1
|
Gao R, Jin H, Dong J, Zheng Y, Han M, Lou J. Low-intensity ultrasound combined with inert particles to improve denitrifying flocculated sludge performance and resulting granulation mechanism. BIORESOURCE TECHNOLOGY 2025; 415:131724. [PMID: 39477160 DOI: 10.1016/j.biortech.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
To enhance the understanding of flocculated sludge granulation, this study focused on a bacterial denitrification system using low-intensity ultrasound and inert particles to stimulate cell activity and facilitate flocculated sludge granulation. After 75 days, the activated carbon, activated carbon + ultrasonication, and microplastic + ultrasonication groups showed partial pelletization. Both ultrasound and inert particles promoted extracellular polymeric substance secretion and enhanced electron transport system activity. Low-intensity ultrasound improved denitrification performance and enhanced denitrifying bacteria. The addition of inert materials facilitated denitrifying flocculated sludge granulation. Low-intensity ultrasound combined with microplastics obtained the highest activity and enrichment of denitrifying bacteria in granular sludge. This study provides new ideas for optimizing anaerobic sludge granulation.
Collapse
Affiliation(s)
- Ran Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Hao Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Junlan Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yiru Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Mengru Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Lin Q, Sun S, Yang J, Hu P, Liu Z, Liu Z, Song C, Yang S, Wu F, Gao Y, Zhang W, Zhou L, Li Y. Enhanced aerobic granular sludge by thermally-treated dredged sediment in wastewater treatment under low superficial gas velocity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122210. [PMID: 39146649 DOI: 10.1016/j.jenvman.2024.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The positive contributions of carriers to aerobic granulation have been wildly appreciated. In this study, as a way resource utilization, the dredged sediment was thermally-treated to prepared as carriers to promote aerobic granular sludge (AGS) formation and stability. The system was started under low superficial gas velocity (SGV, 0.6 cm/s)for a lower energy consumption. Two sequencing batch reactors (SBR) labeled R1 (no added carriers) and R2 (carriers added), were used in the experiment. R2 had excellent performance of granulation time (shortened nearly 43%). The maximum mean particle size at the maturity stage of AGS in R2 (0.545 mm) was larger compared to R1 (0.296 mm). The sludge settling performance in R2 was better. The reactors exhibited high chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal rates. The total phosphorus (TP) removal rate in R2 was higher than R1 (almost 15% higher) on stage II (93-175d). R2 had a higher microbial abundance and dominant bacteria content. The relative abundance of dominant species was mainly affected by the carrier. However, the enrichment of dominant microorganisms and the evolution of subdominant species were more influenced by the increase of SGV. The results indicated that the addition of carriers induced the secretion of extracellular polymeric substances (EPS) by microorganisms and accelerated the rapid formation of initial microbial aggregates. This work provided a low-cost method and condition to enhance aerobic granulation, which may be helpful in optimizing wastewater treatment processes.
Collapse
Affiliation(s)
- Qingxia Lin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Jianbin Yang
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Pei Hu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Zhengrong Liu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Ziqiang Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Chuxuan Song
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Suiqin Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Fangtong Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yifu Li
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
3
|
Liu C, Han X, Li N, Jin Y, Yu J. Ultra-rapid development of 'solid' aerobic granular sludge by stable transition/filling of inoculated 'hollow' mycelial pellets in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131006. [PMID: 38889867 DOI: 10.1016/j.biortech.2024.131006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
To overcome the long start-up period in cultivating aerobic granular sludge (AGS) under hypersaline environment, mycelial pellets (MPs) of halotolerant fungus Cladosporium tenuissimum NCSL-XY8 were inoculated to try to realize the ultra-rapid development of salt-tolerant AGS by stable transition of 'hollow' MPs into 'solid' AGS without apparent fragmentation. The granules directly met the standard of AGS after inoculating MPs (Day 0), and it basically satisfied relatively strict standards of AGS (SVI30 < 50 mL/g, D50 > 300 μm, D10 > 200 μm and SVI30/SVI5 > 0.9) under anaerobic/aerobic mode during whole cultivation processes. Microstructure of the granular cross section clarified that MPs with hollow/loose inner layer transitioned into solid/dense AGS under anaerobic/aerobic mode within 7 days, while formed skin-like floating pieces and unstable double-layer hollow granules under aerobic mode. Organics removal reached relatively stable within 13 days under anaerobic/aerobic mode, 6 days faster than aerobic mode. This study provided a strategy for ultra-rapid and stable development of AGS, which showed the shortest granulation period in various AGS-cultivation strategies.
Collapse
Affiliation(s)
- Changshen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Ningning Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianguo Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Gao Z, Bi X, Zhao J, Ding X, Li Y, Shi J, Pan X, Bai M, Miao Y, Zhang J. Self-cultivating anammox granules for enhancing wastewater nitrogen removal in nitrification-denitrification flocculent sludge system. BIORESOURCE TECHNOLOGY 2024; 397:130458. [PMID: 38373506 DOI: 10.1016/j.biortech.2024.130458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The feasibility of self-cultivating anammox granules for enhancing wastewater nitrogen removal was investigated in a nitrification-denitrification flocculent sludge system. Desirable nitrogen removal efficiency of 84 ± 4 % was obtained for the influent carbon to nitrogen ratio of 1-1.3 (NH4+-N: 150-200 mg N/L) via alternate anaerobic/oxic/anoxic mode. Meanwhile, some red granular sludge was formed in the system. The abundance and activity of anaerobic ammonia oxidation bacteria (AnAOB) increased from 'not detected' in seed sludge to 0.57 % and 29.4 ± 0.7 mg N/(g mixed liquor volatile suspended solids·h) in granules, respectively, suggesting successful cultivation of anammox granules. Furthermore, some denitrifying bacteria with capability of partial denitrification were enriched, such as Candidatus Competibacter (2.45 %) and Thauera (5.75 %), which could cooperate with AnAOB, facilitating AnAOB enrichment. Anammox was dominant in nitrogen removal with the contribution to nitrogen removed above 68.8 ± 0.3 %. The strategy of self-cultivating anammox granules could promote the application of anammox.
Collapse
Affiliation(s)
- Zhongxiu Gao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xuejun Bi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jixiang Zhao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xiang Ding
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yitong Li
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Junhui Shi
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Xinlei Pan
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Meng Bai
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuanyuan Miao
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Jianhua Zhang
- State and Local Joint Engineering Research Centre of Urban Wastewater Treatment and Reclamation, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
5
|
Lin L, Chen S, Hou Y, Lei L. Study on the formation process and mechanism of aerobic granular sludge in the sequencing batch biofilter granular reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107661-107672. [PMID: 37735336 DOI: 10.1007/s11356-023-29943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Sequencing batch biofilter granular reactor (SBBGR) is a promising wastewater treatment technology owing to its low sludge yield and good toxicity tolerance. However, little attention has been paid to the formation process and mechanism of aerobic granular sludge in SBBGR. This study systematically investigated the formation process and mechanism of aerobic granular sludge in an SBBGR to provide a theoretical basis for optimizing the culture of aerobic granular sludge. Aerobic granular sludge with good performance was successfully cultivated after 40 days of incubation using synthetic wastewater as feed: the mixed liquid suspended solids and mixed liquor volatile suspended solids increased from 3.85 and 1.85 g/L to 31.38 and 24.74 g/L respectively, and the COD, TN, and TP removal efficiencies were 91.21%, 84.99%, and 58.14%, respectively. The experimental results showed that Amoebacteria and Bacteroides played an important role in the formation of aerobic granular sludge, filamentous bacteria acted as a three-dimensional skeleton surrounded by filling bacilli and rod-shaped bacteria, and proteins played a dominant role in promoting granulation during the culture process.
Collapse
Affiliation(s)
- Ling Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Shuangshuang Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
6
|
Jagaba AH, Lawal IM, Ghfar AA, Usman AK, Yaro NSA, Noor A, Abioye KJ, Birniwa AH. Biochar-based geopolymer nanocomposite for COD and phenol removal from agro-industrial biorefinery wastewater: Kinetic modelling, microbial community, and optimization by response surface methodology. CHEMOSPHERE 2023; 339:139620. [PMID: 37524265 DOI: 10.1016/j.chemosphere.2023.139620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Agro-industrial biorefinery effluent (AIBW) is considered a highly polluting source responsible for environmental contamination. It contains high loads of chemical oxygen demand (COD), and phenol, with several other organic and inorganic constituents. Thus, an economic treatment approach is required for the sustainable discharge of the effluent. The long-term process performance, contaminant removal and microbial response of AIBW to rice straw-based biochar (RSB) and biochar-based geopolymer nanocomposite (BGC) as biosorbents in an activated sludge process were investigated. The adsorbents operated in an extended aeration system with a varied hydraulic retention time of between 0.5 and 1.5 d and an AIBW concentration of 40-100% for COD and phenol removal under standard conditions. Response surface methodology was utilised to optimize the process variables of the bioreactor system. Process results indicated a significant reduction of COD (79.51%, 98.01%) and phenol (61.94%, 74.44%) for BEAS and GEAS bioreactors respectively, at 1 d HRT and AIBW of 70%. Kinetic model analysis indicated that the Stover-Kincannon model best describes the system functionality, while the Grau model was better in predicting substrate removal rate and both with a precision of between R2 (0.9008-0.9988). Microbial communities examined indicated the abundance of genera, following the biosorbent addition, while RSB and BGC had no negative effect on the bioreactor's performance and bacterial community structure of biomass. Proteobacteria and Bacteroidetes were abundant in BEAS. While the GEAS achieved higher COD and phenol removal due to high Nitrosomonas, Nitrospira, Comamonas, Methanomethylovorans and Acinetobacter abundance in the activated sludge. Thus, this study demonstrated that the combination of biosorption and activated sludge processes could be promising, highly efficient, and most economical for AIBW treatment, without jeopardising the elimination of pollutants or the development of microbial communities.
Collapse
Affiliation(s)
- Ahmad Hussaini Jagaba
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - Ibrahim Mohammed Lawal
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria; Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Nura Shehu Aliyu Yaro
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; Department of Civil Engineering, Ahmadu Bello University, 810107, Zaria, Kaduna State, Nigeria
| | - Azmatullah Noor
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | - Kunmi Joshua Abioye
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| | | |
Collapse
|
7
|
Wang G, Qiu G, Wei J, Guo Z, Wang W, Liu X, Song Y. Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 225:115595. [PMID: 36863655 DOI: 10.1016/j.envres.2023.115595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
With the development of industries, explosion accidents occur frequently during production, transportation, usage and storage of hazard chemicals. It remained challenging to efficiently treat the resultant wastewater. As an enhancement of traditional process, the activated carbon-activated sludge (AC-AS) process has a promising potential in treating wastewater with high concentrations of toxic compounds, chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N), etc. In this paper, activated carbon (AC), activated sludge (AS) and AC-AS were used to treat the wastewater produced from an explosion accident in the Xiangshui Chemical Industrial Park. The removal efficiency was assessed by the removal performances of COD, dissolved organic carbon (DOC), NH4+-N, aniline and nitrobenzene. Increased removal efficiency and shortened treatment time were achieved in the AC-AS system. To achieve the same COD, DOC and aniline removal (90%), the AC-AS system saved 30, 38 and 58 h compared with the AS system, respectively. The enhancement mechanism of AC on the AS was explored by metagenomic analysis and three-dimensional excitation-emission-matrix spectra (3DEEMs). More organics, especially aromatic substances were removed in the AC-AS system. These results showed that the addition of AC promoted the microbial activity in pollutant degradation. Bacteria, such as Pyrinomonas, Acidobacteria and Nitrospira and genes, such as hao, pmoA-amoA, pmoB-amoB and pmoC-amoC, were found in the AC-AS reactor, which might have played important roles in the degradation of pollutants. To sum up, AC might have enhanced the growth of aerobic bacteria which further improved the removal efficiency via the combined effects of adsorption and biodegradation. The successful treatment of Xiangshui accident wastewater using the AC-AS demonstrated the potential universal characteristics of the process for the treatment of wastewater with high concentration of organic matter and toxicity. This study is expected to provide reference and guidance for the treatment of similar accident wastewaters.
Collapse
Affiliation(s)
- Guanying Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Weiye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yonghui Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Sarvajith M, Nancharaiah YV. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal. ENVIRONMENTAL RESEARCH 2023; 224:115500. [PMID: 36791839 DOI: 10.1016/j.envres.2023.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Long start-up periods for granulating activated sludge and concerns on granular stability are the bottlenecks reported during implementation of novel aerobic granular sludge (AGS) technology in municipal wastewater treatment plants. Here, de novo granulation of sewage-borne microorganisms without using activated sludge (AS) inoculum was investigated in bench-scale sequencing batch reactors (SBR). Data showed that formation of AGS from sewage-borne microorganisms was rapid and first granules appeared within one week. Granulation was indicated by appearance of biomass particles (size >0.12 mm), high biomass levels (∼8 g/L) and superior settling properties (SVI30 min: 30 mL/g). Granulation process involved distinct stages like formation of aggregates, retention of aggregates, and growth of millimetre sized granules. Simultaneous COD, nitrogen and phosphorous removal was established within 10 days of start-up in the SBR without using AS inoculum. However, phosphorus removal became stable after 50 days of start-up. Total nitrogen (TN) and total phosphorus (TP) removals of 92% and 70%, respectively, were achieved from real domestic wastewater. Furthermore, addition of granular activated carbon (GAC) had improved both granulation and biological nutrient removals. Interestingly, phosphorus removal became quite stable within 10 days of start-up in the SBR operated with GAC particles. TN and TP removals were found to be higher at >98% and >94%, respectively, in GAC-augmented SBR. Removal of ammonia and phosphorus were mediated by nitritation-denitritation and enhanced biological phosphorus removal (EBPR) pathways, respectively. The bacterial diversity of AGS was lower than that of sewage. Quantitative PCR indicated enrichment of ammonia oxidizing bacteria, denitrifying bacteria and polyphosphate accumulating organisms during granulation. De novo granulation of sewage-borne microorganisms is a promising approach for rapidly cultivating AGS and establishing biological nutrient removal in sewage treatment plants.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
9
|
Omar AH, Muda K, Omoregie AI, Majid ZA, Ali NSBA, Pauzi FM. Enhancement of biogranules development using magnetized powder activated carbon. Biodegradation 2023; 34:235-252. [PMID: 36840891 DOI: 10.1007/s10532-023-10016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Biogranulation has emerged as a viable alternative biological wastewater treatment approach because of its strong biodegradability potential, toxicity tolerance, and biomass retention features. However, this process requires a long duration for biogranules formation to occur. In this study, magnetic powder activated carbon (MPAC) was used as support material in a sequencing batch reactor to enhance biogranules development for wastewater treatment. Two parallel SBRs (designated R1 and R2) were used, with R1 serving as a control without the presence of MPAC while R2 was operated with MPAC. The biodegradability capacity and biomass properties of MPAC biogranules were compared with a control system. The measured diameter of biogranules for R1 and R2 after 8 weeks of maturation were 2.2 mm and 3.4 mm, respectively. The integrity coefficient of the biogranules in R2 was higher (8.3%) than that of R1 (13.4%), indicating that the addition of MPAC improved the structure of the biogranules in R2. The components of extracellular polymeric substances were also higher in R2 than in R1. Scanning electronic microscopy was able to examine the morphological structures of the biogranules which showed there were irregular formations compacted together. However, there were more cavities situated in R1 biogranules (without MPAC) when compared to R2 biogranules (with MPAC). Dye removal reached 65% and 83% in R1 and R2 in the post-development stage. This study demonstrates that the addition of MPAC could shorten and improve biogranules formation. MPAC acted as the support media for microbial growth during the biogranulation developmental process.
Collapse
Affiliation(s)
- Ahmad Hanis Omar
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Khalida Muda
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Armstrong Ighodalo Omoregie
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nur Shahidah Binti Aftar Ali
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Farhan Mohd Pauzi
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
10
|
Shi J, Liang Z, Dai X. Enhanced biological phosphorus and nitrogen removal by high-concentration powder carriers: extracellular polymeric substance, microbial communities, and metabolic pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4010-4022. [PMID: 35963965 DOI: 10.1007/s11356-022-22363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, diatomite, activated carbon, and iron-carbon (Fe-C) were used as biological carriers for the integrated fixed-film activated sludge process. Biomass, pollutant removal efficiency, and extracellular polymer were tested, and the effect of nitrogen and phosphorus removal, enzyme activity, and microbial diversity were studied after the sludge retention time was changed. The mechanism of carrier enriching microorganism and promoting pollutant degradation was studied. The results showed that the addition of these three carriers contributed to the enrichment of nitrifying bacteria in the system, and the NH4+-N removal efficiency was above 98%. Diatomite and Fe-C could improve pollutant removal by increasing the activity of the electron transfer system. The abundance of denitrogenation-related reductases and the enzymes synthesizing poly-β-hydroxybutyrate was increased in activated carbon. The addition of Fe-C increased the abundance of denitrifying phosphate-accumulating organisms by approximately 25% and the removal efficiency of total phosphorus by 12.61-14.88% at the end of the long-term operation.
Collapse
Affiliation(s)
- Juan Shi
- College of Environmental Science and Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zixuan Liang
- State Key Lab Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Lab Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Lin D, Li X, Hou M, Chen Y, Zeng J, Yi X. Aerobic granular sludge cultivated from Fe-loaded activated carbon as carrier working low-strength wastewater conditions by bioreactor. CHEMOSPHERE 2022; 306:135532. [PMID: 35798157 DOI: 10.1016/j.chemosphere.2022.135532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study proposes a new method to promote the granulation process while accelerating the degradation efficiency of nutrients. The new strategy could involve preparing Fe-loaded activated carbon (FAC) before start-up of granular cultivation and then cultivating the process of aerobic granular sludge (AGS) with such materials. In addition, this experiment could further comprehend how the preparation and characteristics of FAC affect the formation and properties of AGS. The conclusions showed that compared with the control, FAC enhanced the sedimentation performance and significant removal efficiency. Meanwhile, the values of protein (PN) and polysaccharide (PS) also increased significantly in the addition of FAC, indicating the production of substances were induced by FAC. Molecular biology methods indicated that the rapid production of granulation and removal of nutrients were considered as the abundance of various microbes and denitrifying bacteria at the addition of FAC. This research showed that the presence of FAC is a useful strategy for the initiation of sludge particle formation to promote the treatment of wastewater, containing COD and NH4+ at about 150-100 and 30 mg L-1.
Collapse
Affiliation(s)
- Dexin Lin
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xinzhi Li
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Mingxiu Hou
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Yuliang Chen
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Zeng
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Yi
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
12
|
Sarvajith M, Nancharaiah YV. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153643. [PMID: 35124048 DOI: 10.1016/j.scitotenv.2022.153643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the effects of granular activated carbon (GAC) addition on the enrichment of polyphosphate accumulating organisms (PAOs), stratification of PAOs in the co-existing GAC-biofilms and granules and biological nutrient removal (BNR) in aerobic granular sludge (AGS) reactors. It was found that BNR increased in the GAC-augmented system. Establishment of enhanced biological phosphorus removal (EBPR) pathway was faster with about 1.7 to 2-fold higher P removal in GAC system than control. EBPR biomass grown in the presence of GAC was segregated into different size fractions for determining BNR and stratification of microbial groups. It was found that EBPR was majorly associated with the large biomass (>0.5 mm) fraction, corroborating with higher abundance of PAOs. Higher P removals of 60 to 70% with characteristic EBPR profiles were observed in 0.5 mm fraction. In contrast, P removals by 0.25 mm fraction were lower at 20 to 35% without EBPR profiles. EBPR biomass (>0.5 mm) fraction was segregated into granules and GAC-biofilms for determining the role of GAC in PAOs enrichment. P release (2.5-3.5 mg L-1 P) and P uptake (5-7 mg L-1 P) were higher in the P removal profiles exhibited by GAC-biofilms. In contrast, P release and P uptake were lower with the granules. These differences in P removal profiles resulted in distinct net P removal efficiencies of 70 ± 5% and 50 ± 6% for GAC-biofilms and granules, respectively. These differences in P removals were corroborated by higher abundance of PAOs in the GAC-biofilms than co-existing granules. PAO clade-level enrichment was found to be dependent on substrate wherein acetate feeding enriched PAO clade I, while acetate-propionate feeding caused enrichment of both PAO clade I and II. These results suggest that GAC addition to AGS reactors can aid in enrichment of PAOs, reduce the start-up period for EBPR, and increase P removal efficiencies.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai 400 094, India.
| |
Collapse
|
13
|
Hypersaline Wastewater Produced from Pickled Mustard Tuber (Chinese Zhacai): Current Treatment Status and Prospects. WATER 2022. [DOI: 10.3390/w14091508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pickled mustard tuber, a worldwide condiment, is increasing at a fast growth rate. Its production generates a considerable amount of hypersaline wastewater containing NaCl of 7 wt.%, COD of 30,000 mg L−1, NH3-N of 400 mg L−1, and TP of 300 mg L−1. Pickled mustard tuber wastewater (PMTW) has severe effects on crops, deterioration of water quality, soil infertility and ecological systems. Due to the technic difficulties and insufficient support from the local governments; however, PMTW has not yet been widely investigated and well summarized. Therefore, this manuscript reviewed the relatively latest advances in PMTW. Physicochemical and biological hybrid processes mainly treat PMTW and the corresponding cost is 6.00 US dollars per ton. In the context of double carbon capture capacity in China and the development of the pickled mustard industry, PMTW sauce and sustainable reuse such as nutrient recovery, acid and alkaline regeneration and renewable energy may be bright prospects.
Collapse
|
14
|
Penagos DG, Victoria JR, Manrique MV. Formulation of a protocol to evaluate the aerobic granulation potential (AGP) of an inoculum. MethodsX 2022; 9:101710. [PMID: 35601957 PMCID: PMC9120046 DOI: 10.1016/j.mex.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
This paper proposes and develops a protocol for measuring the aerobic granulation potential of sludge, aiming to provide an affordable and simple alternative that can facilitate the development of aerobic granulation technology. In this sense, the protocol comprises a set of parameters and considerations that interact to create a controlled environment and stimulate cell population clustering. All of this is done in the context of procedural simplicity, low cost, and the speed at which results are obtained. The protocol is essentially a three-stage method: preparation of the substrate, adaptation of the inoculum, and implementation of the protocol. Simple parameters were measured to evaluate the granulation process: SVI, settling velocity, and morphological parameters. The protocol was validated according to optimal ranges and criteria previously established in the literature. For this purpose, an activated sludge inoculum from a domestic wastewater treatment plant was submitted to the protocol, obtaining an optimal response of the biomass (SVI5 =13.90 mL g-1, settling velocity= 25,79 m h-1, Diameter > 0.2 mm) in a relatively short time (7 d). The results show that this protocol can constitute a tool for evaluation and decision-making using traditional laboratory equipment and is applicable at different scales.
Collapse
Key Words
- AGP, Aerobic Granulation Potential
- Aerobic granules
- COD, Chemical Oxygen Demand
- DO, Dissolved Oxygen
- EPS, Extracellular Polymeric Substance
- F/M, Food Microorganism Relationship
- H/D, Height Diameter Ratio
- HRT, Hydraulic retention time
- Inoculum
- OLR, organic loading rate
- PVC, Polyvinyl Chloride
- Protocol
- SBR, Sequential Batch Reactor
- SVI, Sludge Volumetric Index
- VER, Volumetric exchange ratio
Collapse
|
15
|
Han F, Zhang M, Liu Z, Han Y, Li Q, Zhou W. Enhancing robustness of halophilic aerobic granule sludge by granular activated carbon at decreasing temperature. CHEMOSPHERE 2022; 292:133507. [PMID: 34979206 DOI: 10.1016/j.chemosphere.2021.133507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
High salinity seriously inhibits the growth and metabolism of microorganisms, resulting in poor settleability, excessive biomass loss and low treatment efficiency of biological wastewater treatment systems. The development of halophilic aerobic granular sludge (HAGS) is a feasible strategy for addressing this challenge. However, there are problems with the granulation of HAGS and the stability of granules at decreasing temperatures. In this study, granular activated carbon (GAC) with a large specific surface area and good biocompatibility was used to enhance the robustness of HAGS. The results showed that the addition of GAC shortened the granulation time from 60 d (control system) to 35 d (GAC-addition system). The proteins contents of extracellular polymeric substances (EPS) in the GAC-addition system was significantly higher (p < 0.05) than that in the control system during granulation. Satisfactory NH4+-N and chemical oxygen demand (COD) removal efficiencies reached more than 96% in both systems at 18-26 °C. When the operating temperature was lower than 15 °C, the GAC-addition system exhibited better NH4+-N removal performance (>80%) than the control system (<60%). Moreover, the abundance of almost all nitrogen metabolism-related genes in the GAC-addition system was higher than that in the control system. During the granulation process, the enrichment of functional microorganisms, including family Flavobacteriaceae, Rhodobacteraceae, and Cryomorphaceae, may promote the production of EPS by significantly upregulating (p < 0.05) the metabolic pathway "Signaling Molecules and Interaction" in the GAC-addition system. The overexpression of the nitrogen assimilation gene glnA in heterotrophic bacteria (Halomonas and Marinobacterium) may promote the conversion of inorganic nitrogen to extracellular proteins to adapt to the decreased operational temperature. Our findings confirm that GAC addition is a simple but effective strategy to accelerate granulation and enhance the robustness of HAGS in saline wastewater treatment.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Mengru Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Zhe Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Yufei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, 250002, China.
| |
Collapse
|
16
|
Liang D, Guo W, Li D, Ding F, Li P, Zheng Z, Li J. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers. ENVIRONMENTAL RESEARCH 2022; 205:112547. [PMID: 34902378 DOI: 10.1016/j.envres.2021.112547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The aerobic granular sludge (AGS) process is a promising technology for wastewater treatment. However, a long start-up period for granulation and instability during long-term operation still hinder the application of AGS technology, especially for low-strength wastewater. To solve these two problems, this study tested a novel strategy involving the selection of slow-growing organisms and the addition of carriers in an anaerobic-aerobic-anoxic sequencing batch reactor (AN/O/AX_SBR). Three identical AN/O/AX_SBRs (R_Ctrl, R_CCM, and R_GAC), fed with low-strength wastewater, were operated for 120 days. R_Ctrl had no carriers, R_CCM contained cell culture microcarriers (CCM), and R_GAC contained granular activated carbon (GAC). Mature AGS was achieved within 80 days in all reactors. The carriers could reduce the maturation period of AGS by approximately 10 days (76, 66, and 69 days in R_Ctrl, R_CCM, and R_GAC, respectively) and improve the physical strength of the AGS. AGS showed a strong structure without excessive proliferation of filamentous bacteria, full-grown size (900-1100 μm), and good settleability (SVI5 was 15.4-19.4 mL/g). Microbiological analysis showed that AN/O/AX_SBRs can provide a metabolic selective pressure to select slow-growing organisms such as nitrifying bacteria (norank_f__NS9_marine_group, Ellin6067, and Nitrospira), glycogen and phosphorus accumulating organisms (GAOs: Candidatus_Competibacter and Defluviicoccus; PAOs: Candidatus_Accumulibacter and Flavobacterium). All reactors showed good performance for simultaneous nitrification, endogenous denitrification, and phosphorus removal. The removal efficiencies of total nitrogen and total phosphorous were above 70% and 80%, respectively. The cycle test showed intermediate PAO-GAO metabolism prevailed in the system, and endogenous denitrification was primarily carried out by denitrifying GAOs.
Collapse
Affiliation(s)
- Dongbo Liang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wei Guo
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Dongyue Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Fan Ding
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Peilin Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhaoming Zheng
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jun Li
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
17
|
Dong Y, Chen F, Li L, Yin Z, Zhang X. Enhanced aerobic granular sludge formation by applying Phanerochaete chrysosporium pellets as induced nucleus. Bioprocess Biosyst Eng 2022; 45:815-828. [PMID: 35318496 DOI: 10.1007/s00449-022-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
The long start-up period is a major challenging issue for the widespread application of aerobic granular sludge (AGS). In this study, a novel rapid start-up strategy was developed by inoculating Phanerochaete chrysosporium (P. chrysosporium) pellets as the induced nucleus in a sequencing batch airlift reactor (SBAR) to enhance activated sludge granulation. The results demonstrated that P. chrysosporium pellets could effectively shorten the aerobic granulation time from 32 to 20 days. The AGS promoted by P. chrysosporium pellets had a larger average diameter (2.60-2.74 mm) than that without P. chrysosporium pellets (1.78-1.88 mm) and had better biomass retention capacity and sedimentation properties; its mixed liquor suspended solids (MLSS) and sludge volume index (SVI30) reached approximately 5.2 g/L and 45 mL/g, respectively. The addition of P. chrysosporium pellets promoted the secretion of extracellular polymeric substances (EPS), especially protein (PN). The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) in P. chrysosporium pellets reactor were 98.91%, 89.17%, 64.73%, and 94.42%, respectively, which were higher than those in the reactor without P. chrysosporium pellets (88.73%, 82.09%, 55.75%, and 88.92%). High throughput sequencing analysis indicated that several functional genera that were responsible for the formation of aerobic granules and the removal of pollutants, such as Acinetobacter, Pseudomonas, Janthinobacterium, and Enterobacter, were found to be predominant in the mature sludge granules promoted by P. chrysosporium pellets.
Collapse
Affiliation(s)
- Yihua Dong
- Key Laboratory of the Ministry of Education for Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, Liaoning, China
| | - Feng Chen
- Key Laboratory of the Ministry of Education for Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, Liaoning, China
| | - Liang Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, Liaoning, China.
| | - Zhiwen Yin
- Key Laboratory of the Ministry of Education for Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, Liaoning, China
| | - Xueying Zhang
- Key Laboratory of the Ministry of Education for Eco-Restoration of Regional Contaminated Environment, Shenyang University, Shenyang, 110044, Liaoning, China
| |
Collapse
|
18
|
Liu Z, Zhang X, Zhang S, Qi H, Hou Y, Gao M, Wang J, Zhang A, Chen Y, Liu Y. A comparison between exogenous carriers enhanced aerobic granulation under low organic loading in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. BIORESOURCE TECHNOLOGY 2022; 346:126567. [PMID: 34923077 DOI: 10.1016/j.biortech.2021.126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, polymeric ferric sulfate (PFS), aluminum sulfate (AS) and diatomite were added to enhance the aerobic granulation under low organic loading rate (OLR) of 0.6 kg·COD/(m3·d), and their effects of aerobic granule formation, extracellular polymeric substances (EPS) secretion and microbial community were investigated. The results showed that adding carriers could facilitated the growth of aerobic granules and improve the sludge settleability and biomass retention. Nutrient removal efficiencies were also enhanced. Compared with diatomite, adding PFS and AS resulted in more significant increase in EPS production, especially for the extracellular proteins. For microbial community, the dominated bacteria (Zoogloea, 18.47-23.95%) in the mature granular consortia were similar. Moreover, the introduction of PFS and diatomite contributed to the enrichment of Paracoccus, which was responsible for denitrification. Adding carriers potentially activated the functional genes related to metabolism and genetic information processing, and PFS had the most significant effects.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xuhua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Hao Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, No. 10 Fenghui South Road, Xi'an 710075, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Sarvajith M, Nancharaiah YV. Enhancing biological nitrogen and phosphorus removal performance in aerobic granular sludge sequencing batch reactors by activated carbon particles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114134. [PMID: 34839174 DOI: 10.1016/j.jenvman.2021.114134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Long start-up periods for aerobic granular sludge (AGS) formation and establishment of P removal pathways are challenges for widespread implementation of AGS process. External additives such as activated carbon (AC) attracted interest for accelerating AGS formation. However, the roles of AC in granulation and biological nutrient removal (BNR) are not understood. Here, the role of AC was investigated in decreasing start-up periods in AGS formation and BNR under different carbon substrate conditions (i.e., acetate (HAc), propionate (HPr) and HAc-HPr) in sequencing batch reactors (SBRs). AC addition increased aggregation index and settleability of activated sludge (AS) inoculum which minimized AS washout from SBRs. AC addition hastened AGS formation and establishment of BNR pathways by facilitating AS retention and biofilm formation. Feeding HAc or HAc-HPr supported better granulation (MLSS: 6-7 g l-1, SVI: 30-40 ml g-1) than HPr (MLSS: 4 g l-1, SVI: 70). The start-up periods for efficient total nitrogen (TN) removals were decreased to 22 and 16 d from 38 to 25 d, respectively, in AC augmented SBRs fed with either HAc or HAc-HPr. TN removals were higher at ≥95% in HAc or HAc-HPr fed SBRs. Total phosphorus (TP) removals were also higher in AC-augmented SBRs at 80% and ≥90% in HAc and HAc-HPr fed SBRs, respectively. In contrast, TN and TP removals were lower at 70% and 35%, respectively, in HPr fed SBR. Ammonium was primarily removed via nitritation-denitritation pathway. Phosphorus removal was at 1.7 to 2-fold higher in AC augmented SBRs and driven by enhanced biological phosphorus removal (EBPR) pathway. MiSeq sequencing and qPCR revealed higher enrichment of polyphosphate accumulating organisms (PAOs), denitrifying PAOs, and ammonia oxidizers in AC-augmented SBRs fed with HAc or HAc-HPr. This study demonstrates that AC addition can be considered for enrichment of PAOs and establishment of EBPR in aerobic granular SBRs.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
20
|
Liang L, Luo J, Xiao X, Wang J, Hong M, Deng C, Li YY, Liu J. Granular activated carbon promoting re-granulation of anammox-hydroxyapatite granules for stable nitrogen removal at low phosphate concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150359. [PMID: 34818801 DOI: 10.1016/j.scitotenv.2021.150359] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 05/25/2023]
Abstract
Anaerobic ammonium oxidation (anammox) coupled with hydroxyapatite (HAP) crystallization not only achieves simultaneous nitrogen removal and phosphorus recovery, but also cultivates excellent anammox granules. However, a floatation and wash-out of anammox-HAP granules was occurred at low phosphate concentrations. In this study, a reactor inoculated with mature anammox-HAP granules and fed with low phosphate (5 mg P/L) was added with granular activated carbon (GAC) to maintain sludge granulation and nitrogen-removing stability. At influent total nitrogen >800 mg/L and nitrogen loading rate ~ 9.8 kg/m3/d, a satisfactory nitrogen removal of around 88% was maintained during 140 days of operation. Insufficient phosphate supplement resulted in a sludge bulking, with suspended solid and sludge density decreased whereas sludge water content and expansion ratio increased due to HAP loss. Nevertheless, the sludge re-granulation was found at the later stage as the proportion of granules in 2.8- 3.35 mm went up to 37.4% after large granules disintegrated into small pieces at the initial stage. The settling velocity was finally ranging from 129.8 to 182.2 m/h. In addition, Candidatus Brocadia was increased from 2.1% to 20.1% and dominated in the microbial community. These findings suggest GAC was able to promote re-granulation of anammox-HAP granules at low phosphate concentration, which avoids sludge flotation and widens their application as an inoculum.
Collapse
Affiliation(s)
- Lei Liang
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| | - Xiangmin Xiao
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province, 061001, China
| | - Jianwei Wang
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province, 061001, China
| | - Meng Hong
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province, 061001, China
| | - Chao Deng
- Cangzhou Water Supply and Drainage Group Company Limited, 15 West Jiuhe Road, Canghzou, Hebei Province, 061001, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| |
Collapse
|
21
|
Antonio da Silva D, Pereira Cavalcante R, Batista Barbosa E, Machulek Junior A, César de Oliveira S, Falcao Dantas R. Combined AOP/GAC/AOP systems for secondary effluent polishing: Optimization, toxicity and disinfection. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Initialization, enhancement and mechanisms of aerobic granulation in wastewater treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Sun Y, Angelotti B, Brooks M, Wang ZW. Feast/famine ratio determined continuous flow aerobic granulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141467. [PMID: 32853933 DOI: 10.1016/j.scitotenv.2020.141467] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Plug flow reactors (PFRs) made of multiple completely stirred tank reactors (CSTRs) in series were used to cultivate aerobic granules in real domestic wastewater. Theoretically, changing the number of CSTR chambers in series will change the nature of plug flow, and thus alter the pattern of the feast/famine condition and impact the aerobic granulation progress. Therefore, PFRs were operated in 4-, 6-, and 8-chamber mode under the same gravity selection pressure (a critical settling velocity of 9.75 m h-1) and hydraulic retention time (6.5 h) until steady states were reached to evaluate the effect of the feast/famine condition on continuous flow aerobic granulation. The sludge particle size, circularity, settleability, specific gravity, zone settling velocity, and extracellular polymeric substance contents were analyzed to evaluate the role that a feast/famine regime plays in aerobic granulation. It was found that aerobic granulation failed whenever the feast/famine ratio was greater than 0.5. The results support a conclusion that the feast/famine condition is likely a prerequisite for continuous flow aerobic granulation.
Collapse
Affiliation(s)
- Yewei Sun
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA; Hazen and Sawyer, 4035 Ridge Top Road, Suite 500, Farfax, VA 22030, USA
| | - Bob Angelotti
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA
| | - Matt Brooks
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA
| | - Zhi-Wu Wang
- Occoquan Laboratory, Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA 20110, USA.
| |
Collapse
|
24
|
Lin H, Ma R, Lin J, Sun S, Liu X, Zhang P. Positive effects of zeolite powder on aerobic granulation: Nitrogen and phosphorus removal and insights into the interaction mechanisms. ENVIRONMENTAL RESEARCH 2020; 191:110098. [PMID: 32861725 DOI: 10.1016/j.envres.2020.110098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge is considered one of the most promising biological wastewater treatment technologies of the 21st century. However, the long granulation time and poor treatment effect on N and P have severely limited its popularity and large-scale application. In this study, we systematically examine the strengthening effects of zeolite powder on granulation, N and P removal, and their interaction mechanisms. The addition of zeolite powder decreased sludge granulation time to 18 d, and improved average N and P removal rates by 4.48% and 2.22%, respectively. The multi-pore and nutrient-rich environment of the zeolite powder is beneficial for maintaining microbial activity and granular stability. Moreover, its adsorption to N and P enriches their respective removal strains, improving their removal efficiency.
Collapse
Affiliation(s)
- Huihua Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Water Science and Environmental Engineering, Shenzhen University, 518055, China.
| | - Xiangli Liu
- Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, Department of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
25
|
Czarnota J, Tomaszek JA, Masłoń A, Piech A, Łagód G. Powdered Ceramsite and Powdered Limestone Use in Aerobic Granular Sludge Technology. MATERIALS 2020; 13:ma13173894. [PMID: 32899252 PMCID: PMC7504032 DOI: 10.3390/ma13173894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
The effects of two powdered mineral materials (powdered ceramsite and powdered limestone) on aerobic granulation of sludge were evaluated. The experiment was conducted on a laboratory scale bioreactors treating wastewater for 89 days. Three granular sequencing batch reactors (GSBRs) were operated at the lowest optimal organic loading rate (OLR) of 2.55 g COD/(L∙d). In the control reactor (R1), the mean diameter (d) of the biomass ranged from 124.0 to 210.0 µm, and complete granulation was not achieved. However, complete granulation did occur in reactors to which either ceramsite (251.9 µm < d < 783.1 µm) or limestone (246.0 µm < d < 518.9 µm) was added. Both powdered materials served as a ballast for the sludge flocs making up the seed sludge. Ceramsite particles also acted as microcarriers of granule-forming biomass. The granules in the reactors with added powdered materials had nonfibrous and smoother surfaces. The reactor with ceramsite exhibited the highest average efficiencies for COD, total nitrogen, and total phosphorus removal (85.4 ± 5.4%, 56.6 ± 10.2%, and 56.8 ± 9.9%, respectively). By contrast, the average nitrification efficiency was 95.1 ± 12.8%.
Collapse
Affiliation(s)
- Joanna Czarnota
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland; (J.A.T.); (A.M.)
- Correspondence: (J.C.); (G.Ł.); Tel.: +48-17-865-1278 (J.C.); +48-81-538-4322 (G.Ł.)
| | - Janusz A. Tomaszek
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland; (J.A.T.); (A.M.)
| | - Adam Masłoń
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland; (J.A.T.); (A.M.)
| | - Adam Piech
- Department of Water Purification and Protection, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland;
| | - Grzegorz Łagód
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
- Correspondence: (J.C.); (G.Ł.); Tel.: +48-17-865-1278 (J.C.); +48-81-538-4322 (G.Ł.)
| |
Collapse
|
26
|
Li DC, Gao JF, Zhang SJ, Gao YQ, Sun LX. Enhanced granulation process, a more effective way of aerobic granular sludge cultivation in pilot-scale application comparing to normal granulation process: From the perspective of microbial insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136106. [PMID: 31863990 DOI: 10.1016/j.scitotenv.2019.136106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Aerobic granular sludge (AGS) could be cultivated from only flocs (called normal granulation (NG) process) or mixture of flocs and crushed AGS (called enhanced granulation (EG) process), which might lead to different system performances such as granulation speed and pollutants removal efficiencies. However, the differences of mechanisms between NG and EG processes at microbial community level are still unknown. In this study, the NG and EG processes were implemented successively in a pilot-scale sequencing batch reactor (SBR) with certain amounts of additional carbon sources. Illumina MiSeq sequencing and quantitative PCR were applied to investigate the dynamics of bacterial communities during NG and EG processes and explore the possible explanations for faster EG process. The results showed that significant distinctions in bacterial diversities and community structures were observed between NG and EG processes. The major contributor to NG process was bacterial communities with 32.04% contribution. While EG process was more dependent on the interactions (73.16% contribution) between the bacterial communities and environmental variables (operational parameters and self-adaptive variable). EG process had higher relative abundances of functional bacteria than NG process. Glycogen accumulating organisms (GAOs) related bacteria with a total relative abundance of maximum 65.43% might be mainly responsible for the faster EG process. This study provided microbial insights for practical application of AGS technology that inoculating crushed AGS might be an effective way to cultivate AGS.
Collapse
Affiliation(s)
- Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Shu-Jun Zhang
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Yong-Qing Gao
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| | - Li-Xin Sun
- Research and Development Center of Beijing Drainage Group Co. Ltd, Beijing 100124, China
| |
Collapse
|
27
|
Barros ARM, Rollemberg SLDS, de Carvalho CDA, Moura IHH, Firmino PIM, Dos Santos AB. Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill/draw mode sequencing batch reactors (SBRs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109850. [PMID: 31760299 DOI: 10.1016/j.jenvman.2019.109850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
This work investigated the effect of Ca2+ (100 mg L-1) addition on the formation and maintenance of aerobic granular sludge in a simultaneous fill/draw mode sequencing batch reactor (SBR), operated with a low liquid upflow velocity (0.92 m h-1), in order to verify if Ca2+ presence compensates the low selection pressure imposed. Additionally, carbon and nutrients removals, granules characteristics and microbial community were evaluated. For this, two SBRs (R1, control, and R2, Ca2+-supplemented) were operated (6-h cycle). In general, Ca2+ supplementation affected positively the sludge settleability, although a larger fraction of inert solids was found in the granules. The total extracellular polymeric substances were the same for both reactors, and no remarkable differences were observed between their polysaccharides and proteins contents. Overall, Ca2+ addition in a simultaneous fill/draw mode SBR neither accelerated the granule formation nor improved the operational performance. The microbial community structure, especially in terms of bioactivity, was not affected as well. Therefore, the effect of divalent cations might be more pronounced in conventional SBRs, in which the selection pressure is higher.
Collapse
Affiliation(s)
| | | | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ian Holanda Herbster Moura
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
28
|
Czarnota J, Masłoń A, Zdeb M, Łagód G. The Impact of Different Powdered Mineral Materials on Selected Properties of Aerobic Granular Sludge. Molecules 2020; 25:molecules25020386. [PMID: 31963466 PMCID: PMC7024291 DOI: 10.3390/molecules25020386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/05/2022] Open
Abstract
This study aimed to evaluate and compare the physical, chemical and biological properties of aerobic granular sludge from reactors with the addition of different powdered mineral materials. These properties have a significant impact on the efficiency of systems in which the biomass in granular form is used. Four identical granular sequencing batch reactors (GSBRs) were adopted for the research performed on a laboratory scale (R1—control reactor; R2, R3 and R4—with materials, PK, PG and PL respectively). The results indicate that the addition of powdered mineral materials improved the properties of biomass in reactors. The SVI5/SVI30 ratio values were significantly lower in the reactors with added materials (approx. 1.3 ± 0.3). The mean values of the sludge volume index at 30 min were the lowest in the R2 (39.8 ± 8.6 mL/g) and R4 (32.8 ± 10.7 mL/g) reactors. The settling velocity of biomass was the highest in the R2 reactor (15.4 ± 6.1 m/h). In the early days of the study, the highest extracellular polymeric substances (EPS) content was found in the biomass from the reactors to which the materials with higher Ca and Mg content were added (380.18–598.30 mg/g MLVSS). The rate of specific oxygen uptake (SOUR) by biomass indicated an insufficient biomass content in the R1 reactor—to 7.85 mg O2/(g MLVSS∙h)—while in the reactors with materials, the SOUR values were at the higher levels.
Collapse
Affiliation(s)
- Joanna Czarnota
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland;
- Correspondence: (J.C.); (G.Ł.); Tel.: +48-17-865-1278 (J.C.); +48-81-538-4322 (G.Ł.)
| | - Adam Masłoń
- Department of Environmental Engineering and Chemistry, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland;
| | - Monika Zdeb
- Department of Water Purification and Protection, Rzeszow University of Technology, 6 Powstańców Warszawy Av, 35-959 Rzeszów, Poland;
| | - Grzegorz Łagód
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
- Correspondence: (J.C.); (G.Ł.); Tel.: +48-17-865-1278 (J.C.); +48-81-538-4322 (G.Ł.)
| |
Collapse
|
29
|
Tang P, Yu D, Chen G, Zhang P, Wang X, Liu C, Huang S. Novel aerobic granular sludge culture strategy: Using granular sludge Anammox process effluent as a biocatalyst. BIORESOURCE TECHNOLOGY 2019; 294:122156. [PMID: 31561153 DOI: 10.1016/j.biortech.2019.122156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
The effluent from granular sludge Anammox process was used as a biocatalyst to improve the culture rate of aerobic granular sludge, and the internal causes of this effect were studied. In this study, in sequencing batch reactor, the formation and changes of AGS was monitored with granular sludge Anammox process effluent added before and after. The community structure of AGS was analyzed by molecular biology methods. The results showed ammonia utilizing rate increased from 3.41 to 5.96 mgNH4+-N/(g VSS·h), NO2--N maintained a high accumulation rate, and the denitrification performance remained stable. On 40th day, the diameter of the AGS reached 3.5 mm, and the concentrations of PN and PS reached 330.5 and 62.9 mg/gVSS, respectively. The community structure has changed. Nitrosomonas (31.7%) became the new dominant bacteria. Signal molecules contained in the effluent as inter-species signal molecules could enhance the formation of AGS.
Collapse
Affiliation(s)
- Peng Tang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Guanghui Chen
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Peiyu Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Chengcheng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Shuo Huang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
30
|
Huang J, Yi K, Zeng G, Shi Y, Gu Y, Shi L, Yu H. The role of quorum sensing in granular sludge: Impact and future application: A review. CHEMOSPHERE 2019; 236:124310. [PMID: 31344626 DOI: 10.1016/j.chemosphere.2019.07.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/20/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Quorum sensing (QS) is a process widely exist in bacteria, which refers to the cell-cell communication through secretion and sensing the specific chemical signal molecules named autoinducers. This review demonstrated recent research progresses on the specific impacts of signal molecules in the granular sludge reactors, such corresponding exogenous strategies contained the addition of QS signal molecules, QS-related enzymes and bacteria associated with QS process. Accordingly, the correlation between QS signaling molecule content and sludge granulation (including the formation and stability) was assumed, the comprehensive conclusion elucidated that some QS signals (acyl-homoserine lactone and Autoinducer 2) can accelerate the growth of particle diameter, the production of extracellular polymeric substance (EPS), microbial adhesion and change the microbiome structure. But diffusable signal factor (DSF) acted as a significant disincentive to the formation and stability of GS. As a result, it deserved serious attention on the value and role of QS signals in the GS. This review attempts to illuminate the potential method for addressing the main bottleneck: to accelerate the formation of granules and keep the high stability of GS for a long-term reactor. Therefore, review discussed the possible trends of GS: QS and intercellular/intracellular signaling which can lay a theoretical foundation for mechanism of GS formation and stability, would be of practical significance for further application in the future.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
31
|
Gong H, Pishgar R, Tay JH. Artificial neural network modelling for organic and total nitrogen removal of aerobic granulation under steady-state condition. ENVIRONMENTAL TECHNOLOGY 2019; 40:3124-3139. [PMID: 29671385 DOI: 10.1080/09593330.2018.1466920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granulation is a recent technology with high level of complexity and sensitivity to environmental and operational conditions. Artificial neural networks (ANNs), computational tools capable of describing complex non-linear systems, are the best fit to simulate aerobic granular bioreactors. In this study, two feedforward backpropagation ANN models were developed to predict chemical oxygen demand (Model I) and total nitrogen removal efficiencies (Model II) of aerobic granulation technology under steady-state condition. Fundamentals of ANN models and the steps to create them were briefly reviewed. The models were respectively fed with 205 and 136 data points collected from laboratory-, pilot-, and full-scale studies on aerobic granulation technology reported in the literature. Initially, 60%, 20%, and 20%, and 80%, 10%, and 10% of the points in the corresponding datasets were randomly chosen and used for training, testing, and validation of Model I, and Model II, respectively. Overall coefficient of determination (R2) value and mean squared error (MSE) of the two models were initially 0.49 and 15.5, and 0.37 and 408, respectively. To improve the model performance, two data division methods were used. While one method is generic and potentially applicable to other fields, the other can only be applied to modelling the performance of aerobic granular reactors. R2 value and MSE were improved to 0.90 and 2.54, and 0.81 and 121.56, respectively, after applying the new data division methods. The results demonstrated that ANN-based models were capable simulation approach to predict a complicated process like aerobic granulation.
Collapse
Affiliation(s)
- H Gong
- Department of Civil Engineering, University of Calgary , Calgary , Canada
| | - R Pishgar
- Department of Civil Engineering, University of Calgary , Calgary , Canada
| | - J H Tay
- Department of Civil Engineering, University of Calgary , Calgary , Canada
| |
Collapse
|
32
|
Liu Z, Zhou L, Liu F, Gao M, Wang J, Zhang A, Liu Y. Impact of Al-based coagulants on the formation of aerobic granules: Comparison between poly aluminum chloride (PAC) and aluminum sulfate (AS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:74-84. [PMID: 31174125 DOI: 10.1016/j.scitotenv.2019.05.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
As widely used Al-based coagulants, poly aluminum chloride (PAC) and aluminum sulfate (AS) were adopted in a short term at the start-up stage (from 10th to 16th) to enhance the formation of aerobic granules, and their effects on aerobic granulation were elucidated. The results suggested that both PAC and AS facilitated the granulation by improving the physicochemical properties of sludge. The reactor performance in pollutant removal was also enhanced. Specifically, in terms of extracellular polymeric substances (EPS), PAC dosing mainly stimulated the production of loosely bound EPS (LB-EPS), whereas more tightly bound EPS (TB-EPS) were secreted with the presence of AS. Based on the elemental analysis, polymeric Al hydrolyzed from PAC mainly worked on the exterior of microbial aggregates, and thus the attached aluminum in granules was gradually eliminated by ion exchange and hydraulic shear force. In contrast, the aluminum species in AS hydrolyzed into monomeric and oligomeric Al, and thus could diffuse into the interior of microbial aggregates and eventually created an "Al-core" in the granules. Overall, the present study describes the AGS formation with Al-based coagulants and the mechanisms of PAC- and AS-enhanced aerobic granulation.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lichao Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Fengdan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road, No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
33
|
Ahmad JSM, Zhao Z, Zhang Z, Shimizu K, Utsumi M, Lei Z, Lee DJ, Tay JH. Algal-bacterial aerobic granule based continuous-flow reactor with effluent recirculation instead of air bubbling: Stability and energy consumption analysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Yin Y, Sun J, Liu F, Wang L. Effect of nitrogen deficiency on the stability of aerobic granular sludge. BIORESOURCE TECHNOLOGY 2019; 275:307-313. [PMID: 30594841 DOI: 10.1016/j.biortech.2018.12.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
To assess the stability of aerobic granular sludge (AGS) under nitrogen deficiency conditions, three sequence batch reactors were operated with chemical oxygen demand (COD) to nitrogen (N) ratios of 100/5, 100/2.5, and 100/2, while COD concentration was kept consistent. AGS variations in its physicochemical characteristics, microbial community, and treatment performance were investigated. The results indicated that good treatment performance and stable AGS were achieved under nitrogen deficiency. Extracellular polymeric substances (EPS) regulating mechanism preserved AGS stability under nitrogen deficiency, especially through increased secretion of polysaccharide. In addition, members of the Anaerolineaceae were the major filamentous bacteria, which are strictly anaerobic organism, providing a possible explanation to the lack of filamentous bacteria outgrowth under N deficient condition. Insights from this study could help lower chemical costs in AGS applications for specific industrial wastewater treatments.
Collapse
Affiliation(s)
- Yunjun Yin
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Jian Sun
- School of Civil and Architecture Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Fengyuan Liu
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Lu Wang
- Development Research Center of the Ministry of Water Resources of P.R. China, Beijing 100038, China
| |
Collapse
|
35
|
Guo Y, Zhang B, Zhang Z, Shi W, Zhang R, Cheng J, Li W, Cui F. Enhanced aerobic granulation by applying the low-intensity direct current electric field via reactive iron anode. WATER RESEARCH 2019; 149:159-168. [PMID: 30439579 DOI: 10.1016/j.watres.2018.10.095] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
A novel granulation strategy by applying the low-intensity direct current (DC) electric field via reactive iron anode into the aerobic granular sludge (AGS) system was systematically investigated in this study. Three identical sequencing batch reactors (SBRs, namely R1, R2, and R3) were operated for 100 days. Comparatively, the R1 and R3 were continuously subjected to the 1.0 V DC electric field via a reactive Fe anode and an inert Ti-Ir/Rh anode, respectively, while the R2 without DC exposure. The results showed that the sludge granulation processes were accelerated in order as follows: R2<R3<R1, and the properties of mature granules were improved in order as follows: R3<R2<R1. Interestingly, at the end of experiment, total phosphorus (TP) removal efficiency in R1 dramatically increased to 80.52%, which was 2.15 and 1.96 folds than that in R2 and R3, respectively. Further investigations revealed that this novel strategy could simultaneously improve the secretion of EPS and the release of iron ions in R1, which cooperatively enhanced the granulation process. Moreover, in R1, mineral precipitation of phosphate remarkably improved the capability of phosphorus removal. The observed effective and stable performance highlights the feasibility and potential of this novel strategy for the rapid start-up and stable operation of AGS system.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
36
|
Liang Z, Tu Q, Su X, Yang X, Chen J, Chen Y, Li H, Liu C, He Q. Formation, extracellular polymeric substances, and structural stability of aerobic granules enhanced by granular activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6123-6132. [PMID: 30617891 DOI: 10.1007/s11356-018-04101-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Granular activated carbon (GAC) has been proved to accelerate the formation of aerobic granules during wastewater treatment. However, there has never been a study on the extracellular polymeric substances (EPS) or structural stability of the GAC aerobic granules. Thus, this study evaluated the impact of GAC on these characteristics. With GAC addition, granules matured 12 days earlier than those of the control group. Scanning electron microscopy showed the surface of aerobic granules enhanced by GAC to be denser and smoother than the surface of control granules, which could be the first line of defense against external selection pressure. After granules matured, there was no difference in contamination removal between the two types of granules. The protein content in EPS of GAC aerobic granules was higher than that of the control group; however, there was no difference in the polysaccharide content. EPS fluorescence in situ staining demonstrated that inside the aerobic granules, a high concentration of protein encapsulated the GAC. In addition, integrity coefficients indicated that GAC significantly improved the ability of aerobic granules to resist hydraulic shear. The result of hydrolase treatment proved that the outer layer structure of the GAC aerobic granules was maintained by β-polysaccharide, and the inner layer structure was maintained by protein. The ability of GAC-enhanced aerobic granules to resist single hydrolase was stronger than that of the control group.
Collapse
Affiliation(s)
- Zixuan Liang
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Qianqian Tu
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Xiaoxuan Su
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Xiangyu Yang
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Junyu Chen
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Yi Chen
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Hong Li
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Caihong Liu
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Qiang He
- Key Laboratory of Eco-environment of Three Gorges Region, Ministry of Education, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, China.
| |
Collapse
|
37
|
Ren X, Chen Y, Guo L, She Z, Gao M, Zhao Y, Shao M. The influence of Fe 2+, Fe 3+ and magnet powder (Fe 3O 4) on aerobic granulation and their mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:1-11. [PMID: 30092387 DOI: 10.1016/j.ecoenv.2018.07.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to develop an aerobic granular sludge and understand the granulation process of the multi-iron ions. Four sequencing batch reactors (SBRs) were applied to elucidate the effect of Fe2+, Fe3+ and Fe3O4 addition on aerobic granulation. The results confirmed that the start-up time of aerobic granulation with Fe3O4 addition (11 days) was notably less than that with Fe2+ (16 days) and Fe3+ (27 days) addition. Larger granules achieved with Fe3O4 addition with a sludge volume index (SVI30) of 28.50 mL/g and settling velocity of 49.68 m/h. Scanning electron microscope (SEM) analysis further revealed that the presence of mineral crystal in the granule core with Fe2+ and Fe3O4 addition accelerated the granule formation and maintained the stability of the structure. Extracellular polymeric substances (EPS) were studied using three-dimensional-excitation emission matrix (3D-EEM) fluorescence spectra technology to gain a comprehensive view of the interactions between EPS and Fe2+, Fe3+ and Fe3O4. Around 94.76% and 97.68% removal rate was noted for COD and ammonia in the granulation process. Finally, the dominant functional species involved in biological nutrients removal and granule formation were identified by high throughput sequencing technology to assess the effects of Fe2+, Fe3+ and Fe3O4 to granule at the molecular level.
Collapse
Affiliation(s)
- Xiaomin Ren
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yue Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
38
|
Fan W, Yuan L, Qu X. CFD simulation of hydrodynamic behaviors and aerobic sludge granulation in a stirred tank with lower ratio of height to diameter. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
39
|
Fan XY, Gao JF, Pan KL, Li DC, Zhang LF, Wang SJ. Shifts in bacterial community composition and abundance of nitrifiers during aerobic granulation in two nitrifying sequencing batch reactors. BIORESOURCE TECHNOLOGY 2018; 251:99-107. [PMID: 29272774 DOI: 10.1016/j.biortech.2017.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Shifts in bacterial community composition and abundance of nitrifiers during aerobic granulation, and the effects of wastewater composition on them were investigated using Illumina sequencing and quantitative PCR. The bacterial diversity decreased sharply during the post-granulation period. Although cultivated with different wastewater types, aerobic granular sludge (AGS) formed with similar bacterial structure. The bacterial structure in AGS was completely different from that of seed sludge. The minor genera in seed sludge, e.g., Arcobacter, Aeromonas, Flavobacterium and Acinetobacter, became the dominant genera in AGS. These genera have the potential to secrete excess extracellular polymer substances. Whereas, the dominant genera in seed sludge were found in less amount or even disappeared in AGS. During aerobic granulation, ammonia-oxidizing archaea were gradually washed-out. While, ammonia-oxidizing bacteria, complete ammonia oxidizers and nitrite-oxidizing bacteria were retained. Overall, in this study, the bacterial genera with low relative abundance in seed sludge are important for aerobic granulation.
Collapse
Affiliation(s)
- Xiao-Yan Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Kai-Ling Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Li-Fang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Shi-Jie Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
40
|
Ou D, Li H, Li W, Wu X, Wang YQ, Liu YD. Salt-tolerance aerobic granular sludge: Formation and microbial community characteristics. BIORESOURCE TECHNOLOGY 2018; 249:132-138. [PMID: 29040846 DOI: 10.1016/j.biortech.2017.07.154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
The salt-tolerance aerobic granular sludge (SAGS) dominated by moderately halophilic bacteria was successfully cultured in a 9% (w/v) salty, lab-scale sequence batch reactor (SBR) system. Influence of high salinity (0-9% w/v NaCl) on the formation, performance and microbial succession of the SAGS were explored. Crystal nucleus hypothesis, selection pressure hypothesis and compressed double electric layers hypothesis were used to discuss the formation mechanism of SAGS. Notably, salinity could be seen as a kind of selection pressure contributed to the formation of SAGS, while salinity also declined the performance of SAGS system. High throughput 16S rRNA gene analysis showed that the salinity had great influence on the species succession and community structure of SAGS. Moreover, Salinicola and Halomonas were dominant at 9% salt concentration, therefore moderate halophiles were identified as functional groups for the tolerance of hypersaline stress.
Collapse
Affiliation(s)
- Dong Ou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Li
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao Wu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yi-Qiao Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yong-di Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
41
|
Farooq M, Almustapha MN, Imran M, Saeed MA, Andresen JM. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H 2S removal from biogas. BIORESOURCE TECHNOLOGY 2018; 249:125-131. [PMID: 29040845 DOI: 10.1016/j.biortech.2017.09.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 05/22/2023]
Abstract
In-situ regeneration of a granular activated carbon was conducted for the first time using electric potential swing desorption (EPSD) with potentials up to 30 V. The EPSD system was compared against a standard non-potential system using a fixed-bed reactor with a bed of 10 g of activated carbon treating a gas mixture with 10,000 ppm H2S. Breakthrough times, adsorption desorption volume, capacities, effect of regeneration and desorption kinetics were investigated. The analysis showed that desorption of H2S using the new EPSD system was 3 times quicker compared with the no potential system. Hence, physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column system, which could lead towards a more efficient and economic biogas to biomethane process.
Collapse
Affiliation(s)
- M Farooq
- Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, UK; Department of Mechanical Engineering, University of Engineering & Technology Lahore, KSK Campus, Pakistan; Research Centre for Carbon Solutions, Heriot-Watt University, UK.
| | - M N Almustapha
- Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, UK; Research Centre for Carbon Solutions, Heriot-Watt University, UK
| | - M Imran
- Department of Energy Engineering, School of Engineering, University of Management & Technology, Lahore, Pakistan; Department of Mechanical Engineering, Technical University of Denmark, Denmark
| | - M A Saeed
- Department of Chemical and Polymer Engineering, UET Lahore Faisalabad Campus, Pakistan
| | - John M Andresen
- Institute of Mechanical, Process & Energy Engineering, Heriot-Watt University, UK; Research Centre for Carbon Solutions, Heriot-Watt University, UK
| |
Collapse
|
42
|
Barua S, Dhar BR. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. BIORESOURCE TECHNOLOGY 2017; 244:698-707. [PMID: 28818798 DOI: 10.1016/j.biortech.2017.08.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 05/16/2023]
Abstract
Direct interspecies electron transfer (DIET) is a recently discovered microbial syntrophy where cell-to-cell electron transfer occurs between syntrophic microbial species. DIET between bacteria and methanogenic archaea in anaerobic digestion can accelerate the syntrophic conversion of various reduced organic compounds to methane. DIET-based syntrophy can naturally occur in some anaerobic digester via conductive pili, however, can be engineered via the addition of various non-biological conductive materials. In recent years, research into understanding and engineering DIET-based syntrophy has emerged with the aim of improving methanogenesis kinetics in anaerobic digestion. This article presents a state-of-art review focusing on the fundamental mechanisms, key microbial players, the role of electrical conductivity, the effectiveness of various conductive additives, the significance of substrate characteristics and organic loading rates in promoting DIET in anaerobic digestion.
Collapse
Affiliation(s)
- Sajib Barua
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
43
|
Ahmad JSM, Cai W, Zhao Z, Zhang Z, Shimizu K, Lei Z, Lee DJ. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. BIORESOURCE TECHNOLOGY 2017; 244:225-233. [PMID: 28779675 DOI: 10.1016/j.biortech.2017.07.134] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Stability of algal-bacterial granules was investigated in two continuous-flow systems to treat synthetic domestic wastewater using single (R1) and series (R2=R2-1+R2-2 with automatically internal recirculation) reactors by seeding 50% (w/w) algal-bacterial granules. Almost similar organics and phosphorus removal efficiencies were obtained from the two systems, with no significant difference found for each between the designed two operation stages. However, R2 exhibited superior performance on total nitrogen (TN) removal (76%). When double increased strength influent fed to R1, R1 achieved better denitrification with TN removal increased from 29% to 80%, possibly due to the increased influent organics concentration favored the denitrification process. Most importantly, the two systems well maintained their granular stability, and all granules became algal-bacterial ones with very little change detected in algae content in granules after 120days' operation. At last, the mechanisms were proposed regarding the formation and enhanced stability of new algal-bacterial granules in continuous-flow reactors.
Collapse
Affiliation(s)
- Johan Syafri Mahathir Ahmad
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta 55281, Indonesia
| | - Wei Cai
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|