Y, Wu R, Sui Y, Chen C, Xin F, Zhou J, Dong W, Jiang M. Current status and perspectives on biobutanol production using lignocellulosic feedstocks. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zhao T, Yasuda K, Tashiro Y, Darmayanti RF, Sakai K, Sonomoto K. Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol. BIORESOURCE TECHNOLOGY 2019; 278:57-65. [PMID: 30677699 DOI: 10.1016/j.biortech.2019.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/12/2023]
Abstract
Utilization of lignocellulosic biomasses for biobutanol fermentation usually requires costly processes of pretreatment and enzymatic hydrolysis. In this study, paper pulp (93.2% glucan) was used as a starting biomass material to produce biobutanol. We conducted enzymatic semi-hydrolysis of paper pulp without pretreatment and with low enzyme loading, which produced high concentrations of cellobiose (13.9 g L-1) and glucose (21.3 g L-1). In addition, efficient fermentation of the semi-hydrolysate was achieved similar to that with the use of commercial sugars without inhibitors. Finally, we designed a novel non-isothermal simultaneous saccharification and fermentation with in situ butanol recovery, which was composed of a repeated semi-hydrolysis process and successive butanol-extractive fermentation process under the respective optimal conditions. The consolidated system improved butanol production, butanol yields, and butanol productivities and enabled repeated use of medium when compared with other integrated hydrolysis and fermentation processes.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kento Yasuda
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rizki Fitria Darmayanti
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Chemical Engineering, Faculty of Engineering, University of Jember, Jalan Kalimantan, Kampus Tegal Boto, 68121 Jember, Indonesia
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
17
|
Oliva-Rodríguez AG, Quintero J, Medina-Morales MA, Morales-Martínez TK, Rodríguez-De la Garza JA, Moreno-Dávila M, Aroca G, Rios González LJ. Clostridium strain selection for co-culture with Bacillus subtilis for butanol production from agave hydrolysates. BIORESOURCE TECHNOLOGY 2019; 275:410-415. [PMID: 30605828 DOI: 10.1016/j.biortech.2018.12.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
In this work, three Clostridium strains were tested for butanol production from Agave lechuguilla hydrolysates to select one for co-culturing. The agave hydrolysates medium was supplemented with nutrients and reducing agents to promote anaerobiosis. Clostridium acetobutylicum ATCC 824 had the highest butanol production (6.04 g/L) and was selected for further analyses. In the co-culture process, Bacillus subtilis CDBB 555 was used to deplete oxygen and achieve anaerobic conditions required for butanol production. The co-culture was prepared with C. acetobutylicum and B. subtilis without anaerobic pretreatment. Butanol production in co-culture from agave hydrolysates was compared with experiments using synthetic medium with glucose and a pure culture of C. acetobutylicum. The maximum butanol concentration obtained was 8.28 g/L in the co-cultured hydrolysate medium. Results obtained in the present work demonstrated that agave hydrolysates have the potential for butanol production using a co-culture of B. subtilis and C. acetobutylicum without anaerobic pretreatment.
Collapse
Affiliation(s)
| | - Julián Quintero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Chile
| | - Miguel A Medina-Morales
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | - Thelma K Morales-Martínez
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | | | - Mayela Moreno-Dávila
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Chile
| | - Leopoldo J Rios González
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Mexico.
| |
Collapse
|
18
|
Zhao T, Tashiro Y, Zheng J, Sakai K, Sonomoto K. Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation. BIORESOURCE TECHNOLOGY 2018; 264:335-342. [PMID: 29886308 DOI: 10.1016/j.biortech.2018.05.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
To improve butanol fermentation efficiencies, semi-hydrolysate with low enzyme loading using H2SO4 pretreated rice straw was designed, which preferably produced cellobiose with xylose (instead of glucose). Fermentation of semi-hydrolysates avoided carbon catabolite repression (CCR) and produced higher butanol yield to enzyme loading (0.0290 g U-1), a newly proposed parameter, than the conventional glucose-oriented hydrolysate (0.00197 g U-1). Further, overall butanol productivity was improved from 0.0628 g L-1 h-1 to 0.265 g L-1 h-1 during fermentation of undetoxified semi-hydrolysate by using high cell density. A novel simultaneously repeated hydrolysis and fermentation (SRHF) was constructed by recycling of enzymes and cells, which further improved butanol yield to enzyme loading by 183% and overall butanol productivity by 6.04%. Thus, semi-hydrolysate with SRHF is a smartly designed biomass for efficient butanol fermentation of lignocellulosic materials.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jin Zheng
- State Key Lab of Petroleum Pollution Control, Beijing 102206, China; Research Division of Environment Technology, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
19
|
A novel method for preparing high purity Actinobacillus succinogenes stock and its long-term acid production in a packed bed reactor. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Shanmugam S, Sun C, Zeng X, Wu YR. High-efficient production of biobutanol by a novel Clostridium sp. strain WST with uncontrolled pH strategy. BIORESOURCE TECHNOLOGY 2018; 256:543-547. [PMID: 29486913 DOI: 10.1016/j.biortech.2018.02.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 05/24/2023]
Abstract
A novel Clostridium sp. strain WST isolated from mangrove sediments demonstrated its unique characteristics of producing high titer of biobutanol from low concentration of substrates via anaerobic fermentation. The strain is able to convert glucose and galactose to high amount of biobutanol up to 16.62 and 12.11 g/L, respectively, and the yields of 0.54 and 0.55 g/g were determined to be much higher than those from the previous reports on Clostridial batch fermentation. Moreover, the inherent strong regulatory system of strain WST also prompts itself to perform the fermentation process without any requirement of pH control. In addition to tolerance of high butanol concentration and negligible production of by-products (e.g., ethanol or acids), this strain has immense potential for the sustainable industry-scale production of biobutanol.
Collapse
Affiliation(s)
| | - Chongran Sun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiaoming Zeng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; STU-UNIVPM Joint Algal Research Center, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
21
|
Ahmad MS, Mehmood MA, Taqvi STH, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M. Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. BIORESOURCE TECHNOLOGY 2017; 245:491-501. [PMID: 28898849 DOI: 10.1016/j.biortech.2017.08.162] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/03/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
This work was focused on understanding the pyrolysis of Typha latifolia. Kinetics, thermodynamics parameters and pyrolysis reaction mechanism were studied using thermogravimetric data. Based on activation energies and conversion points, two regions of pyrolysis were established. Region-I occurred between the conversion rate 0.1-0.4 with peak temperatures 538K, 555K, 556K at the heating rates of 10Kmin-1, 30Kmin-1, and 50Kmin-1, respectively. Similarly, the Region-II occurred between 0.4 and 0.8 with peak temperatures of 606K, 621K, 623K at same heating rates. The best model was diffusion mechanism in Region-I. In Region-II, the reaction order was shown to be 2nd and 3rd. The values of activation energy calculated using FWO and KAS methods (134-204kJmol-1) remained same in both regions reflecting that the best reaction mechanism was predicted. Kinetics and thermodynamic parameters including E, ΔH, ΔS, ΔG shown that T. latifolia biomass is a remarkable feedstock for bioenergy.
Collapse
Affiliation(s)
- Muhammad Sajjad Ahmad
- Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; Chemical Engineering Department, University of Waterloo, Ontario, Canada
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China; Bioenergy Research Center, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | | | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Ontario, Canada
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianren Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Munazza Gull
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| |
Collapse
|
22
|
The utilization of sweet potato vines as carbon sources for fermenting bio-butanol. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
He CR, Lee MC, Kuo YY, Wu TM, Li SY. The influence of support structures on cell immobilization and acetone–butanol–ethanol (ABE) fermentation performance. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Xue C, Zhang X, Wang J, Xiao M, Chen L, Bai F. The advanced strategy for enhancing biobutanol production and high-efficient product recovery with reduced wastewater generation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:148. [PMID: 28616072 PMCID: PMC5466761 DOI: 10.1186/s13068-017-0836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/30/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Butanol as an important chemical and potential fuel could be produced via ABE fermentation from lignocellulosic biomass. The use of food-related feedstocks such as maize and sugar cane may not be a sustainable solution to world's energy needs. Recently, Jerusalem artichoke tubers containing inulin have been used as feedstock for butanol production, but this bioprocess is not commercially feasible due to the great value of inulin as functional food. Till now, there is a gap on the utilization of Jerusalem artichoke stalk (JAS) as feedstock for microbial butanol production. RESULTS Biobutanol production from JAS was investigated in order to improve cellulose digestibility and efficient biobutanol fermentation. Compared with 9.0 g/L butanol (14.7 g/L ABE) production by 2% NaOH pretreatment of JAS, 11.8 g/L butanol (17.6 g/L ABE) was produced in the best scenario conditions of NaOH-H2O2 pretreatment, washing times and citrate buffer strengths etc. Furthermore, more than >64% water in washing pretreated JAS process could be saved, with improving butanol production by >25.0%. To mimic in situ product recovery for ABE fermentation, the vapor stripping-vapor permeation (VSVP) process steadily produced 323.4-348.7 g/L butanol (542.7-594.0 g/L ABE) in condensate, which showed more potentials than pervaporation for butanol recovery. CONCLUSIONS Therefore, the present study demonstrated an effective strategy on efficient biobutanol production using lignocellulosic biomass. The process optimization could contribute to significant reduction of wastewater emission and the improvement of lignocellulosic biomass digestibility and biobutanol production, which makes biobutanol production more efficient using JAS.
Collapse
Affiliation(s)
- Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Xiaotong Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Jufang Wang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006 China
| | - Min Xiao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Lijie Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|