1
|
Hofmann W, Orthofer M, Salas Wallach N, Ruddyard A, Ungerank M, Paulik C, Rittmann SKMR. Method for automated high performance closed batch cultivation of gas-utilizing methanogens. AMB Express 2025; 15:67. [PMID: 40301238 PMCID: PMC12040808 DOI: 10.1186/s13568-025-01872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
To advance the utilization of microbial cell factories in gas fermentation processes, their physiological and biotechnological characteristics must be understood. Here, we report on the construction and operation of a novel device, the Gas and Pressure Controller (GPC), which is specifically designed for the automated control of the headspace gas pressure of closed cultivation bottles and facilitates automated gassing, sparging, monitoring and regulation of the headspace volume operated in closed batch cultivation mode in real time.As proof of concept, the physiological and biotechnological characteristics of four autotrophic, hydrogenotrophic methanogenic archaea were examined to quantify novel physiological limits through the elimination of gas limitation during growth and methane formation. We determined unprecedented high maximum specific methane productivity (qCH4) values for: Methanothermobacter marburgensis of 169.59 ± 12.52 mmol g- 1 h- 1, Methanotorris igneus of 420.21 ± 89.46 mmol g- 1 h- 1, Methanocaldococcus jannaschii of 364.52 ± 25.50 mmol g- 1 h- 1 and Methanocaldococcus villosus of 356.38 ± 20.79 mmol g- 1 h- 1. Obtained qCH4 of M. marburgensis is more than 10-fold higher compared to conventional closed batch cultivation set-ups and as high as the highest reported qCH4 value of M. marburgensis from fed-batch gas fermentation in stirred tank bioreactors. Furthermore, the GPC demonstrated reliable functionality with Methanococcus maripaludis, operating safely and autonomous during long term cultivation. This novel device enables optimal headspace pressure control, providing flexibility in application for various gas-fermenting biotechnological processes. It facilitates near optimal cultivation conditions in semi-continuous closed batch cultivation mode, the analysis of limiting factors in high-throughput experimental design and allows for automated biomass production of autotrophic, hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Walter Hofmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
- Acib GmbH, Wien, Austria
| | - Marco Orthofer
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Nicolás Salas Wallach
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
- Acib GmbH, Wien, Austria
| | - Aquilla Ruddyard
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria
| | | | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030, Wien, Austria.
| |
Collapse
|
2
|
Klein M, Hilts AS, Fennessy RT, Trattnig N, Stehrer-Polášek T, Rittmann SKMR, Fink C. Markerless mutagenesis enables isoleucine biosynthesis solely from threonine in Methanothermobacter marburgensis. Microbiol Spectr 2025:e0306824. [PMID: 40243305 DOI: 10.1128/spectrum.03068-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
The archaeal model microorganism Methanothermobacter marburgensis has been studied for methane production for decades. However, genetic modifications are required to harness M. marburgensis for the generation of novel archaeal cell factories for industrial-scale production of commodity and high-value chemicals. Only the development of tools for genetic engineering opens up this possibility. Here, we present the establishment of the first markerless mutagenesis system for genetic modification of M. marburgensis. This system allows the recycling of positive selection markers and enables multiple sequential gene deletions or integrations. As a demonstration, we clarified the postulated isoleucine biosynthesis pathway directly from pyruvate via citramalate synthase (CimA). In doing so, we identified a putative CimA in M. marburgensis and deleted the CimA coding gene, resulting in auxotrophy for isoleucine. The complementation of cimA initiated through constitutive expression led to prototrophic growth similar to the wild type, demonstrating that cimA is essential for pyruvate-derived isoleucine biosynthesis in M. marburgensis. As it has been shown vice versa in Escherichia coli before, we were able to complement isoleucine biosynthesis with the integration of a synthetic isoleucine biosynthesis pathway from threonine for the first time in a methanogenic archaeon. This was achieved via genome integration of the characterized thermostable threonine deaminase from Geobacillus stearothermophilus. The successful integration of an alternative pathway for isoleucine production paves the road for future application of multi-gene biosynthetic pathways to overproduce industrially relevant chemicals. IMPORTANCE The autotrophic, hydrogenotrophic methanogen Methanothermobacter marburgensis is one of the best-studied model organisms in the field of thermophilic archaea. The fact that M. marburgensis shows robust growth and scalability in bioreactor systems makes it a highly suitable candidate for industrial-scale bioprocesses. Additionally, the reported study provides the tools for genetic engineering that enable sequential genome modification in M. marburgensis. Scalable bioreactor cultivation, the ability to genetically engineer, and the recent discovery of natural amino acid secretion in M. marburgensis set the cornerstone for the generation of the first cell factories in archaeal biotechnology to economically produce carbon dioxide-derived commodity and high-value chemicals at industrial scale.
Collapse
Affiliation(s)
| | - Angus S Hilts
- Arkeon GmbH, Tulln a.d. Donau, Austria
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | | | | | | | - Simon K-M R Rittmann
- Arkeon GmbH, Tulln a.d. Donau, Austria
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | | |
Collapse
|
3
|
Reischl B, Schupp B, Palabikyan H, Steger-Mähnert B, Fink C, Rittmann SKMR. Quantitative analysis of amino acid excretion by Methanothermobacter marburgensis under N 2-fixing conditions. Sci Rep 2025; 15:3755. [PMID: 39885323 PMCID: PMC11782530 DOI: 10.1038/s41598-025-87686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N2). Methanogens are of biotechnological importance due to the ability to produce methane (CH4) from molecular hydrogen (H2) and carbon dioxide (CO2) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N2-fixing conditions. Among five hydrogenotrophic, autotrophic methanogens, Methanothermobacter marburgensis was prioritized and further cultivated in closed batch cultivation mode under N2-fixing conditions. M. marburgensis was grown on chemically defined minimal medium with different concentrations of ammonium in a H2/CO2/N2 atmosphere. This enabled the quantification of ammonia uptake, N2-fixation, amino acid excretion and the conversion of H2/CO2 to CH4. To quantify N2-fixation rates in a mass balance setting a novel method has been established. The method utilizes the pressure drop below a certain threshold pressure in closed batch cultivation mode - the threshold pressure for N2-fixation (THpN2fix). Using the THpN2fix method, volumetric N2-fixation rates of M. marburgensis as high as 0.91 mmol L-1 h-1 were determined. Excretion of amino acids was found with highest detected values of glutamic acid, alanine, glycine and asparagine. The highest total amino acid excretion of 7.5 µmol L-1 h-1 was detected with H2/CO2/N2 at an ammonium concentration of 40 mmol L-1. This study sheds light on the link between methanogenesis, biological N2-fixation, and proteinogenic amino acid excretion. The concomitant production of amino acids and CH4 could become of biotechnological relevance in an integrated approach coupling biomethanation and N2-fixation in a biorefinery concept.
Collapse
Affiliation(s)
- Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
- Arkeon GmbH, Tulln a.d. Donau, Austria
| | - Benjamin Schupp
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Barbara Steger-Mähnert
- BioOceanography and Marine Biology, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | | | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria.
- Arkeon GmbH, Tulln a.d. Donau, Austria.
| |
Collapse
|
4
|
Dar RA, Tsui TH, Zhang L, Smoliński A, Tong YW, Mohamed Rasmey AH, Liu R. Recent achievements in magnetic-field-assisted anaerobic digestion for bioenergy production. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2025; 207:114902. [DOI: 10.1016/j.rser.2024.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Ale Enriquez F, Ahring BK. Ex-situ single-culture biomethanation operated in trickle-bed configuration: Microbial H 2 kinetics and stoichiometry for biogas conversion into renewable natural gas. BIORESOURCE TECHNOLOGY 2024; 411:131330. [PMID: 39182797 DOI: 10.1016/j.biortech.2024.131330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Biomethanation converts carbon dioxide (CO2) emissions into renewable natural gas (RNG) using mixed microbial cultures enriched with hydrogenotrophic archaea. This study examines the performance of a single methanogenic archaeon converting biogas with added hydrogen (H2) into methane (CH4) using a trickle-bed bioreactor with enhanced gas-liquid mass transport. The process in continuous operation followed the theoretical reaction of hydrogenotrophic methanogenesis (CO2 + 4 H2 → CH4 + 2 H2O), producing RNG with over 99 % CH4 and more than 0.9 H2 conversion efficiency. The Monod constants of H2 uptake were experimentally determined using kinetic modelling. Also, a dimensionless parameter was used to quantify the ratio between the H2 mass transfer rate and the maximum attainable H2 consumption rate. Single-culture biomethanation averts the formation of secondary metabolites and bicarbonate buffer interferences, resulting in lower demands for H2 than mixed-culture biomethanation.
Collapse
Affiliation(s)
- Fuad Ale Enriquez
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Birgitte K Ahring
- Bioproducts, Sciences, and Engineering Laboratory, Washington State University, Tri-Cities, Richland, WA 99354, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; Biological Systems Engineering Department, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
6
|
Hoffstadt K, Nikolausz M, Krafft S, Bonatelli ML, Kumar V, Harms H, Kuperjans I. Optimization of the Ex Situ Biomethanation of Hydrogen and Carbon Dioxide in a Novel Meandering Plug Flow Reactor: Start-Up Phase and Flexible Operation. Bioengineering (Basel) 2024; 11:165. [PMID: 38391651 PMCID: PMC10886298 DOI: 10.3390/bioengineering11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
With the increasing use of renewable energy resources for the power grid, the need for long-term storage technologies, such as power-to-gas systems, is growing. Biomethanation provides the opportunity to store energy in the form of the natural gas-equivalent biomethane. This study investigates a novel plug flow reactor that employs a helical static mixer for the biological methanation of hydrogen and carbon dioxide. In tests, the reactor achieved an average methane production rate of 2.5 LCH4LR∗d (methane production [LCH4] per liter of reactor volume [LR] per day [d]) with a maximum methane content of 94%. It demonstrated good flexibilization properties, as repeated 12 h downtimes did not negatively impact the process. The genera Methanothermobacter and Methanobacterium were predominant during the initial phase, along with volatile organic acid-producing, hydrogenotrophic, and proteolytic bacteria. The average ratio of volatile organic acid to total inorganic carbon increased to 0.52 ± 0.04, while the pH remained stable at an average of pH 8.1 ± 0.25 from day 32 to 98, spanning stable and flexible operation modes. This study contributes to the development of efficient flexible biological methanation systems for sustainable energy storage and management.
Collapse
Affiliation(s)
- Kevin Hoffstadt
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Marcell Nikolausz
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Simone Krafft
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Maria Letícia Bonatelli
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Vivekanantha Kumar
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| | - Hauke Harms
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Isabel Kuperjans
- Institute NOWUM-Energy, University of Applied Sciences Aachen, Heinrich-Mussmann-Str. 1, 52428 Juelich, Germany
| |
Collapse
|
7
|
Laird MG, Adlung N, Koivisto JJ, Scheller S. Thiol-Disulfide Exchange Kinetics and Redox Potential of the Coenzyme M and Coenzyme B Heterodisulfide, an Electron Acceptor Coupled to Energy Conservation in Methanogenic Archaea. Chembiochem 2024; 25:e202300595. [PMID: 37815851 DOI: 10.1002/cbic.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Methanogenic and methanotrophic archaea play important roles in the global carbon cycle by interconverting CO2 and methane. To conserve energy from these metabolic pathways that happen close to the thermodynamic equilibrium, specific electron carriers have evolved to balance the redox potentials between key steps. Reduced ferredoxins required to activate CO2 are provided by energetical coupling to the reduction of the high-potential heterodisulfide (HDS) of coenzyme M (2-mercaptoethanesulfonate) and coenzyme B (7-mercaptoheptanoylthreonine phosphate). While the standard redox potential of this important HDS has been determined previously to be -143 mV (Tietze et al. 2003 DOI: 10.1002/cbic.200390053), we have measured thiol disulfide exchange kinetics and reassessed this value by equilibrating thiol-disulfide mixtures of coenzyme M, coenzyme B, and mercaptoethanol. We determined the redox potential of the HDS of coenzyme M and coenzyme B to be -16.4±1.7 mV relative to the reference thiol mercaptoethanol (E0 '=-264 mV). The resulting E0 ' values are -281 mV for the HDS, -271 mV for the homodisulfide of coenzyme M, and -270 mV for the homodisulfide of coenzyme B. We discuss the importance of these updated values for the physiology of methanogenic and methanotrophic archaea and their implications in terms of energy conservation.
Collapse
Affiliation(s)
- Maxime G Laird
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Norman Adlung
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Jari J Koivisto
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
8
|
Cai Y, Li H, Qu G, Hu Y, Zou H, Zhao S, Cheng M, Chu X, Ren N. Responses of applied voltages on the archaea microbial distribution in sludge digestion. CHEMOSPHERE 2023; 339:139639. [PMID: 37495052 DOI: 10.1016/j.chemosphere.2023.139639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the development of urban population led to the increase of domestic water consumption, consequently the generation of surplus sludge (SS) produced increasingly during sewage treatment processes. In order to enhance the SS resource utilization efficiency, an electricity-assisted anaerobic digestion (EAAD) system was employed to examine the alterations in the digestion broth and the characteristics of gas production. Additionally, the response of applied voltages on the distribution of archaeal community near various electrodes within the sludge was explored. The results revealed that the application of high voltages exceeding 3.0 V hindered the CH4 production but stimulated the CO2 generation. Subsequently, both CH4 and CO2 production were impeded by the applied voltages. Furthermore, the increased voltages significantly decreased the abundance of Methanomicrobia, Methanosaeta, and Methanosarcina, which were crucial determinants of CH4 content in biogas. Notably, the excessively high voltages intensities caused the AD process to halt and even inactivate the microbial flora. Interestingly, the distribution characteristics of archaeal community were influenced not only by the voltages intensity but also exhibited variations between the anode and cathode regions. Moreover, as the applied voltage intensified, the discrepancy of responses between the cathode and anode regions became more pronounced, offering novel theoretical and technical foundations for the advancement of electricity-assisted with AD technology.
Collapse
Affiliation(s)
- Yingying Cai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Heng Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; Yunnan Yuntianhua Environmental Protection Technology Co., LTD, Kunming, 650228, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Yinghui Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Hongmei Zou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Shiqiang Zhao
- Yunnan Shunfeng Erhai Environmental Protection Technology Co., LTD, Dali, 671000, Yunnan, China
| | - Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Xiaomei Chu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Nanqi Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China; School of Environment, Harbin Institute of Technology, Harbin, 150000, Heilongjiang, China
| |
Collapse
|
9
|
Taubner RS, Baumann LMF, Steiner M, Pfeifer K, Reischl B, Korynt K, Bauersachs T, Mähnert B, Clifford EL, Peckmann J, Schuster B, Birgel D, Rittmann SKMR. Lipidomics and Comparative Metabolite Excretion Analysis of Methanogenic Archaea Reveal Organism-Specific Adaptations to Varying Temperatures and Substrate Concentrations. mSystems 2023; 8:e0115922. [PMID: 36880756 PMCID: PMC10134847 DOI: 10.1128/msystems.01159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Upper Austria, Austria
- Space Research Institute, Austrian Academy of Sciences, Graz, Styria, Austria
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Michael Steiner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| | - Kordian Korynt
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian Albrechts Universität, Kiel, Schleswig-Holstein, Germany
| | - Barbara Mähnert
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Elisabeth L. Clifford
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| |
Collapse
|
10
|
Palabikyan H, Ruddyard A, Pomper L, Novak D, Reischl B, Rittmann SKMR. Scale-up of biomass production by Methanococcus maripaludis. Front Microbiol 2022; 13:1031131. [PMID: 36504798 PMCID: PMC9727139 DOI: 10.3389/fmicb.2022.1031131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
The development of a sustainable energy economy is one of the great challenges in the current times of climate crisis and growing energy demands. Industrial production of the fifth-generation biofuel methane by microorganisms has the potential to become a crucial biotechnological milestone of the post fossil fuel era. Therefore, reproducible cultivation and scale-up of methanogenic archaea (methanogens) is essential for enabling biomass generation for fundamental studies and for defining peak performance conditions for bioprocess development. This study provides a comprehensive revision of established and optimization of novel methods for the cultivation of the model organism Methanococcus maripaludis S0001. In closed batch mode, 0.05 L serum bottles cultures were gradually replaced by 0.4 L Schott bottle cultures for regular biomass generation, and the time for reaching peak optical density (OD578) values was reduced in half. In 1.5 L reactor cultures, various agitation, harvesting and transfer methods were compared resulting in a specific growth rate of 0.16 h-1 and the highest recorded OD578 of 3.4. Finally, a 300-fold scale-up from serum bottles was achieved by growing M. maripaludis for the first time in a 22 L stainless steel bioreactor with 15 L working volume. Altogether, the experimental approaches described in this study contribute to establishing methanogens as essential organisms in large-scale biotechnology applications, a crucial stage of an urgently needed industrial evolution toward sustainable biosynthesis of energy and high value products.
Collapse
Affiliation(s)
- Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Aquilla Ruddyard
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria
| | - Lara Pomper
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - David Novak
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria,*Correspondence: Simon K.-M. R. Rittmann,
| |
Collapse
|
11
|
Lyu Z, Rotaru AE, Pimentel M, Zhang CJ, Rittmann SKMR. Editorial: The methane moment - Cross-boundary significance of methanogens: Preface. Front Microbiol 2022; 13:1055494. [PMID: 36504803 PMCID: PMC9731359 DOI: 10.3389/fmicb.2022.1055494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zhe Lyu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Zhe Lyu
| | - Amelia-Elena Rotaru
- Nordic Center for Earth Evolution (NORDCEE), University of Southern Denmark, Odense, Denmark,Amelia-Elena Rotaru
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States,Mark Pimentel
| | - Cui-Jing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China,Cui-Jing Zhang
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria,Simon K.-M. R. Rittmann
| |
Collapse
|
12
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
13
|
Baumann LMF, Taubner RS, Oláh K, Rohrweber AC, Schuster B, Birgel D, Rittmann SKMR. Quantitative Analysis of Core Lipid Production in Methanothermobacter marburgensis at Different Scales. Bioengineering (Basel) 2022; 9:169. [PMID: 35447729 PMCID: PMC9027985 DOI: 10.3390/bioengineering9040169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeal lipids have a high biotechnological potential, caused by their high resistance to oxidative stress, extreme pH values and temperatures, as well as their ability to withstand phospholipases. Further, methanogens, a specific group of archaea, are already well-established in the field of biotechnology because of their ability to use carbon dioxide and molecular hydrogen or organic substrates. In this study, we show the potential of the model organism Methanothermobacter marburgensis to act both as a carbon dioxide based biological methane producer and as a potential supplier of archaeal lipids. Different cultivation settings were tested to gain an insight into the optimal conditions to produce specific core lipids. The study shows that up-scaling at a constant particle number (n/n = const.) seems to be a promising approach. Further optimizations regarding the length and number of the incubation periods and the ratio of the interaction area to the total liquid volume are necessary for scaling these settings for industrial purposes.
Collapse
Affiliation(s)
- Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Kinga Oláh
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Ann-Cathrin Rohrweber
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Arkeon GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| |
Collapse
|
14
|
Hanišáková N, Vítězová M, Rittmann SKMR. The Historical Development of Cultivation Techniques for Methanogens and Other Strict Anaerobes and Their Application in Modern Microbiology. Microorganisms 2022; 10:412. [PMID: 35208865 PMCID: PMC8879435 DOI: 10.3390/microorganisms10020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The cultivation and investigation of strictly anaerobic microorganisms belong to the fields of anaerobic microbial physiology, microbiology, and biotechnology. Anaerobic cultivation methods differ from classic microbiological techniques in several aspects. The requirement for special instruments, which are designed to prevent the contact of the specimen with air/molecular oxygen by different means of manipulation, makes this field more challenging for general research compared to working with aerobic microorganisms. Anaerobic microbiological methods are required for many purposes, such as for the isolation and characterization of new species and their physiological examination, as well as for anaerobic biotechnological applications or medical indications. This review presents the historical development of methods for the cultivation of strictly anaerobic microorganisms focusing on methanogenic archaea, anaerobic cultivation methods that are still widely used today, novel methods for anaerobic cultivation, and almost forgotten, but still relevant, techniques.
Collapse
Affiliation(s)
- Nikola Hanišáková
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Monika Vítězová
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K. -M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
15
|
Abstract
Climate neutral and sustainable energy sources will play a key role in future energy production. Biomethanation by gas to gas conversion of flue gases is one option with regard to renewable energy production. Here, we performed the conversion of synthetic carbon monoxide (CO)-containing flue gases to methane (CH4) by artificial hyperthermophilic archaeal co-cultures, consisting of Thermococcus onnurineus and Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, or Methanocaldococcus villosus. Experiments using both chemically defined and complex media were performed in closed batch setups. Up to 10 mol% CH4 was produced by converting pure CO or synthetic CO-containing industrial waste gases at a high rate using a co-culture of T. onnurineus and M. villosus. These findings are a proof of principle and advance the fields of Archaea Biotechnology, artificial microbial ecosystem design and engineering, industrial waste-gas recycling, and biomethanation.
Collapse
|
16
|
Feng L, Yang J, Ma F, Xing L, Pi S, Cui D, Li A. Biological stimulation with Fe(III) promotes the growth and aerobic denitrification of Pseudomonas stutzeri T13. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145939. [PMID: 33647667 DOI: 10.1016/j.scitotenv.2021.145939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Certain metal ions can contribute to the functional microorganisms becoming dominant by stimulating their metabolism and activity. Therefore, Pseudomonas stutzeri T13 was used to investigate the impacts of biological stimulation with certain metal ions on aerobic denitrifying bacteria. Results showed that with the addition of 0.036 mmol/L Fe3+ ions, the nitrogen-assimilation capacity of P. stutzeri T13 significantly increased by 43.99% when utilizing ammonium as the sole nitrogen source. Kinetic models were applied to analyze the role of Fe3+ ions in the growth, and results indicated that increasing Fe3+ ion concentrations decreased the decay rate. The maximum nitrate reduction rate increased from 9.55 mg-N L-1 h-1 to 19.65 mg-N L-1 h-1 with Fe3+ ion concentrations increasing from 0.004 to 0.036 mmol/L, which was due to the increased level of napA gene transcription and activity of nitrate reductase. This study provides a theoretical foundation for further understanding of the mechanism of Fe3+ ion stimulation of aerobic denitrification, benefiting the practicable application of aerobic denitrifiers.
Collapse
Affiliation(s)
- Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Lulu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Shanshan Pi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Di Cui
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
17
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
18
|
Mauerhofer LM, Pappenreiter P, Paulik C, Seifert AH, Bernacchi S, Rittmann SKMR. Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol (Praha) 2019; 64:321-360. [PMID: 30446943 PMCID: PMC6529396 DOI: 10.1007/s12223-018-0658-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Anaerobic microorganisms (anaerobes) possess a fascinating metabolic versatility. This characteristic makes anaerobes interesting candidates for physiological studies and utilizable as microbial cell factories. To investigate the physiological characteristics of an anaerobic microbial population, yield, productivity, specific growth rate, biomass production, substrate uptake, and product formation are regarded as essential variables. The determination of those variables in distinct cultivation systems may be achieved by using different techniques for sampling, measuring of growth, substrate uptake, and product formation kinetics. In this review, a comprehensive overview of methods is presented, and the applicability is discussed in the frame of anaerobic microbiology and biotechnology.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Patricia Pappenreiter
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Linz, Austria
| | | | | | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
19
|
Wahid R, Mulat DG, Gaby JC, Horn SJ. Effects of H 2:CO 2 ratio and H 2 supply fluctuation on methane content and microbial community composition during in-situ biological biogas upgrading. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:104. [PMID: 31164923 PMCID: PMC6489297 DOI: 10.1186/s13068-019-1443-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/16/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Commercial biogas upgrading facilities are expensive and consume energy. Biological biogas upgrading may serve as a low-cost approach because it can be easily integrated with existing facilities at biogas plants. The microbial communities found in anaerobic digesters typically contain hydrogenotrophic methanogens, which can use hydrogen (H2) as a reducing agent for conversion of carbon dioxide (CO2) into methane (CH4). Thus, biological biogas upgrading through the exogenous addition of H2 into biogas digesters for the conversion of CO2 into CH4 can increase CH4 yield and lower CO2 emission. RESULTS The addition of 4 mol of H2 per mol of CO2 was optimal for batch biogas reactors and increased the CH4 content of the biogas from 67 to 94%. The CO2 content of the biogas was reduced from 33 to 3% and the average residual H2 content was 3%. At molar H2:CO2 ratios > 4:1, all CO2 was converted into CH4, but the pH increased above 8 due to depletion of CO2, which negatively influenced the process stability. Additionally, high residual H2 content in these reactors was unfavourable, causing volatile fatty acid accumulation and reduced CH4 yields. The reactor microbial communities shifted in composition over time, which corresponded to changes in the reactor variables. Numerous taxa responded to the H2 inputs, and in particular the hydrogenotrophic methanogen Methanobacterium increased in abundance with addition of H2. In addition, the apparent rapid response of hydrogenotrophic methanogens to intermittent H2 feeding indicates the suitability of biological methanation for variable H2 inputs, aligning well with fluctuations in renewable electricity production that may be used to produce H2. CONCLUSIONS Our research demonstrates that the H2:CO2 ratio has a significant effect on reactor performance during in situ biological methanation. Consequently, the H2:CO2 molar ratio should be kept at 4:1 to avoid process instability. A shift toward hydrogenotrophic methanogenesis was indicated by an increase in the abundance of the obligate hydrogenotrophic methanogen Methanobacterium.
Collapse
Affiliation(s)
- Radziah Wahid
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - John Christian Gaby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| |
Collapse
|
20
|
Mauerhofer LM, Reischl B, Schmider T, Schupp B, Nagy K, Pappenreiter P, Zwirtmayr S, Schuster B, Bernacchi S, Seifert AH, Paulik C, Rittmann SKMR. Physiology and methane productivity of Methanobacterium thermaggregans. Appl Microbiol Biotechnol 2018; 102:7643-7656. [PMID: 29959465 PMCID: PMC6097776 DOI: 10.1007/s00253-018-9183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
Accumulation of carbon dioxide (CO2), associated with global temperature rise, and drastically decreasing fossil fuels necessitate the development of improved renewable and sustainable energy production processes. A possible route for CO2 recycling is to employ autotrophic and hydrogenotrophic methanogens for CO2-based biological methane (CH4) production (CO2-BMP). In this study, the physiology and productivity of Methanobacterium thermaggregans was investigated in fed-batch cultivation mode. It is shown that M. thermaggregans can be reproducibly adapted to high agitation speeds for an improved CH4 productivity. Moreover, inoculum size, sulfide feeding, pH, and temperature were optimized. Optimization of growth and CH4 productivity revealed that M. thermaggregans is a slightly alkaliphilic and thermophilic methanogen. Hitherto, it was only possible to grow seven autotrophic, hydrogenotrophic methanogenic strains in fed-batch cultivation mode. Here, we show that after a series of optimization and growth improvement attempts another methanogen, M. thermaggregas could be adapted to be grown in fed-batch cultivation mode to cell densities of up to 1.56 g L-1. Moreover, the CH4 evolution rate (MER) of M. thermaggregans was compared to Methanothermobacter marburgensis, the CO2-BMP model organism. Under optimized cultivation conditions, a maximum MER of 96.1 ± 10.9 mmol L-1 h-1 was obtained with M. thermaggregans-97% of the maximum MER that was obtained utilizing M. marburgensis in a reference experiment. Therefore, M. thermaggregans can be regarded as a CH4 cell factory highly suited to be applicable for CO2-BMP.
Collapse
Affiliation(s)
- Lisa-Maria Mauerhofer
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
- Krajete GmbH, Linz, Austria
| | - Tilman Schmider
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Benjamin Schupp
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Kinga Nagy
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Institute of Synthetic Bioarchitectures, Wien, Austria
| | - Patricia Pappenreiter
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Sara Zwirtmayr
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Bernhard Schuster
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Institute of Synthetic Bioarchitectures, Wien, Austria
| | | | | | - Christian Paulik
- Johannes Kepler Universität Linz, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
21
|
Reischl B, Ergal İ, Rittmann SKMR. Metabolic reconstruction and experimental verification of glucose utilization in Desulfurococcus amylolyticus DSM 16532. Folia Microbiol (Praha) 2018; 63:713-723. [PMID: 29797222 PMCID: PMC6182646 DOI: 10.1007/s12223-018-0612-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/11/2018] [Indexed: 12/18/2022]
Abstract
Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus’ central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.
Collapse
Affiliation(s)
- Barbara Reischl
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090, Wien, Austria.
| |
Collapse
|
22
|
Abdel Azim A, Rittmann SKMR, Fino D, Bochmann G. The physiological effect of heavy metals and volatile fatty acids on Methanococcus maripaludis S2. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:301. [PMID: 30410576 PMCID: PMC6214177 DOI: 10.1186/s13068-018-1302-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/25/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Methanogenic archaea are of importance to the global C-cycle and to biological methane (CH4) production through anaerobic digestion and pure culture. Here, the individual and combined effects of copper (Cu), zinc (Zn), acetate, and propionate on the metabolism of the autotrophic, hydrogenotrophic methanogen Methanococcus maripaludis S2 were investigated. Cu, Zn, acetate, and propionate may interfere directly and indirectly with the acetyl-CoA synthesis and biological CH4 production. Thus, these compounds can compromise or improve the performance of M. maripaludis, an organism which can be applied as biocatalyst in the carbon dioxide (CO2)-based biological CH4 production (CO2-BMP) process or of methanogenic organisms applied in anaerobic digestion. RESULTS Here, we show that Cu concentration of 1.9 µmol L-1 reduced growth of M. maripaludis, whereas 4.4 and 6.3 µmol L-1 of Cu even further retarded biomass production. However, 1.0 mmol L-1 of Zn enhanced growth, but at Zn concentrations > 2.4 mmol L-1 no growth could be observed. When both, Cu and Zn, were supplemented to the medium, growth and CH4 production could even be observed at the highest tested concentration of Cu (6.3 µmol L-1). Hence, it seems that the addition of 1 mmol L-1 of Zn enhanced the ability of M. maripaludis to counteract the toxic effect of Cu. The physiological effect to rising concentrations of acetate (12.2, 60.9, 121.9 mmol L-1) and/or propionate (10.3, 52.0, 104.1 mmol L-1) was also investigated. When instead of acetate 10.3 mmol L-1 propionate was provided in the growth medium, M. maripaludis could grow without reduction of the specific growth rate (µ) or the specific CH4 productivity (qCH4). A combination of inorganic and/or organic compounds resulted in an increase of µ and qCH4 for Zn/Cu and Zn/acetate beyond the values that were observed if only the individual concentrations of Zn, Cu, acetate were used. CONCLUSIONS Our study sheds light on the physiological effect of VFAs and heavy metals on M. maripaludis. Differently from µ and qCH4, MER was not influenced by the presence of these compounds. This indicated that each of these compounds directly interacted with the C-fixation machinery of M. maripaludis. Until now, the uptake of VFAs other than acetate was not considered to enhance growth and CH4 production of methanogens. The finding of propionate uptake by M. maripaludis is important for the interpretation of VFA cycling in anaerobic microenvironments. Due to the importance of methanogens in natural and artificial anaerobic environments, our results help to enhance the understanding the physiological and biotechnological importance with respect to anaerobic digestion, anaerobic wastewater treatment, and CO2-BMP. Finally, we propose a possible mechanism for acetate uptake into M. maripaludis supported by in silico analyses.
Collapse
Affiliation(s)
- Annalisa Abdel Azim
- Institute for Environmental Biotechnology, IFA Department Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Turin, Italy
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Günther Bochmann
- Institute for Environmental Biotechnology, IFA Department Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|