1
|
Sarangi PK, Srivastava RK, Vivekanand V, Goksen G, Sahoo UK, Thakur TK, Debeaufort F, Uysal-Unalan I, Pugazhendhi A. Recovery of green phenolic compounds from lignin-based source: Role of ferulic acid esterase towards waste valorization and bioeconomic perspectives. ENVIRONMENTAL RESEARCH 2024; 256:119218. [PMID: 38782335 DOI: 10.1016/j.envres.2024.119218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The production of chemicals/products so far relies on fossil-based resources with the creation of several environmental problems at the global level. In this situation, a sustainable and circular economy model is necessitated to mitigate global environmental issues. Production of biowaste from various processing industries also creates environmental issues which would be valorized for the production of industrially important reactive and bioactive compounds. Lignin acts as a vital part in biowaste composition which can be converted into a wide range of phenolic compounds. The phenolic compounds have attracted much attention, owing to their influence on diverse not only organoleptic parameters, such as taste or color, but also active agents for active packaging systems. Crop residues of varied groups, which are an affluent source of lignocellulosic biomass could serve as a renewable resource for the biosynthesis of ferulic acid (FA). FA is obtained by the FA esterase enzyme action, and it can be further converted into various tail end phenolic flavor green compounds like vanillin, vanillic acid and hydroxycinnamic acid. Lignin being renewable in nature, processing and management of biowastes towards sustainability is the need as far as the global industrial point is concerned. This review explores all the approaches for conversion of lignin into value-added phenolic compounds that could be included to packaging applications. These valorized products can exhibit the antioxidant, antimicrobial, cardioprotective, anti-inflammatory and anticancer properties, and due to these features can emerge to incorporate them into production of functional foods and be utilization of them at active food packaging application. These approaches would be an important step for utilization of the recovered bioactive compounds at the nutraceutical and food industrial sectors.
Collapse
Affiliation(s)
| | - Rajesh Kumar Srivastava
- Department of Biotechnology, GST, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, 530045, A.P., India
| | - Vivekanand Vivekanand
- Center for Energy and Environment, Malaviya National Institute of Technology Jaipur, 302 017, Rajasthan, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | | | | | - Frederic Debeaufort
- Department of BioEngineering, Institute of Technology Dijon Auxerre, University of Burgundy, 7 Blvd Docteur Petitjean, 20178 Dijon Cedex, France
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark; CiFOOD - Center for Innovative Food Research, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
2
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. The Inhibitory Potential of Ferulic Acid Derivatives against the SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and ADMET Evaluation. Biomedicines 2022; 10:biomedicines10081787. [PMID: 35892687 PMCID: PMC9329733 DOI: 10.3390/biomedicines10081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is an appealing target for the development of antiviral compounds, due to its critical role in the viral life cycle and its high conservation among different coronaviruses and the continuously emerging mutants of SARS-CoV-2. Ferulic acid (FA) is a phytochemical with several health benefits that is abundant in plant biomass and has been used as a basis for the enzymatic or chemical synthesis of derivatives with improved properties, including antiviral activity against a range of viruses. This study tested 54 reported FA derivatives for their inhibitory potential against Mpro by in silico simulations. Molecular docking was performed using Autodock Vina, resulting in comparable or better binding affinities for 14 compounds compared to the known inhibitors N3 and GC376. ADMET analysis showed limited bioavailability but significantly improved the solubility for the enzymatically synthesized hits while better bioavailability and druglikeness properties but higher toxicity were observed for the chemically synthesized ones. MD simulations confirmed the stability of the complexes of the most promising compounds with Mpro, highlighting FA rutinoside and compound e27 as the best candidates from each derivative category.
Collapse
|
3
|
Antonopoulou I, Sapountzaki E, Rova U, Christakopoulos P. Ferulic Acid From Plant Biomass: A Phytochemical With Promising Antiviral Properties. Front Nutr 2022; 8:777576. [PMID: 35198583 PMCID: PMC8860162 DOI: 10.3389/fnut.2021.777576] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is a magnificent renewable resource for phytochemicals that carry bioactive properties. Ferulic acid (FA) is a hydroxycinnamic acid that is found widespread in plant cell walls, mainly esterified to polysaccharides. It is well known of its strong antioxidant activity, together with numerous properties, such as antimicrobial, anti-inflammatory and neuroprotective effects. This review article provides insights into the potential for valorization of FA as a potent antiviral agent. Its pharmacokinetic properties (absorption, metabolism, distribution and excretion) and the proposed mechanisms that are purported to provide antiviral activity are presented. Novel strategies on extraction and derivatization routes, for enhancing even further the antiviral activity of FA and potentially favor its metabolism, distribution and residence time in the human body, are discussed. These routes may lead to novel high-added value biorefinery pathways to utilize plant biomass toward the production of nutraceuticals as functional foods with attractive bioactive properties, such as enhancing immunity toward viral infections.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Eleftheria Sapountzaki
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
4
|
Rincón D, Doerr M, Daza MC. Hydrogen Bonds and n → π* Interactions in the Acetylation of Propranolol Catalyzed by Candida antarctica Lipase B: A QTAIM Study. ACS OMEGA 2021; 6:20992-21004. [PMID: 34423207 PMCID: PMC8375099 DOI: 10.1021/acsomega.1c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Enzyme-substrate interactions play a crucial role in enzymatic catalysis. Quantum theory of atoms in molecules (QTAIM) calculations are extremely useful in computational studies of these interactions because they provide very detailed information about the strengths and types of molecular interactions. QTAIM also provides information about the intramolecular changes that occur in the catalytic reaction. Here, we analyze the enzyme-substrate interactions and the topological properties of the electron density in the enantioselective step of the acylation of (R,S)-propranolol, an aminoalcohol with therapeutic applications, catalyzed by Candida antarctica lipase B. Eight reaction paths (four for each enantiomer) are investigated and the energies, atomic charges, hydrogen bonds, and n → π* interactions of propranolol, the catalytic triad (composed of D187, H224, and S105), and the oxyanion hole are analyzed. It is found that D187 acts as an electron density reservoir for H224, and H224 acts as an electron density reservoir for the active site of the protein. It releases electron density when the tetrahedral intermediate is formed from the Michaelis complex and receives it when the enzyme-product complex is formed. Hydrogen bonds can be grouped into noncovalent and covalent hydrogen bonds. The latter are stronger and more important for the reaction than the former. We also found weak n → π* interactions, which are characterized by QTAIM and the natural bond orbital (NBO) analysis.
Collapse
|
5
|
Grajales-Hernández DA, Armendáriz-Ruiz MA, Gallego FL, Mateos-Díaz JC. Approaches for the enzymatic synthesis of alkyl hydroxycinnamates and applications thereof. Appl Microbiol Biotechnol 2021; 105:3901-3917. [PMID: 33928423 DOI: 10.1007/s00253-021-11285-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Alkyl hydroxycinnamates (AHs) is a group of molecules of biotechnological interest due to their cosmetic, food, and pharmaceutical applications. Among their most interesting uses are as UV protectants, skin depigmentation agents, and antioxidant ingredients which are often claimed for their antitumoral potential. Nowadays, many sustainable enzymatic approaches using low-cost starting materials are available and interesting immobilization techniques are helping to increase the reuse of the biocatalysts, allowing the intensification of the processes and increasing AHs accessibility. Here a convenient summary of AHs most interesting biological activities and possible applications is presented. A deeper analysis of the art state to obtain AHs, focusing on most employed enzymatic synthesis approaches, their sustainability, acyl donors relevance, and most interesting enzyme immobilization strategies is provided.Key points• Most interesting alkyl hydroxycinnamates applications are summarized.• Enzymatic approaches to obtain alkyl hydroxycinnamates are critically discussed.• Outlook of enzyme immobilization strategies to attain alkyl hydroxycinnamates.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
| | - Mariana A Armendáriz-Ruiz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico
| | - Fernando López Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA), Paséo Miramón, 182, 20014, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain
| | - Juan Carlos Mateos-Díaz
- Department of Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero 1227, El Bajio del Arenal, 45019, Zapopan, Jal., Mexico.
| |
Collapse
|
6
|
Xin C, Wang X, Liu L, Yang J, Wang S, Yan Y. Rational Design of Monodisperse Mesoporous Silica Nanoparticles for Phytase Immobilization. ACS OMEGA 2020; 5:30237-30242. [PMID: 33251457 PMCID: PMC7689912 DOI: 10.1021/acsomega.0c04696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 05/19/2023]
Abstract
Monodisperse mesoporous silica nanoparticles (MMSNs) with fractal structures were synthesized via a facile, one-pot, surfactant-free process under the well-known Stüber synthesis condition. It was characterized by scanning electron microscope, transmission electron microscopy, and N2 adsorption-desorption isotherms. Phytase was immobilized on the MMSNs by physical adsorption. The enzyme loading capacity, activity, and release profile were measured by a faster and more reliable assay method, which was based on the hydrolysis of para-nitrophenylphosphate. The results show that the fractal structures have an important influence on the phytase capacity, and the releasing results also illustrated that phytase immobilized on MMSNs possessed the smallest releasing amounts under acidic conditions (pH = 3).
Collapse
|
7
|
Tamayo-Cabezas J, Karboune S. Optimizing Immobilization and Stabilization of Feruloyl Esterase from Humicola Insolens and its Application for the Feruloylation of Oligosaccharides. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Grajales-Hernández DA, Velasco-Lozano S, Armendáriz-Ruiz MA, Rodríguez-González JA, Camacho-Ruíz RM, Asaff-Torres A, López-Gallego F, Mateos-Díaz JC. Carrier-bound and carrier-free immobilization of type A feruloyl esterase from Aspergillus niger: Searching for an operationally stable heterogeneous biocatalyst for the synthesis of butyl hydroxycinnamates. J Biotechnol 2020; 316:6-16. [PMID: 32305629 DOI: 10.1016/j.jbiotec.2020.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Feruloyl esterases synthesize butyl hydroxycinnamates, molecules possessing interesting biological properties, nonetheless, they exhibit a low stability under synthesis conditions in organic solvents, restricting its use. To enhance its operational stability in synthesis, we immobilized type A feruloyl esterase from Aspergillus niger (AnFAEA) using several carrier-bound and carrier-free strategies. The most active biocatalysts were: 1) AnFAEA immobilized on epoxy-activated carriers (protein load of 0.6 mgenzyme x mg-1carrier) that recovered 91 % of the initial hydrolytic activity, and 2) AnFAEA aggregated and cross-linked in the presence of 5 mg of BSA and 15 mM of glutaraldehyde (AnFAEA-amino-CLEAs), which exhibited 385 % of its initial hydrolytic activity; both using 4-nitrophenyl butyrate as substrate. The AnFAEA-amino-CLEAs were 12.7 times more thermostable at 60 °C than the AnFAEA immobilized on epoxy-activated carrier, thus AnFAEA-amino-CLEAs were selected for further characterization. Interestingly, during methyl sinapate hydrolysis (pH 7.2 and 30 °C), AnFAEA-amino-CLEAs KM was 15 % higher, while during butyl sinapate synthesis the KM was reduced in 63 %, both compared with the soluble enzyme. The direct esterification of butyl sinapate at solvent free conditions using sinapic acid 50 mM, reached 95 % conversion after 24 h employing AnFAEA-amino-CLEAs, which could be used for 10 cycles without significant activity losses, demonstrating their outstanding operational stability.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain
| | - Mariana A Armendáriz-Ruiz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Jorge A Rodríguez-González
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Rosa María Camacho-Ruíz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico
| | - Ali Asaff-Torres
- Industrial biotechnology, Centro de Investigación en Alimentación y Desarrollo, Carretera a La Victoria km 0.6, Hermosillo, Sonora, Mexico
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, C/ Pedro Cerbuna 12, Zaragoza, Spain; ARAID, Aragon I+D Foundation, Zaragoza, Spain
| | - Juan Carlos Mateos-Díaz
- Industrial Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ, A.C.), Camino Arenero 1227 El Bajío del Arenal, Zapopan, Jalisco, Mexico.
| |
Collapse
|
10
|
Chong SL, Cardoso V, Brás JLA, Gomes MZDV, Fontes CMGA, Olsson L. Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. BIORESOURCE TECHNOLOGY 2019; 293:122009. [PMID: 31493730 DOI: 10.1016/j.biortech.2019.122009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Here, we demonstrated the immobilization of bacterial feruloyl esterase (FAE) from Butyrivibrio sp. XPD2006, Lactobacillus crispatus, Butyrivibrio sp. AE2015, Ruminococcus albus, Cellulosilyticum ruminicola and Clostridium cellulovorans on SBA-15 and their ability to synthesize butyl ferulate (BFA). The BFae2 from Butyrivibrio sp. XPD2006 showed the best catalytic efficiency. High BFA yield was produced when the immobilization of BFae2 took place with a high protein loading and narrow pore sized SBA-15, suggesting alteration of enzyme behavior due to the crowding environment in SBA-15. Grafting of SBA-15 with octyl moieties led to shrinking pore size and resulted in 2.5-fold increment of BFA activity compared to the free enzyme and 70%mol BFA was achieved. The BFae2 encapsulated in hydrophobic-modified SBA-15 endured up to seven reaction cycles while the BFA activity remained above 60%. This is the first report showing the superior performance of hydrophobic-modified surface to entrap FAE to produce fatty phenolic esters.
Collapse
Affiliation(s)
- Sun Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300 Hangzhou, China; Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Vânia Cardoso
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Joana L A Brás
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal
| | - Milene Zezzi do Valle Gomes
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Applied Chemistry, SE 412 96 Gothenburg, Sweden
| | - Carlos M G A Fontes
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
11
|
Bonzom C, Hüttner S, Mirgorodskaya E, Chong SL, Uthoff S, Steinbüchel A, Verhaert RMD, Olsson L. Glycosylation influences activity, stability and immobilization of the feruloyl esterase 1a from Myceliophthora thermophila. AMB Express 2019; 9:126. [PMID: 31407106 PMCID: PMC6691016 DOI: 10.1186/s13568-019-0852-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 11/26/2022] Open
Abstract
Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.
Collapse
|
12
|
Oliveira DM, Mota TR, Oliva B, Segato F, Marchiosi R, Ferrarese-Filho O, Faulds CB, Dos Santos WD. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. BIORESOURCE TECHNOLOGY 2019; 278:408-423. [PMID: 30704902 DOI: 10.1016/j.biortech.2019.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 05/25/2023]
Abstract
Ferulic acid and its hydroxycinnamate derivatives represent one of the most abundant forms of low molecular weight phenolic compounds in plant biomass. Feruloyl esterases are part of a microorganism's plant cell wall-degrading enzymatic arsenal responsible for cleaving insoluble wall-bound hydroxycinnamates and soluble cytosolic conjugates. Stimulated by industrial requirements, accelerating scientific discoveries and knowledge transfer, continuous improvement efforts have been made to identify, create and repurposed biocatalysts dedicated to plant biomass conversion and biosynthesis of high-added value molecules. Here we review the basic knowledge and recent advances in biotechnological characteristics and the gene content encoding for feruloyl esterases. Information about several enzymes is systematically organized according to their function, biochemical properties, substrate specificity, and biotechnological applications. This review contributes to further structural, functional, and biotechnological R&D both for obtaining hydroxycinnamates from agricultural by-products as well as for lignocellulose biomass treatments aiming for production of bioethanol and other derivatives of industrial interest.
Collapse
Affiliation(s)
- Dyoni M Oliveira
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Thatiane R Mota
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Bianca Oliva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Craig B Faulds
- Aix-Marseille Université, INRA UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13009 Marseille, France
| | | |
Collapse
|
13
|
Effective and reusable T. reesei immobilized on SBA-15 for monomeric sugar production from cellulose hydrolysis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Antonopoulou I, Iancu L, Jütten P, Piechot A, Rova U, Christakopoulos P. Optimized Enzymatic Synthesis of Feruloyl Derivatives Catalyzed by Three Novel Feruloyl Esterases from Talaromyces wortmannii in Detergentless Microemulsions. Comput Struct Biotechnol J 2018; 16:361-369. [PMID: 30364734 PMCID: PMC6197793 DOI: 10.1016/j.csbj.2018.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Three novel feruloyl esterases (Fae125, Fae7262 and Fae68) from Talaromyces wortmannii overexpressed in the C1 platform were evaluated for the transesterification of vinyl ferulate with two acceptors of different size and lipophilicity (prenol and L-arabinose) in detergentless microemulsions. The effect of reaction conditions such as the microemulsion composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation were investigated. The type A Fae125 belonging to the subfamily 5 (SF5) of phylogenetic classification showed highest yields for the synthesis of both products after optimization of reaction conditions: 81.8% for prenyl ferulate and 33.0% for L-arabinose ferulate. After optimization, an 8-fold increase in the yield and a 12-fold increase in selectivity were achieved for the synthesis of prenyl ferulate. Three feruloyl esterases from Talaromyces wortmannii were tested for their synthetic and hydrolytic activity. Reaction conditions were optimized for the synthesis two feruloyl derivatives, prenyl ferulate and L-arabinose ferulate. Fae125 offered highest yield for both products (81.8% and 33%, respectively).
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Laura Iancu
- Dupont Industrial Biosciences, Nieuwe Kanaal 7-S, Wageningen 6709, the Netherlands
| | - Peter Jütten
- Taros Chemicals GmbH & Co KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Alexander Piechot
- Taros Chemicals GmbH & Co KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| |
Collapse
|
15
|
Antonopoulou I, Iancu L, Jütten P, Piechot A, Rova U, Christakopoulos P. Screening of novel feruloyl esterases from Talaromyces wortmannii for the development of efficient and sustainable syntheses of feruloyl derivatives. Enzyme Microb Technol 2018; 120:124-135. [PMID: 30396393 DOI: 10.1016/j.enzmictec.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/22/2023]
Abstract
The feruloyl esterases Fae125, Fae7262 and Fae68 from Talaromyces wortmannii were screened in 10 different solvent: buffer systems in terms of residual hydrolytic activity and of the ability for the transesterification of vinyl ferulate with prenol or l-arabinose. Among the tested enzymes, the acetyl xylan-related Fae125 belonging to the phylogenetic subfamily 5 showed highest yield and selectivity for both products in alkane: buffer systems (n-hexane or n-octane). Response surface methodology, based on a 5-level and 6-factor central composite design, revealed that the substrate molar ratio and the water content were the most significant variables for the bioconversion yield and selectivity. The effect of agitation, the possibility of DMSO addition and the increase of donor concentration were investigated. After optimization, competitive transesterification yields were obtained for prenyl ferulate (87.5-92.6%) and l-arabinose ferulate (56.2-61.7%) at reduced reaction times (≤24 h) resulting in good productivities (>1 g/L/h, >300 kg product/kg FAE). The enzyme could be recycled for six consecutive cycles retaining 66.6% of the synthetic activity and 100% of the selectivity.
Collapse
Affiliation(s)
- Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Laura Iancu
- Dupont Industrial Biosciences, Nieuwe Kanaal 7-S, 6709 PA, Wageningen, The Netherlands
| | - Peter Jütten
- Taros Chemicals GmbH & Co KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Alexander Piechot
- Taros Chemicals GmbH & Co KG, Emil-Figge-Str. 76a, 44227, Dortmund, Germany
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden.
| |
Collapse
|
16
|
Feruloyl esterase immobilization in mesoporous silica particles and characterization in hydrolysis and transesterification. BMC BIOCHEMISTRY 2018; 19:1. [PMID: 29390959 PMCID: PMC5795792 DOI: 10.1186/s12858-018-0091-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/25/2018] [Indexed: 02/03/2023]
Abstract
Background Enzymes display high reactivity and selectivity under natural conditions, but may suffer from decreased efficiency in industrial applications. A strategy to address this limitation is to immobilize the enzyme. Mesoporous silica materials offer unique properties as an immobilization support, such as high surface area and tunable pore size. Results The performance of a commercially available feruloyl esterase, E-FAERU, immobilized on mesoporous silica by physical adsorption was evaluated for its transesterification ability. We optimized the immobilization conditions by varying the support pore size, the immobilization buffer and its pH. Maximum loading and maximum activity were achieved at different pHs (4.0 and 6.0 respectively). Selectivity, shown by the transesterification/hydrolysis products molar ratio, varied more than 3-fold depending on the reaction buffer used and its pH. Under all conditions studied, hydrolysis was the dominant activity of the enzyme. pH and water content had the greatest influence on the enzyme selectivity and activity. Determined kinetic parameters of the enzyme were obtained and showed that Km was not affected by the immobilization but kcat was reduced 10-fold when comparing the free and immobilized enzymes. Thermal and pH stabilities as well as the reusability were investigated. The immobilized biocatalyst retained more than 20% of its activity after ten cycles of transesterification reaction. Conclusions These results indicate that this enzyme is more suited for hydrolysis reactions than transesterification despite good reusability. Furthermore, it was found that the immobilization conditions are crucial for optimal enzyme activity as they can alter the enzyme performance. Electronic supplementary material The online version of this article (10.1186/s12858-018-0091-y) contains supplementary material, which is available to authorized users.
Collapse
|