1
|
Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:696-720. [PMID: 39141030 DOI: 10.2166/wst.2024.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India E-mail:
| |
Collapse
|
2
|
Kannah Ravi Y, Kavitha S, Al-Qaradawi SY, Rajesh Banu J. Dual disintegration of microalgae biomass for cost-effective biomethane production: Energy and cost assessment. BIORESOURCE TECHNOLOGY 2024; 399:130630. [PMID: 38522678 DOI: 10.1016/j.biortech.2024.130630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - S Kavitha
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
3
|
Banu JR, Kavitha S, Ravi YK, Tyagi VK, Kumar G. Combined sodium citrate and ultrasonic pretreatment of waste activated sludge for cost effective production of biogas. BIORESOURCE TECHNOLOGY 2023; 376:128857. [PMID: 36906239 DOI: 10.1016/j.biortech.2023.128857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to pretreat the waste activated sludge (WAS) by ultrasonication in an energy efficient way by combining sodium citrate with ultrasonic pretreatment at 0.03 g/g suspended solids (SS) of dosage. The ultrasonic pretreatment was done at various (20-200 W) power levels, sludge concentration (7 to 30 g/L), sodium citrate dosages (0.01 to 0.2 g/g SS). An elevated COD solubilization of 26.07 ± 0.6 % was achieved by combined pretreatment at a treatment time of 10 min, ultrasonic power level of 160 W when compared to individual ultrasonic pretreatment (18.6 ± 0.5 %). A higher biomethane yield of 0.26 ± 0.009 L/g COD was achieved in sodium citrate combined ultrasonic pretreatment (SCUP) than ultrasonic pretreatment (UP) 0.145 ± 0.006 L/g COD. Almost 50% of the energy can be saved through SCUP when compared to UP. Future study evaluating SCUP in continuous mode anaerobic digestion is vital.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - S Kavitha
- Environ Core Research Laboratory, Tamil Nadu, India
| | - Yukesh Kannah Ravi
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, Uttarakhand 247667, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger 4036, Norway.
| |
Collapse
|
4
|
Ravi YK, Zhang W, Liang Y. Effect of surfactant assisted ultrasonic pretreatment on production of volatile fatty acids from mixed food waste. BIORESOURCE TECHNOLOGY 2023; 368:128340. [PMID: 36400272 DOI: 10.1016/j.biortech.2022.128340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
In this study, the potential effect of surfactant assisted ultrasonic pretreatment on mixed food waste was investigated. Surfactants, such as Rhamnolipid, Sodium dodecyl sulfate; Glucopon and Triton X 100 were evaluated in this work. Among them, the maximum solubilization of chemical oxygen demand of 45.5 % and the highest release of soluble COD of 31 g/L were observed for ultrasonication assisted by Triton X 100 at a dose of 0.01 g/g TS in 30 min. The presence of a surfactant also reduced 27.5 % of energy demand when compared to ultrasonic pretreatment alone. Compared to the non-pretreated samples after anaerobic digestion, ultrasonication assisted by Triton X 100 led to 95 % increase of volatile fatty acid titers and 83 % increase of carbon conversion efficiency. Thus, sonication with the addition of Triton X 100 was proven to be highly effective toward increasing digestibility of and yield of volatile fatty acid from mixed food waste.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
5
|
Rajesh Banu J, Tyagi VK, Bajhaiya AK, Gugulothu P, Gunasekaran M. Biohydrogen production from waste activated sludge through thermochemical mechanical pretreatment. BIORESOURCE TECHNOLOGY 2022; 358:127301. [PMID: 35562024 DOI: 10.1016/j.biortech.2022.127301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Generation of excess sludge in large quantities from wastewater treatment plant face huge problem in terms of handling and management, whereas it possess higher organic and inorganic constituents and thus it can be used as a feedstock for the generation of biofuel with proper disintegration techniques.In this regard, an effort has been made in this study to combine thermo-chemo-disperser pretreatment for the disintegration of paper mill waste activated sludge for the production of biohydrogen in an energy efficient way. These combinations of thermo-chemo-disperser (TCD) tend to be effective in disintegration and possess 24.3% COD solubilization and higher suspended solid reduction of 18.8% at the specific energy usage of 2081.82 kJ/kg TS. The pretreatment with TCD technique shows the biohydrogen production of 120.2 mLH2/gCOD as compared to thermochemically pretreated alone (73.6 mLH2/gCOD) sample. Thus, the combined process was considered to be potentially effective in sludge disintegration.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Amit Kumar Bajhaiya
- Department of Microbiology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - Poornachandar Gugulothu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India.
| |
Collapse
|
6
|
Balasundaram G, Vidyarthi PK, Gahlot P, Arora P, Kumar V, Kumar M, Kazmi AA, Tyagi VK. Energy feasibility and life cycle assessment of sludge pretreatment methods for advanced anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 357:127345. [PMID: 35609752 DOI: 10.1016/j.biortech.2022.127345] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Energy sustainability is one of the critical parameters to be studied for the successful application of pretreatment processes. This study critically analyzes the energy efficiency of different energy-demanding sludge pretreatment techniques. Conventional thermal pretreatment of sludge (∼5% total solids, TS) produced 244 mL CH4/gTS, which could result in a positive energy balance of 2.6 kJ/kg TS. However, microwave pretreatment could generate only 178 mL CH4/gTS with a negative energy balance of -15.62 kJ/kg TS. In CAMBI process, the heat requirements can be compensated using exhaust gases and hot water from combined heat and power, and electricity requirements are managed by the use of cogeneration. The study concluded that <100 ℃ pretreatment effectively enhances the efficiency of anaerobic digestion and shows positive energy balance over microwave and ultrasonication. Moreover, microwave pretreatment has the highest global warming potential than thermal and ultrasonic pretreatments.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology Roorkee 247667, India
| | - Praveen Kumar Vidyarthi
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee 247667, India
| | - Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology Roorkee 247667, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee 247667, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee 247667, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India.
| |
Collapse
|
7
|
Banu J R, Varjani S, P S, Tyagi VK, Gunasekaran M. Breakthrough in hydrolysis of waste biomass by physico-chemical pretreatment processes for efficient anaerobic digestion. CHEMOSPHERE 2022; 294:133617. [PMID: 35041820 DOI: 10.1016/j.chemosphere.2022.133617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is the most comprehended process to stabilise the waste biomass efficiently and to obtain bioenergy. The AD starts with the hydrolysis process, where the major liability is the action of inhibitors during the hydrolysis process. The biomass pretreatment preceding anaerobic digestion is obligatory to improve feedstock biodegradability for enhanced biogas generation. It can be prevailed by the application of various pretreatment processes. This review explains the major inhibiting compounds and their formation during hydrolysis that affect the efficiency of anaerobic digestion and the benefits of the physico-chemical pretreatment (PCP) method for enhancing hydrolysis in the digestion of waste biomass. The synergistic effect of PCP on macromolecular release, liquefaction and biodegradability were presented. The feasibility of the pretreatment process was evaluated in terms of energy and cost assessment for pilot scale implementation. The outcome of this review reveals that the physico-chemical process is one of the best pretreatment methods to enhance anaerobic digestion by optimising various parameters and increasing the solubilization by about 90%. The thermochemical pretreatment at lower temperature (<100) increases the net energy yield. The solubilization of waste biomass in terms of macromolecular release and liquefaction cannot describe the pretreatment potential. The effectiveness of pretreatment was evaluated by the substrate pre-treatment followed by anaerobic digestibility of pretreated substrate.
Collapse
Affiliation(s)
- Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - Sivashanmugam P
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India.
| |
Collapse
|
8
|
Rajesh Banu J, Godvin Sharmila V, Yukesh Kannah R, Kanimozhi R, Elfasakhany A, Gunasekaran M, Adish Kumar S, Kumar G. Impact of novel deflocculant ZnO/Chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: Parameter assessment and cost exploration. CHEMOSPHERE 2022; 286:131835. [PMID: 34426273 DOI: 10.1016/j.chemosphere.2021.131835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
This paper proposed to interpret the novel method of extracellular polymeric substance (EPS) removal in advance to sludge disintegration to enrich bioenergy generation. The sludge has been subjected to deflocculation using Zinc oxide/Chitosan nanocomposite film (ZCNF) and achieved 98.97% of solubilization which enhance the solubilization of organics. The obtained result revealed that higher solubilization efficiency of 23.3% was attained at an optimal specific energy of 2186 kJ/kg TS and disintegration duration of 30 min. The deflocculated sludge showed 8.2% higher solubilization than the flocculated sludge emancipates organics in the form of 1.64 g/L of SCOD thereby enhancing the methane generation. The deflocculated sludge produces methane of 230 mL/g COD attained overall solid reduction of 55.5% however, flocculated and control sludge produces only 182.25 mL/g COD and 142.8 mL/g COD of methane. Based on the energy, mass and cost analysis, the deflocculated sludge saved 94.1% of energy than the control and obtained the net cost of 5.59 $/t which is comparatively higher than the flocculated and control sludge.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Science, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - R Kanimozhi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Ashraf Elfasakhany
- Department of Mechanical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University Thoothukudi Campus, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Chen M, Wang X, Zhang H. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112388. [PMID: 33774561 DOI: 10.1016/j.jenvman.2021.112388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, we used xanthate to modify two waste biomass materials (corn cob and chestnut shell) and prepared them as biosorbents in one step for effectively removing Pb(II) from aqueous solutions containing only Pb(II) or Pb(II), Cu(II) and Cd(II). The two biosorbents were characterized by SEM, EDS, FTIR and Zeta potential analysis, and the results of the characterization were used to explore the adsorption mechanism of Pb(II) on biosorbents. We compare the Pb(II) removal ability of the two biosorbents and the investigated factors that affect Pb(II) removal. The results show that the adsorption capacity of xanthate modified corn cob (X-CC) and xanthate modified chestnut shell (X-CS) for Pb(II) is related to pH, reaction time, temperature and initial concentrations of both adsorbent and adsorbate. The adsorption of Pb(II) on X-CC and X-CS follows Langmuir isotherm equation and quasi-secondary kinetic equation, and their fitted qm values are 166.39 and 124.84 mg g-1, respectively. The analysis shows that the biosorbent has high selectivity to Pb(II) rather than Cu(II) and Cd(II), and still maintains a high removal rate of Pb(II) in actual wastewater. The biosorbents remove metal ions mainly through ion exchange reaction and the functional group in the material complexes with the metal to form micro-precipitation. The high adsorption capacity in aqueous solution and low costs in the manufacturing process of the present biosorbents ensure that they have great potential in practical applications for treating heavy-metal contaminated surface water.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Xianfeng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Hao Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
10
|
Rajesh Banu J, Poornima Devi T, Yukesh Kannah R, Kavitha S, Kim SH, Muñoz R, Kumar G. A review on energy and cost effective phase separated pretreatment of biosolids. WATER RESEARCH 2021; 198:117169. [PMID: 33962241 DOI: 10.1016/j.watres.2021.117169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Extracellular Polymeric Substances (EPS) existent in anaerobic sludge proves to be a barrier for sludge liquefaction and biomass lysis efficiency. Hence EPS deaggregation heightens the surface area for the subsequent pretreatment thereby uplifting the sludge disintegration and biomethanation rate. This review documents the role of EPS and its components which inhibits sludge hydrolysis and also the various phase separated pretreatment methods available with its disintegration mechanism to enhance the biomass lysis and methane production rate. It also illustrates the effects of phase separated pretreatment on the sludge disintegration rate which embodies two phases-floc disruption and cell lysis accompanied by their computation through biomethane potential assay and fermentation analysis comprehensively. Additionally, energy balance study and cost analysis requisite for successful implementation of a proposed phase separated pretreatment on a pilot scale level and their challenges are also reviewed. Overall this paper documents the potency of phase separated pretreatment for full scale approach.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur, India
| | - T Poornima Devi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Raul Muñoz
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
11
|
Sun Z, Wang Y, Chen X, Zhu N, Yuan H, Lou Z. Variation of dissolved organic matter during excess sludge reduction in microbubble ozonation system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6090-6098. [PMID: 32989695 DOI: 10.1007/s11356-020-10799-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Sewage sludge is the major by-product of wastewater treatment plants, and about 30% readily biodegradable organic matters might be reused through the mass reduction process, which could be also reduced the disposal fee. In this study, the microbubble ozonation (MB-O3) was employed to improve the oxidation efficiency for sludge solubilization. At 160 mgO3/gSS, the maximum mixed liquor suspended solids (MLSS) reduction ratio was 37.5% and the protein and polysaccharide contents increased to 31.6 and 138.6 mg/L, respectively. It was proposed that aromatic protein and soluble microbial in sludge were oxidized preferentially by MB-O3, and the dissolved organic matter (DOM) fractions (mainly humic-acid-like substances) exhibited low degradability according to the variations of fluorescence excitation-emission spectrum coupled with fluorescence regional integration. MB-O3 could enhance the settleability, but deteriorate sludge dewaterability at low dosage (< 160 mgO3/gSS) due to a reduction in particle size from 61.7 to 47.5 μm. MB-O3 has a good performance on the mass reduction of sludge through the improvement of the radical generated.
Collapse
Affiliation(s)
- Zhiyi Sun
- Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxiang Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoliang Chen
- Shanghai Solid Waste Management Center, Shanghai, 200235, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Lou
- Shanghai Engineering Research Center of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
A Review of Pretreatment Methods to Enhance Solids Reduction during Anaerobic Digestion of Municipal Wastewater Sludges and the Resulting Digester Performance: Implications to Future Urban Biorefineries. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rapid increase in the population is expected to result in the approaching of design capacity for many US wastewater treatment plants (WWTPs) over the next decade. WWTPs treat both municipal and industrial wastewater influents, resulting in the production of biosolids after digestion. Biogas, a potential recovered alternative energy source, is also produced as an output from successful anaerobic digestion. More than 7M of dry tons/year of biosolids produced in the US are most often disposed in either landfills or land-applied (~80%). These options are becoming more challenging to implement due to increases in transportation costs and tipping fees, decreases in the availability of landfill/landfarm space, and most importantly, increased regulations. This situation is strongly encouraging WWTPs to find alternatives for the disposal of biosolids. Developing alternative management/disposal options for biosolids are evolving. One of the most attractive alternative option from a sustainability perspective are biorefineries (converts waste to commercial products), which are a fast-growing option given the push toward circular urban source economies (little to no waste generation). Anaerobic digestion has been widely applied in WWTPs to reduce the volume of activated sludge due to its low energy requirements, effective handling of fluctuations due to organic loading rate, relative flexibility with temperature and pH changes, and since biogas is produced that can be transformed into energy. Various pretreatment methods for waste sludges prior to digestion that have been studied to reduce solids production and increase the energetic content of the biogas are presented and discussed. Solids handling and management, which comprises ~60% of the operational cost of a WWTP, is estimated to save more than $100 M annually by achieving at least 20% reduction in the annual production of biosolids within the US. This review incorporates an assessment of various pretreatment methods to optimize the anaerobic digestion of waste sludges with a focus on maximizing both biosolids reduction and biogas quality.
Collapse
|
13
|
Yukesh Kannah R, Merrylin J, Poornima Devi T, Kavitha S, Sivashanmugam P, Kumar G, Rajesh Banu J. Food waste valorization: Biofuels and value added product recovery. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100524] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Sharmila VG, Angappane S, Gunasekaran M, Kumar G, Banu JR. Immobilized ZnO nano film impelled bacterial disintegration of dairy sludge to enrich anaerobic digestion for profitable bioenergy production: Energetic and economic analysis. BIORESOURCE TECHNOLOGY 2020; 308:123276. [PMID: 32251862 DOI: 10.1016/j.biortech.2020.123276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Proper treatment and disposal of sludge is a substantial task around the biosphere. To address this issue, sludge deflocculation using photocatalyst was opted to enhance bacterial disintegration which in turn accelerate sludge digestion anaerobically. During this investigation, Direct current (DC) sputtering together with annealing process was used to immobilize Zinc oxide (ZnO). This immobilized ZnO removes the extracellular components at 15 min. The deflocculation mediated bacterial pretreatment induced 22.9% of soluble organics solubilization which auguments the biodegradability to 0.195 g COD/g COD during anaerobic digestion. The quantity of methane generated by deflocculated sludge was 39.2% higher than sludge with bacterial disintegration only with maximum methane yield of 437.14 mL/g COD. Hence, the outcome of the proposed work confirmed that the method is scalable with a net profit of 27 USD with the maximum methane generation of 413.1 kWh. Additionally, this method reduced 57% of dry sludge (solid).
Collapse
Affiliation(s)
- V Godvin Sharmila
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Angappane
- Centre for Nano and Soft Matter Sciences, Bangalore, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
15
|
Rajesh Banu J, Yukesh Kannah R, Kavitha S, Ashikvivek A, Bhosale RR, Kumar G. Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. BIORESOURCE TECHNOLOGY 2020; 304:123021. [PMID: 32086031 DOI: 10.1016/j.biortech.2020.123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
The present study aimed to enhance the biomethanation potential of mixed microalgae via cost effective surfactant coupled ultrasonic homogenization (SCUH). Mixed microalgae biomass was harvested using a coagulant (Alum) from a raceway pond. The harvested algal biomass was subjected to ultrasonic homogenization (UH) by varying the power from 100 to 180 W. A maximal soluble organic release of 2131 mg/L was achieved at an ultrasonic input energy (UIE) of 25200 kJ/kg TS. In order to enhance soluble organic release and to reduce energy spent, the optimized condition of ultrasonic pretreatment was coupled with varying sodium dodecyl sulphate (SDS) dosage. A higher solubilization of 30.5% was achieved at a UIE of 4200 kJ/kg SS with surfactant dosage of 0.02 g SDS/g SS for SCUH. SCUH showed higher methane production of 358 mL/g COD when compared to UH (185.9 mL/g COD), SCUH was economically feasible than UH.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - A Ashikvivek
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box - 2713, Doha, Qatar
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
16
|
Banu JR, Kavitha S, Kannah RY, Usman TMM, Kumar G. Application of chemo thermal coupled sonic homogenization of marine macroalgal biomass for energy efficient volatile fatty acid recovery. BIORESOURCE TECHNOLOGY 2020; 303:122951. [PMID: 32058908 DOI: 10.1016/j.biortech.2020.122951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to employ energy efficient chemo thermal coupled sonic homogenization (CTSH) to obtain VFA from marine macroalgal hydrolysate, (Ulva fasciata). At first, chemo thermal homogenization (CTH) was applied on macroalgal biomass by adjusting the temperature, pH and treatment time from 60 to 90 ℃, 4-7 and 0-60 min, respectively. A higher organic matter solubilisation of 11.81% was obtained at an optimum pH of 6 at a temperature of 80 ℃ with 40 min of homogenization time. The results of CTSH implied that a higher organic matter solubilization of 26.4% was achieved by combined CTSH (sonic power & treatment time - 140 W & 14 min treatment time). CTSH considerably doubles the liquefaction in comparison with CTH. Based on OMS grouping, achieving 25% was sufficient for VFA production (2172.09 mg/L) and considered as economically feasible with net cost of 97.17 USD/ton of macroalgae.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, CUTN Bridge, Neelakudy, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - T M Mohamed Usman
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Dinesh Kumar M, Atabani AE, Kumar G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122821. [PMID: 32008862 DOI: 10.1016/j.biortech.2020.122821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The circular bioeconomy plan is an innovative research based scheme intended for augmenting the complete utilization and management of bio-based resources in a sustainable biorefinery route. Spent coffee grounds based biorefinery is the emerging aspect promoting circular bioeconomy. The sustainable circular bioeconomy by utilizing SCG is achieved by cascade approaches and the inclusion of many biorefinery approaches to obtain many bio-products. The maximum energy recovery can be obtained by process integration. The economic analysis of the biofuel production from SCG is dependent on the cost of raw material, transportation, the need of labor and energy, oil extraction operations and biofuel production. The inclusion of new products from already established product can minimize the investment cost when related to the production cost. A positive net present value can be achieved via SCG biorefinery which indicates the profitability of the process.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Kavitha S, Schikaran M, Yukesh Kannah R, Gunasekaran M, Kumar G, Rajesh Banu J. Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery. BIORESOURCE TECHNOLOGY 2019; 289:121624. [PMID: 31203180 DOI: 10.1016/j.biortech.2019.121624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
This study involves the application of new phase separated biological pretreatment (PSBP) strategy on microalgal biomass using the nickel nanoparticle induced cellulase secreting bacterial disintegration. Particularly, interest was focussed on cell wall weakening (CWW) of microalgae biomass besides the cell disintegration (CD) and release of organics. During CWW, protein, carbohydrate, cellulose, hemicellulose and DNA were used as evaluation indexes. Similarly, during CD, soluble chemical oxygen demand was used as evaluation index to assess the disintegration effect. A higher CWW was achieved at nickel nanoparticle (Np) dosage of 0.004 g/g SS. During CD, a clear demarcation in biomass solubilisation was achieved by PSBP (36%) than the sole biological pretreatment -BP (24%). The biomethanogenesis test results showed that enhanced methane production of 411 mL/g COD was achieved by PSBP than BP. Energy analysis showed that a higher net energy production of 6.467 GJ/d was achieved by PSBP.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Schikaran
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
19
|
Karn SK, Kumar A. Sludge: next paradigm for enzyme extraction and energy generation. Prep Biochem Biotechnol 2019; 49:105-116. [DOI: 10.1080/10826068.2019.1566146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University (Formerly, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science and Research) Balawala, Dehradun, Uttarakhand, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| |
Collapse
|
20
|
Liu X, Xu Q, Wang D, Zhao J, Wu Y, Liu Y, Ni BJ, Wang Q, Zeng G, Li X, Yang Q. Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. BIORESOURCE TECHNOLOGY 2018; 268:230-236. [PMID: 30081282 DOI: 10.1016/j.biortech.2018.07.109] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 05/16/2023]
Abstract
Anaerobic digestion of waste activated sludge (WAS) is often limited by low hydrolysis efficiencies and poor methane potentials. This work presents a novel pretreatment technology for WAS anaerobic digestion, i.e., combining free ammonia with heat pretreatment (CFHP). Experimental results showed that compared with control, solo free ammonia (135.4 mg NH3-N/L) and solo heat (70 °C) pretreatment, the combined free ammonia and heat (135.4 mg NH3-N/L with 70 °C) obtained 52.2%, 25.5% and 30.2% faster in hydrolysis rate and 25.2%, 17.9% and 16.5% higher in biochemical methane potential, respectively. Mechanism investigations showed that the combined pretreatment not only largely facilitated the disintegration of WAS but also increased the proportion of biodegradable organic matters, thereby providing better contract between biodegradable organics and the anaerobic microbes for methane production. Considering its effectiveness and renewability, the combined pretreatment is an attractive technology for the application in real-world situations.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
21
|
Rajesh Banu J, Kannah RY, Kavitha S, Gunasekaran M, Kumar G. Novel insights into scalability of biosurfactant combined microwave disintegration of sludge at alkali pH for achieving profitable bioenergy recovery and net profit. BIORESOURCE TECHNOLOGY 2018; 267:281-290. [PMID: 30025325 DOI: 10.1016/j.biortech.2018.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
In the present study, a novel alkali rhamnolipid combined microwave disintegration (ARMD) was employed to achieve net energy production, increased liquefaction and to increase the amenability of sludge towards biomethanation. Additionally, biosurfactant rhamnolipid under alkali conditions enhances the liquefaction at alkali pH of 10 with a maximal liquefaction of 55% with reduced energy consumption (1620 kJ/kg TS) than RMD (45.7% and 3240 kJ/kg TS specific energy) and MD (33.7% and 6480 kJ/kg TS specific energy). A higher biomethane production of 379 mL/g COD was achieved for ARMD when compared to RMD (329 mL/g COD) and MD (239 mL/g COD). The scalable studies imply that the ARMD demands input energy of -282.27 kWh. A net yield of (0.39 USD/ton) was probably achieved via novel ARMD technique indicating its suitability at large scale execution when compared to RMD (net cost -31.34 USD/ton) and MD (-84.23 net cost USD/ton), respectively.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - S Kavitha
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - M Gunasekaran
- Department of Physics, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Hardegen J, Latorre-Pérez A, Vilanova C, Günther T, Porcar M, Luschnig O, Simeonov C, Abendroth C. Methanogenic community shifts during the transition from sewage mono-digestion to co-digestion of grass biomass. BIORESOURCE TECHNOLOGY 2018; 265:275-281. [PMID: 29906716 DOI: 10.1016/j.biortech.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
In this work, liquid and solid fractions of grass biomass were used as co-substrates for anaerobic co-digestion of sewage sludge. The input of grass biomass was increased gradually, and the underlying methanogenic microbiome was assessed by means of microscopy-based cell counting and full-length 16S rRNA gene high-throughput sequencing, proving for the first time the suitability of nanopore-based portable sequencers as a monitoring tool for anaerobic digestion systems. In both cases co-fermentation resulted in an increased number of bacteria and methanogenic archaea. Interestingly, the microbial communities were highly different between solid and liquid-fed batches. Liquid-fed batches developed a more stable microbiome, enriched in Methanosarcina spp., and resulted in higher methanogenic yield. In contrast, solid-fed batches were highly unstable at higher substrate concentrations, and kept Methanosaeta spp. - typically associated to sewage sludge - as the majoritary methanogenic archaea.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), Paterna, Valencia, Spain
| | | | | | - Christian Abendroth
- Robert Boyle Institut e.V., Jena, Germany; Institute for Integrative Systems Biology (I2SysBio), Paterna, Valencia, Spain; Technische Universität Dresden, Chair of Waste Management, Pratzschwitzer Str. 15, Pirna, Germany.
| |
Collapse
|
23
|
Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. BIORESOURCE TECHNOLOGY 2018; 262:319-332. [PMID: 29576518 DOI: 10.1016/j.biortech.2018.03.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Biogas production using algal resources has been widely studied as a green and alternative renewable technology. This review provides an extended overview of recent advances in biomethane production via direct anaerobic digestion (AD) of microalgae, macroalgae and co-digestion mechanism on biomethane production and future challenges and prospects for its scaled-up applications. The effects of pretreatment in the preparation of algal feedstock for methane generation are discussed briefly. The role of different operational and environmental parameters for instance pH, temperature, nutrients, organic loading rate (OLR) and hydraulic retention time (HRT) on sustainable methane generation are also reviewed. Finally, an outlook on the possible options towards the scale up and enhancement strategies has been provided. This review could encourage further studies in this area, to intend and operate continuous mode by designing stable and reliable bioreactor systems and to analyze the possibilities and potential of co-digestion for the promotion of algal-biomethane technology.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 38722, Republic of Korea
| | - Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | | | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
24
|
Ushani U, Kavitha S, Yukesh Kannah R, Gunasekaran M, Kumar G, Nguyen DD, Chang SW, Rajesh Banu J. Sodium thiosulphate induced immobilized bacterial disintegration of sludge: An energy efficient and cost effective platform for sludge management and biomethanation. BIORESOURCE TECHNOLOGY 2018; 260:273-282. [PMID: 29631177 DOI: 10.1016/j.biortech.2018.03.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to gain better insights into profitable biomethanation through sodium thiosulphate induced immobilized protease secreting bacterial disintegration (STS-IPBD) of sludge. STS disperse the flocs at 0.08 g/g SS of dosage and assists the subsequent bacterial disintegration. Immobilization of bacteria increases the hydrolytic activity of cells towards effective liquefaction of sludge. A higher liquefaction of 22% was accomplished for STS-IPBD when compared to immobilized protease secreting bacterial disintegration (IPBD alone). The kinetic parameters of Line Weaver Burk plot analysis revealed a maximal specific growth rate (µmax) of 0.320 h-1 for immobilized cells when compared to suspended free cells showing the benefit of immobilization. Floc dispersion and immobilization of bacteria imparts a major role in biomethanation as the methane generation (0.32 gCOD/g COD) was higher in STS-IPBD sample. The cost analysis showed that STS - IPBD was a feasible process with net profit of 2.6 USD/Ton of sludge.
Collapse
Affiliation(s)
- U Ushani
- Department of Biotechnology, Karpagam Academy of Higher Education (KAHE), Pollache Main Road, Eachanari Post, Coimbatore, India
| | - S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - M Gunasekaran
- Department of Physics, Regional Campus, Anna University, Tirunelveli, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| |
Collapse
|
25
|
Anjum M, Al-Talhi HA, Mohamed SA, Kumar R, Barakat MA. Visible light photocatalytic disintegration of waste activated sludge for enhancing biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:120-127. [PMID: 28874306 DOI: 10.1016/j.jenvman.2017.07.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/27/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L-1vs after 45 days compared with the raw sludge (1022.4 ml L-1VS). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process.
Collapse
Affiliation(s)
- Muzammil Anjum
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hasan A Al-Talhi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A Mohamed
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Central Metallurgical R & D Institute, Helwan, 11421, Cairo, Egypt
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Molecular Biology Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
26
|
Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT. Marsilea spp.-A novel source of lignocellulosic biomass: Effect of solubilized lignin on anaerobic biodegradability and cost of energy products. BIORESOURCE TECHNOLOGY 2018; 255:220-228. [PMID: 29427873 DOI: 10.1016/j.biortech.2018.01.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study concerns the liquefying potential of an unusual source of lignocellulosic biomass (Marsilea spp., water clover, an aquatic fern) during combinative pretreatment. The focus was on how the pretreatment affects the biodegradability, methane production, and profitability of thermochemical dispersion disintegration (TCDD) based on liquefaction and soluble lignin. The TCDD process was effective at 12,000 rpm and 11 min under the optimized thermochemical conditions (80 °C and pH 11). The results from biodegradability tests imply that 30% liquefaction was sufficient to achieve enhanced biodegradability of about 0.280 g-COD/g-COD. When biodegradability was >30% inhibition was observed (0.267 and 0.264 g-COD/g-COD at 35-40% liquefaction) due to higher soluble lignin release (4.53-4.95 g/L). Scalable studies revealed that achievement of 30% liquefaction was beneficial in terms of the energy and cost benefit ratios (0.956 and 1.02), when compared to other choices.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India.
| | - S Sugitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
27
|
Anjum M, Kumar R, Barakat MA. Synthesis of Cr 2O 3/C 3N 4 composite for enhancement of visible light photocatalysis and anaerobic digestion of wastewater sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:65-76. [PMID: 29428655 DOI: 10.1016/j.jenvman.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 05/27/2023]
Abstract
Visible light photocatalysts of Cr2O3/C3N4 composites (with different melamine concentrations) were prepared by high temperature calcination method. The composites samples were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy SEM, energy-dispersive X-ray spectroscopy (EDX), UV-visible spectroscopy and particle size analysis, which clearly indicated the coexistence of both Cr2O3 and C3N4 in the composites. The Cr2O3/C3N4 catalysts were tested for photocatalytic degradation of 2-chlorophenol in wastewater and solubilization of sludge in anaerobic digestion process to enhance biomethane production. The co-catalytic performance of Cr2O3, with 6% of melamine (precursor of C3N4), improved the photocatalytic degradation of 2-chlorophenol (k = 0.0156 min-1) under visible light, where up to 94% removal was achieved at optimum pH 5.0, pollutant concentration of 60 mg/L, and time duration of 180 min. On another hand, application of Cr2O3/C3N4 for photocatalytic pretreatment of sludge released the soluble substances in solution in which sCOD was increased from 431 mg/L to 3666 mg/L after 6 h and VS content decrease by only 9.1%, which indicated that the short time pretreatment could avoid the further mineralization of organic to complete degradation. Thereafter, anaerobic digestion of solubilized sludge was achieved after 30 days with production of 634 ml kg-1VS of methane and 46% of organic matter removal efficiency (OMRE), compared with 472 ml kg-1VS and 402 ml kg-1VS of methane, 35 and 31% of OMRE respectively in photolytic and raw sludge (control) reactors. These results can provide a useful base and reference for the multi applications of visible light Cr2O3/C3N4 photocatalyst in enhancement of degradation of toxic pollutant in wastewater and sludge stabilization with bioenergy production in practice.
Collapse
Affiliation(s)
- Muzammil Anjum
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajeev Kumar
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt.
| |
Collapse
|
28
|
Kavitha S, Rajesh Banu J, Kumar G, Kaliappan S, Yeom IT. Profitable ultrasonic assisted microwave disintegration of sludge biomass: Modelling of biomethanation and energy parameter analysis. BIORESOURCE TECHNOLOGY 2018; 254:203-213. [PMID: 29413924 DOI: 10.1016/j.biortech.2018.01.072] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | | | - S Kaliappan
- Institute of Remote Sensing, College of Engineering, Guindy, Anna University, Chennai, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
29
|
|
30
|
Rajesh Banu J, Ushani U, Rajkumar M, Naresh Kumar R, Parthiba Karthikeyan O. Impact of mild alkali dosage on immobilized Exiguobacterium spp. mediated cost and energy efficient sludge disintegration. BIORESOURCE TECHNOLOGY 2017; 245:434-441. [PMID: 28898841 DOI: 10.1016/j.biortech.2017.08.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Approaches to (extracellular polymeric substance) EPS removal were studied with major aim to enhance the biodegradability and sludge solubilization. In this study, a novel approach of entrapment of bacterial strain was carried out to achieve long term activity of protease secreting bacteria Exiguobacterium sp. A mild treatment of potassium hydroxide (KOH) was applied to remove EPS which was followed by entrapment under the biological pretreatment. The efficiency of Exiguobacterium was predicted through dissolvable organic and suspended solids (SS) reduction. The maximum dissolvable organic matter released was 2300mg/L with the solubilization of 23% which was obtained for sludge without EPS (SWOE). For dissolvable organic release, SWOE showed higher final methane production of 232mL/g COD at the production rate of 16.2mL/g COD.d. The SWOE pretreatment was found to be cost effective and less energy intensive beneficial in terms of energy and cost (43.9KWh and -8.2USD) when compared to sludge with EPS (SWE) pretreatment (-177.6KWh and -91.23USD).
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - U Ushani
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - M Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - R Naresh Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; School of Science, Edith Cowan University, Western Australia 6027, Australia
| | | |
Collapse
|
31
|
Eswari AP, Kavitha S, Banu JR, Karthikeyan OP, Yeom IT. H 2O 2 induced cost effective microwave disintegration of dairy waste activated sludge in acidic environment for efficient biomethane generation. BIORESOURCE TECHNOLOGY 2017; 244:688-697. [PMID: 28818797 DOI: 10.1016/j.biortech.2017.07.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to improve the biomethane potential of dairy waste activated sludge (WAS) by H2O2-acidic pH induced microwave disintegration (HAMW-D) pretreatment approach. The results of HAMW-D compared with the microwave disintegration (MW-D) alone for energy and economic factors. In the two phase disintegration process, the H2O2 concentration of about 0.5mg/g SS under acid pH of 5 was found to be optimum for effective dissociation of Extracellular Polymeric Substances (EPS) matrix. A higher liquefaction of about 46.6% was achieved in HAMW-D when compared to that of MW-D (30%). It subsequently improved the methane yield of about 250mL/g VS in HAMW-D, which was 9.6% higher than MW-D. A net profit of about 49€/ton was achieved for HAMW-D, therefore it is highly recommended for WAS pretreatment.
Collapse
Affiliation(s)
- A Parvathy Eswari
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, Tamil Nadu, India.
| | - O Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Ick-Tae Yeom
- Department of Civil and Environmental Engineering, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
32
|
Kavitha S, Yukesh Kannah R, Rajesh Banu J, Kaliappan S, Johnson M. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. BIORESOURCE TECHNOLOGY 2017; 244:1367-1375. [PMID: 28522200 DOI: 10.1016/j.biortech.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | - S Kaliappan
- Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, India
| | - M Johnson
- Centre for Plant Biotechnology, St Xavier's College, Palayamkottai, Tirunelveli, India
| |
Collapse
|
33
|
Yukesh Kannah R, Kavitha S, Rajesh Banu J, Parthiba Karthikeyan O, Sivashanmugham P. Dispersion induced ozone pretreatment of waste activated biosolids: Arriving biomethanation modelling parameters, energetic and cost assessment. BIORESOURCE TECHNOLOGY 2017; 244:679-687. [PMID: 28818796 DOI: 10.1016/j.biortech.2017.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
In this study, the phase separated effect of dispersion induced ozone pretreatment (DOP) was investigated. Solid reduction, biomass lysis and biomethane production were used as essential parameters to assess the potential of DOP over ozone pretreatment (OP). A higher suspended solid reduction of about 25.2% was achieved in DOP than OP 18%. The ozone dosage of 0.014gO3/g SS supported a maximal biomass lysis of about 32.8% when the biosolids were subjected to prior dispersion at 30s and 3000rpm. However, the same ozone dosage without phase separation achieved 9.6% biomass lysis. The second exponential model results of the biomethane assay showed that DOP enhanced the accessibility of disintegrated biosolids for methane production and induced about 1150mL/g VS of methane production. The energy analysis reveals that DOP provides significant amount of positive net energy (152.65kWh/ton) when compared to OP (-12.42kWh/ton).
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India.
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region; College of Marine and Environmental Science, James Cook University, Townsville, Queensland, Australia
| | - P Sivashanmugham
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, India
| |
Collapse
|