1
|
Zhang Q, Xu Y, Yang H, Zhao M, Li W. Performance and underlying mechanisms of zero-valent iron and percarbonate co-regulation for improved volatile fatty acids production from food waste anaerobic fermentation. BIORESOURCE TECHNOLOGY 2025; 431:132645. [PMID: 40349793 DOI: 10.1016/j.biortech.2025.132645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Anaerobic biorefining of food waste (FW) into volatile fatty acids (VFAs) is typically limited by substrate recalcitrance and acid-induced stress. In this study, co-regulation with percarbonate (SPC) and zero-valent iron (ZVI) resulted in a maximum VFAs concentration of 28,317.9 mg COD/L, compared to only 3,986.4 mg COD/L in the control. SPC/ZVI treatment facilitated FW solubilization, enhanced substrate biodegradability, and alleviated acid inhibition. These changes promoted the enrichment of functional bacteria (e.g., Megasphaera and Clostridium) and stimulated key metabolic pathways and gene expression (e.g., fabG and por) involved in VFAs biosynthesis. Together with the provision of bioavailable organics and improved fermentation conditions, activation of stress defense systems in functional bacteria (e.g., katG and kdpA) counteracted the acid and oxidative stress in the SPC/ZVI system, thereby preserving metabolic activity for VFAs production. This study presents a dual modulation strategy to enhance FW fermentation, offering valuable insights for efficient resource recovery from FW.
Collapse
Affiliation(s)
- Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Yuke Xu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Han Yang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Minjun Zhao
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Wenzhuo Li
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| |
Collapse
|
2
|
Shao Q, Luo T, Zhang C, Zhu K, Zhang S, Luo G. Enhanced anaerobic phenol degradation: Critical roles of glucose and hydrochar on microbial traits. BIORESOURCE TECHNOLOGY 2025; 429:132490. [PMID: 40204029 DOI: 10.1016/j.biortech.2025.132490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Phenolic wastewater poses a significant environmental threat due to its toxicity and persistence. This study examined the effects of hydrochar and easily degradable organic wastewater (using glucose as a model compound) on enhancing anaerobic digestion. Their combined application reduced degradation time from 90 days (control) to 30-78 days. Optimal glucose concentrations (1-2 g/L) minimized the lag phase, while higher concentrations (4 g/L) hindered degradation due to acid inhibition. Hydrochar mitigated this by promoting volatile fatty acid conversion. It also enriched key functional microorganisms, stimulated functional gene expression, and strengthened synergistic interactions between phenol-degrading bacteria associated with direct interspecies electron transfer, such as Syntrophomonas, Anaerocella, and Syntrophus, and other microbial groups. This study highlights the potential of hydrochar combined with easily degradable organic wastewater as a green and effective strategy for enhancing phenol degradation.
Collapse
Affiliation(s)
- Qianqi Shao
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tao Luo
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Zhang
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Keliang Zhu
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Department of Environment Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Jourdain L, Gu W. Designing synthetic microbial communities for enhanced anaerobic waste treatment. Appl Environ Microbiol 2025:e0040425. [PMID: 40377302 DOI: 10.1128/aem.00404-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Synthetic microbial communities (SynComs) are powerful tools for investigating microbial interactions and community assembly by focusing on minimal yet functionally representative members. Here, we will highlight key principles for designing SynComs, specifically emphasizing the anaerobic digestion (AD) microbiome for waste treatment and upcycling. The AD process has traditionally been used to reduce organic waste volume while producing biogas as a renewable energy source. Its microbiome features well-defined trophic layers and metabolic groups. There has been growing interest in repurposing the AD process to produce value-added products and chemical precursors, contributing to sustainable waste management and the goals of a circular economy. Optimizing the AD process requires a better understanding of microbial interactions and the influence of both biotic and abiotic parameters, where SynComs offer great promise. Focusing on AD microbiomes, we review the principles of SynComs' design, including keystone taxa and function, cross-feeding interactions, and metabolic redundancy, as well as how modeling approaches could guide SynComs design. Furthermore, we address practical considerations for working with AD SynComs and examine constructed SynComs designed for anaerobic waste digestion. Finally, we discuss the challenges associated with designing and applying SynComs to enhance our understanding of the AD process. This review aims to explore the use of synthetic communities in studying anaerobic digestion and highlights their potential for developing innovative biotechnological processes.
Collapse
Affiliation(s)
- Lisa Jourdain
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Wenyu Gu
- MICROBE laboratory, Institute of Environmental Engineering, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
4
|
Cheng Y, Pan H, Zhang J, Gao M, Wang Y, Lu Y, Rao Y, Yu C, Wu C. Enhancing methane production in two-phase anaerobic digestion of perishable organic waste: Mini-review on acidogenic fermentation pathways and regulatory strategies. BIORESOURCE TECHNOLOGY 2025; 424:132253. [PMID: 39978603 DOI: 10.1016/j.biortech.2025.132253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Two-phase anaerobic digestion is a highly effective approach for efficient reduction and resource recovery of perishable organic waste. Within this technological framework, organic wastes undergo multiple metabolic pathways during the acidogenic phase, which is classified into ethanol, butyrate, propionate, lactate, and mixed acid fermentation depending on the acidification end products. The nature of these acidification products critically influences the performance of the subsequent methanogenic phase. Strategic regulation of operational parameters during the acidogenic phase fosters the enrichment of specific microbial communities and establishment of dominant consortia, which enable the production of the targeted acidification end-products. This review provides a comprehensive analysis of the metabolic characteristics and regulatory strategies associated with various acidogenic fermentation types and methanogenic properties of different acidification products. The findings presented here are crucial for enhancing the stability and methanogenic efficiency of anaerobic digestion systems that process perishable organic waste.
Collapse
Affiliation(s)
- Yuwei Cheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haichuan Pan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingmin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Ying Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101 Sichuan, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650 Guangdong, China
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Yi Rao
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Chunjiang Yu
- Chengdu Environmental Investment Group Co., LTD, Chengdu 610042 Sichuan, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Kim HG, Yu SI, Shin SG, Cho KH. Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems. WATER RESEARCH 2025; 274:123144. [PMID: 39826399 DOI: 10.1016/j.watres.2025.123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimising AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes. GCN models were developed to predict microbial dynamics and biogas production by integrating network analyses of high-throughput sequencing data and VFA inhibition effects. The models were trained based on the responses of anaerobic digesters to organic loading rate shock, starvation, and bioaugmentation for 281 d under various feeding conditions. Shifts in microbial community composition during AD stages and feeding conditions were successfully identified using next-generation sequencing tools. Graph topological features indicated a significant coupling between VFAs and microbial families, and the hydrogenotrophic archaeal families were most frequently connected to other families or residual acids. The GCN accurately predicted microbial abundances and gas production rates, achieving a mean squared error of 0.11 and 0.01 and a coefficient of determination of 0.72 and 0.87 for the testing dataset. These results provide valuable insights into the effects of starvation and bioaugmentation on the microbiome by utilising GCNs to model anaerobic treatment processes, predict microbial dynamics, and assess reactor productivity. Our study suggests a new modelling framework for understanding and improving AD systems by considering microbial interaction networks in relation to chemical parameter information at relevant operating scales.
Collapse
Affiliation(s)
- Hyo Gyeom Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Korea
| | - Sung Il Yu
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, Gyeongsang National University, Gyeongnam 52828, Korea.
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
6
|
Perez-Esteban N, Tully R, Peces M, Dosta J, Astals S. Consistent acidogenic co-fermentation of waste activated sludge and food waste under thermophilic conditions. WATER RESEARCH 2025; 271:122970. [PMID: 39709884 DOI: 10.1016/j.watres.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Acidogenic co-fermentation of waste activated sludge (WAS) and food waste (FW) under thermophilic conditions enhances process consistency, while overcoming the problem of acetic acid consumption due to growing methanogens. Two long-term continuous co-fermentation experiments were carried out with a WAS:FW mixture (70:30 % in VS) at organic loading rate of 8 gVS/(L·d). Experiment 1 assessed the impact of temperature (35 °C and 55 °C) and WAS origin (WAS_A and WAS_B) in two collection periods. Experiment 2 evaluated the consistency at 55 °C by testing three WAS origins (WAS_A, WAS_B and WAS_C) in 3 additional collection periods. Experimental results showed that at 55 °C, the solubilisation yield was enhanced compared to 35 °C, although this did not always lead to higher fermentation yield. The fermentation product profile was affected by the operating temperature, with 55 °C promoting the accumulation of acetic and butyric acids. Acetic acid consumption was only detected at 35 °C in fermenters treating WAS_A, whereas it was not observed in fermenters treating WAS_B. This consumption was prevented at 55 °C, as none of the 13 fermenters continuous operation showed acetic acid consumption. Acetic acid consumption was attributed to species midas_s_9557 (genus Methanosarcina), an aceticlastic methanogen, which did not grow under 55 °C. Temperature had a more significant effect on the microbial community structure than WAS origin. Functional redundancy was demonstrated by each fermenter having its own distinct microbial consortium while maintaining constant metabolic functions at 55 °C. Overall, the acidogenic co-fermentation of WAS and FW at 55 °C is regarded as a robust and consistent biotechnology.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - R Tully
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; School of Chemistry, Glasglow University, Joseph Black Building, University Pl, Glasglow G12 8QQ, UK
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Gaballah ES, Gao L, Shalaby EA, Yang B, Sobhi M, Ali MM, Samer M, Tang C, Zhu G. Performance and mechanism of a novel hydrolytic bacteria pretreatment to boost waste activated sludge disintegration and volatile fatty acids production during acidogenic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124399. [PMID: 39914216 DOI: 10.1016/j.jenvman.2025.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025]
Abstract
In this study, an innovative mixed hydrolytic bacteria culture (HB) (the main dominant bacterial species: Lactobacillus acetotolerans), as an environmentally friendly pretreatment technique, was developed to enhance the volatile fatty acids (VFAs) production from waste-activated sludge (WAS). The highest VFAs production of 517 and 518 mg/g VSS were achieved with HB 8% and HB 8%-35 °C pretreatments, which were almost 3.6 folds compared to the control (143 mg/g VSS), respectively. The mechanism analysis revealed that HB boosted the bioavailability of organics released from WAS and significantly accelerated sludge solubilization. Protease and α-glucosidase enzymatic activity were improved and associated with hydrolysis and acidogenesis. Furthermore, the microbial community analysis showed that HB pretreatment significantly increased the hydrolytic and acidifying bacteria proportions (e.g., Veillonella, Macellibacteroides sp., Clostridium_sensu_stricto_1 and Bacteroides sp., etc.). This study provides a promising, low-cost, and eco-friendly approach for recovering resources from WAS and transforming them into high-value products.
Collapse
Affiliation(s)
- Eid S Gaballah
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; Agricultural Engineering Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Lei Gao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Emad A Shalaby
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Biao Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Mostafa Sobhi
- Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Ali
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Giza, 12611, Egypt
| | - Mohamed Samer
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, El-Gammaa Street, 12613, Giza, Egypt
| | - Chongpeng Tang
- China CAMCE Environmental Technology Co., Ltd, Beijing, 100080, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
8
|
Zhang M, Zhang C, Wu Q, Wang M, Zhou Y, Wang D, Zhou L. Deciphering nitrogen removal performance concerning heterotrophic microorganism's succession by using three typical acid-rich fermentation liquids of food waste as carbon sources in high ammonium and high salt wastewater treatment. ENVIRONMENTAL RESEARCH 2025; 268:120763. [PMID: 39761780 DOI: 10.1016/j.envres.2025.120763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA. In contrast, adding BA-rich fermentation liquid gradually deteriorated the nitrogen removal due to the nitrification process being impaired. Genus Thauera predominated in HAHS wastewater system via heterotrophic simultaneous nitrification and denitrification (SND) process. Utilization of LA- and PA-rich fermentation liquids induced the acclimation of other heterotrophic SND microbes and partially replaced Thauera. Conversely, BA-rich carbon source promoted the proliferation of heterotrophic denitrifying and ordinary heterotrophic microorganisms, thereby inhibiting nitrification process and ultimately leading to the failure of nitrogen removal. Meanwhile, the relative abundance of denitrification genes, including napAB, nirKS, norBC, and NosZ, annotated in Thauera exhibited the lowest relative abundance in BA-rich phase. This study provides valuable insights into the mechanism of using FW fermentation liquid as an alternative carbon source to promote nitrogen removal in HAHS wastewater.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chencan Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiusheng Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Murong Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
9
|
Pan XR, Shang-Guan PK, Li SH, Zhang CH, Lou JM, Guo L, Liu L, Lu Y. The influence of carbon dioxide on fermentation products, microbial community, and functional gene in food waste fermentation with uncontrol pH. ENVIRONMENTAL RESEARCH 2025; 267:120645. [PMID: 39694437 DOI: 10.1016/j.envres.2024.120645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Food waste is a major problem faced by human beings. Acidogenic fermentation is an effective and feasible technology for resource recovery from food waste. The mixture of volatile fatty acids (VFAs) hinders the utilization of fermentation products. In this study, we constructed fermentation reactors for food waste treatment. The operation period was separated to three stages: Stage 1 (from day 1-102), Stage 2 (from day 103-208), and Stage 3 (from day 209-304). CO2 was sparged to the reactors to promote the acetate enrichment at Stage 3. Bioinformatics analysis were performed to analyze the microbial community, genes, and pathways. Results showed that the highest average concentration of acetate was 6044 mg-COD/L (R1) and 5000 mg-COD/L (R2) at Stage 3, which was corresponded to the stage with highest acetate ratio (63% and 66% in R1 and R2). But the highest total VFAs concentration was 39424 mg-COD/L at Stage 2. Aeriscardovia belonging to Actinobacteria had an average relative abundance of 85.7% after CO2 sparging. Compared with Stage 1 and Stage 2, the number of down-regulated genes and pathways at Stage 3 were much higher than the number of up-regulated genes and pathways. The significant down-regulated genes were wcaB and ttrC, and the significant down-regulated pathways were pyruvate fermentation to acetone and acetyl-CoA fermentation to butanoate II pathway. This study demonstrated that CO2 can promote the acetate enrichment during food waste fermentation. The main mechanism was enriching acetate fermentation microorganisms and inhibiting the interfere genes and pathways.
Collapse
Affiliation(s)
- Xin-Rong Pan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Pei-Ken Shang-Guan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Shu-Hui Li
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Chu-Hao Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Jia-Min Lou
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Liang Guo
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China
| | - Lu Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, PR China.
| |
Collapse
|
10
|
Liu W, Wang S, He S, Shi Y, Hou C, Song Y, Zhang T, Zhang Y, Shen Z. Proteinase K impact on anaerobic co-digestion of modified biodegradable plastic and food waste: Step-by-step analysis with microorganism. BIORESOURCE TECHNOLOGY 2025; 418:131984. [PMID: 39675641 DOI: 10.1016/j.biortech.2024.131984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
This study was designed to explore the key impact of Proteinase K (PK) on every step of anaerobic co-digestion. The results of step-by-step experiments indicated that PK promoted the hydrolysis of biodegradable plastic by initiating self-hydrolysis reactions, directly promoting the hydrolysis step of anaerobic co-digestion. Subsequently, PK indirectly promoted the acidogenesis and acetogenesis steps by impacting the proliferation of acid-producing bacteria. Besides, it could also hydrolyze PLA. Thus, the lactic acid content peaked at 255.7 mg/L on the 5th day, representing an increase of 35.9 % compared to the condition without PK. Finally, PK indirectly promoted the methanogenesis step through its impact on the composition of methanogenic bacteria. This led to more food waste being digested into methane, 41.5 % compared to the condition without PK. This work served as an essential foundation for advancing the application of PK modified BP as a replacement for traditional plastics.
Collapse
Affiliation(s)
- Wenjie Liu
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Shizhuo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Songting He
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Yang Shi
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Cheng Hou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China
| | - Tao Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yalei Zhang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 201804, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 201804, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Lago A, Greses S, Moreno I, González-Fernández C. Up-flow anaerobic sludge blanket bioreactor for the production of carboxylates: effect of inocula on process performance and microbial communities. BIORESOUR BIOPROCESS 2025; 12:6. [PMID: 39853523 PMCID: PMC11759735 DOI: 10.1186/s40643-025-00839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
This research investigated the acidogenic fermentation (AF) of sugar cane molasses in an up-flow anaerobic sludge blanket (UASB) reactor for the production of carboxylates. The first step was to assess the optimum process temperature (25, 35 or 55 ºC) using two different granular inocula, one from a brewery company (BGS) and other from a paper plant company (PGS). These experiments determined that the most suitable temperature for carboxylates production was 25 ºC, obtaining higher bioconversions (27.3 ± 0.3% using PGS and 39.2 ± 0.2% using BGS), despite the low pH value recorded (4.0-4.2). Then, both inocula were tested in UASB reactors. As a consequence of the operational conditions (25 ºC, pH = 5.5-6, organic loading rate (OLR) = 3 gCOD·L-1·d-1 and hydraulic retention time (HRT) = 10 d), the microbial communities changed from those typical for biogas production to those specialised in the production of volatile fatty acids (VFAs). Indeed, the highest bioconversion efficiency (70.1%) was obtained with BGS, where uncultured Eubacteriaceae family microorganisms (56.0%) prevailed, enhancing the production of butyric acid (59.5 ± 2.4%w/w). Consequently, this inoculum was used to further identify the OLR threshold that should not be exceeded to attain optimal carboxylates production. OLR of 6 gCOD·L-1·d-1 resulted in a decrease in bioconversion efficiency (59.5%). The VFAs pool was dominated by butyric acid (63.0 ± 1.4%w/w at an OLR of 4.5 gCOD·L-1·d-1 and 52.8 ± 2.2%w/w at 6 gCOD·L-1·d-1). The microbial community became even more specialised, increasing the presence of Firmicutes and Actinobacteriota phyla, proving that the imposed conditions favoured the production of VFAs when operating semicontinuously fed UASB reactors.
Collapse
Affiliation(s)
- Adrián Lago
- Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain
| | - Silvia Greses
- Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain
- Departament d'Enginyeria Química, CALAGUA-Unidad Mixta UV-UPV, Universitat de València, Avinguda de la Universitat s/n, Valencia, 46100, Spain
| | - Inés Moreno
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, Móstoles, Madrid, 28933, Spain
| | - Cristina González-Fernández
- Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, Móstoles, Madrid, 28935, Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
- Institute of Sustainable Processes, Dr. Mergelina, s/n, Valladolid, 47011, Spain.
| |
Collapse
|
12
|
Tang L, Manefield M. Aeration promotes Proteobacteria over Firmicutes in macerated food waste, resulting in superior anaerobic digestion efficiency. FEMS Microbiol Lett 2025; 372:fnaf001. [PMID: 39794276 DOI: 10.1093/femsle/fnaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025] Open
Abstract
Aeration is a common pretreatment method to enhance biogas production via anaerobic digestion of waste organic feedstocks such as unused food. While impacts on downstream anaerobic digestion have been intensively investigated, the consequence of aeration on the microbial community in food waste has not been characterized. Food waste has a low pH resulting from the dominance of lactic acid bacteria within the Firmicutes phylum. This excludes other phylotypes with a higher potential to hydrolyse complex biopolymers in food waste. In this study, we reveal that aeration of macerated food waste results in a dramatic shift away from Firmicutes towards dominance of Proteobacteria that are better known for extracellular enzyme production. Given that hydrolysis is the rate limiting step in anaerobic digestion, this explains why aeration improves the efficiency of biogas production from food waste. The discovery that Proteobacteria dominate microbial communities in aerated food waste opens up opportunities to manipulate extracellular enzyme production through gene expression mechanisms common among Proteobacteria such as quorum sensing.
Collapse
Affiliation(s)
- Linjie Tang
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mike Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Zheng Y, Chen P, Wang E, Ren Y, Ran X, Li B, Dong R, Guo J. Key enzymatic activities and metabolic pathway dynamics in acidogenic fermentation of food waste: Impact of pH and organic loading rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123983. [PMID: 39742756 DOI: 10.1016/j.jenvman.2024.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Acidogenic fermentation was an effective technology to recover volatile fatty acids (VFAs) ethanol and lactic acid from food wastes (FW) as bioresources. However, the impact of process controls on key functional enzymes and metabolic pathways has been inadequately understood. In this study, the metabolite distribution, key functional enzymes and metabolic pathways were completely elucidated using 16S rRNA gene high-throughput sequencing combined with PICRUSt2. Results demonstrated pH significantly affected fermentation types by influencing key enzyme activities, while organic loading rate (OLR) primarily affected the yield without altering metabolic pathway. The maximum VFAs production was achieved at pH 6.0 and OLR of 15.0 g-VS/L/d as a result of Glycolysis and Pyruvate Metabolism were enhanced. Meanwhile, butyric acid was always dominant product, attributed to the enhanced activity of butyryl-CoA dehydrogenasedue. Furthermore, Lactobacillus enrichment and lactate dehydrogenase upregulation promoted lactate-type fermentation under without pH control (3.8), resulting in an average yield of lactic acid was 7.84 g/L. When the pH was raised from 3.8 to 5.0,downregulation of lactate dehydrogenase and upregulation of acetate kinase shifted the fermentation to acetate-type. This study provides a deeper understanding of how does process controls influence the metabolic pathways and key functional enzymes.
Collapse
Affiliation(s)
- Yonghui Zheng
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Penghui Chen
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Enzhen Wang
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Yuying Ren
- College of Resource and Environmental Sciences, PR China Agricultural University, Beijing 100083, China
| | - Xueling Ran
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
14
|
Pan H, Li Y, Zhu W, Wu C, Gao M, Wang Q, Wang Y, Lu Y, Rao Y, Yu C. Oriented bioconversion of food waste to lactic acid for external carbon source production: Microbial communities and comparison of denitrification performance. BIORESOURCE TECHNOLOGY 2025; 416:131739. [PMID: 39491737 DOI: 10.1016/j.biortech.2024.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The lactic acid fermentation supernatant of food waste (FSFW-LA) is an excellent carbon source for denitrification regarding performance and cost. Currently, limited attention has been paid to the concentration of lactic acid and its composition in the final product. In this study, five types of liquid carbon sources were obtained under optimal conditions to ensure a high concentration and percentage of the target products. Among them, FSFW-LA reached 68.1 g/L (81.8 %, w/w) of lactic acid by oriented bioconversion and possessed denitrification parameters closest to sodium acetate. Under the combined long-term operation of the SBR system with domestic wastewater, the TN and COD removal in the effluent after the addition of FSFW-LA stabilized at 96 % and 84 %, respectively, similar to sodium acetate (96 % and 85 %). Overall, the denitrification capabilities of high-quality FSFW-LA were explored, providing details on economic carbon source production.
Collapse
Affiliation(s)
- Haichuan Pan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China; Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yi Rao
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Chunjiang Yu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| |
Collapse
|
15
|
Liu F, Wang T, Feng L, Chen Y. The mechanisms of pH regulation on promoting volatile fatty acids production from kitchen waste. J Environ Sci (China) 2025; 147:414-423. [PMID: 39003059 DOI: 10.1016/j.jes.2023.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 07/15/2024]
Abstract
The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.
Collapse
Affiliation(s)
- Feng Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; TUS-Environmental Science and Technology Development Co., Ltd., Beijing 100084, China
| | - Tingting Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Leiyu Feng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yinguang Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Jiménez-Páez E, Ding F, Fermoso FG, García-Martín JF. Monitoring of volatile fatty acids during anaerobic digestion of olive pomace by means of a hand held near infrared spectrometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176979. [PMID: 39423881 DOI: 10.1016/j.scitotenv.2024.176979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
The accumulation of volatile fatty acids (VFAs) over anaerobic digestion (AD) leads to malfunctioning of industrial reactors, hence decreasing biogas production. Real-time monitoring of VFAs is a challenge due to the complexity and high cost of current methods for their quantification. For this reason, this research evaluated the application of near infrared (NIR) spectroscopy to quantify volatile fatty acids as a tool for AD reactors monitoring. To do that, 129 samples from various AD reactors fed with olive oil pomace were taken and their NIR spectra were acquired with a hand-held spectrometer. After performing grid search, three spectral variable selection methods, namely competitive adaptive reweighted sampling, uninformative variable elimination (UVE) and successive projections algorithm, were assayed before developing PLRS models to correlate the NIR light transmittance through the samples at the wavelengths selected by those methods with their VFAs concentrations. UVE led to the best performance for all the VFAs assayed. Thus, R2 of validation of UVE-PLSR models for acetic, propionic, butyric, valeric and total VFAs were 0.895, 0.622, 0.866, 0.898 and 0.871, respectively. The predictive model for total VFAs achieved the highest accuracy (RMSEV = 539.5 mg/L), explained by the correlation between the light absorption at the wavelengths selected by UVE and the chemical characteristics of VFAs. All in all, the prediction errors achieved suggest that a portable near infrared spectrometer can be used for monitoring VFAs in AD processes.
Collapse
Affiliation(s)
- E Jiménez-Páez
- Instituto de la Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain; Institute of Water Research, University of Granada, c/Ramón y Cajal, 4, 18071 Granada, Spain
| | - F Ding
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Seville, Spain
| | - F G Fermoso
- Instituto de la Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - J F García-Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Seville, Spain.
| |
Collapse
|
17
|
Xu L, Xu J, Chen W, Xie L. Pressure-centric regulation for efficient anaerobic digestion: State-of-the-art, challenges and prospects. BIORESOURCE TECHNOLOGY 2024; 413:131421. [PMID: 39233186 DOI: 10.1016/j.biortech.2024.131421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Anaerobic digestion (AD) is an environmentally friendly technology that simultaneously stabilizes biowaste and produces biogas. Conventional AD faces challenges such as inadequate substrate degradation and low methane purity. Pressure-centric regulation serves as an AD optimization strategy that can enhance the digestion efficiency and generate higher-energy-value biogas. However, limited reviews have been undertaken to focus on this technology. This review is designed to discuss innovations in ex-situ high-pressure pretreatment and in-situ high-pressure anaerobic digestion (HPAD) processes. Moreover, comprehensive understandings on the intrinsic mechanisms of HPAD are critically examined, including physicochemical reaction principles and microbial responses. The constraints currently curtailing these technologies and potential mitigation strategies are also scrutinized. Additionally, current knowledge gaps and future research directions on mechanisms, model fitting, and engineering practices are presented. Overall, this work highlights the feasibility of pressure-centric regulated AD and provides novel insights to overcome existing technical barriers in its application.
Collapse
Affiliation(s)
- Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Carranza Muñoz A, Olsson J, Malovanyy A, Baresel C, Machamada-Devaiah N, Schnürer A. Impact of thermal hydrolysis on VFA-based carbon source production from fermentation of sludge and digestate for denitrification: experimentation and upscaling implications. WATER RESEARCH 2024; 266:122426. [PMID: 39276471 DOI: 10.1016/j.watres.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Stricter nutrient discharge limits at wastewater treatment plants (WWTPs) are increasing the demand for external carbon sources for denitrification, especially at cold temperatures. Production of carbon sources at WWTP by fermentation of sewage sludge often results in low yields of soluble carbon and volatile fatty acids (VFA) and high biogas losses, limiting its feasibility for full-scale application. This study investigated the overall impact of thermal hydrolysis pre-treatment (THP) on the production of VFA for denitrification through the fermentation of municipal sludge and digestate. Fermentation products and yields, denitrification efficiency and potential impacts on methane yield in the downstream process after carbon source separation were evaluated. Fermentation of THP substrates resulted in 37-70 % higher soluble chemical oxygen demand (sCOD) concentrations than fermentation of untreated substrates but did not significantly affect VFA yield after fermentation. Nevertheless, THP had a positive impact on the denitrification rates and on the methane yields of the residual solid fraction in all experiments. Among the different carbon sources tested, the one produced from the fermentation of THP-digestate showed an overall better potential as a carbon source than other substrates (e.g. sludge). It obtained a relatively high carbon solubilisation degree (39 %) and higher concentrations of sCOD (19 g sCOD/L) and VFA (9.8 g VFACOD/L), which resulted in a higher denitrification rate (8.77 mg NOx-N/g VSS∙h). After the separation of the carbon source, the solid phase from this sample produced a methane yield of 101 mL CH4/g VS. Furthermore, fermentation of a 50:50 mixture of THP-substrate and raw sludge produced also resulted in a high VFA yield (283 g VFACOD/kg VSin) and denitrification rate of 8.74 mg NOx-N/g VSS∙h, indicating a potential for reduced treatment volumes. Calculations based on a full-scale WWTP (Käppala, Stockholm) demonstrated that the carbon sources produced could replace fossil-based methanol and meet the nitrogen effluent limit (6 mg/L) despite their ammonium content. Fermentation of 50-63 % of the available sludge at Käppala WWTP in 2028 could produce enough carbon source to replace methanol, with only an 8-20 % reduction in methane production, depending on the production process. Additionally, digestate production would be sufficient to generate 81 % of the required carbon source while also increasing methane production by 5 % if a portion of the solid residues were recirculated to the digester.
Collapse
Affiliation(s)
- Andrea Carranza Muñoz
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden; Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden.
| | - Jesper Olsson
- The Käppala Association, Södra Kungsvägen 315, 181 66 Lidingö, Sweden
| | - Andriy Malovanyy
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, Valhallavägen 81, 114 28 Stockholm, Sweden
| | - Nethra Machamada-Devaiah
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 21 Stockholm, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences (SLU), 756 51 Ultuna-Uppsala, Sweden
| |
Collapse
|
19
|
Wang X, Huang S, Wang S, Chen S, Dong S, Zhu Y. Effect of D-limonene on volatile fatty acids production from anaerobic fermentation of waste activated sludge under pH regulation: performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122828. [PMID: 39383742 DOI: 10.1016/j.jenvman.2024.122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
D-limonene extracted from citrus peels possesses an inhibitory effect on methanogenic archaea. This study is aimed to bridge the research gap on the influence of D-limonene on volatile fatty acids (VFA) production from waste activated sludge (WAS) and to address the low VFA yield in standalone anaerobic fermentation of WAS. When the initial pH was not controlled, 1.00 g/g TSS D-limonene resulted in a VFA accumulation of 1175.45 ± 101.36 mg/L (174.45 ± 8.13 mgCOD/gVS). When the initial pH was controlled at 10 and the D-limonene concentration was 0.50 g/g TSS, the VFA accumulation reached 2707.44 ± 183.65 mg/L (445.51 ± 17.10 mgCOD/gVS). The pH-regulated D-limonene treatment enhanced solubilization and acidification, slightly inhibited hydrolysis, and significantly suppressed methanogenesis. D-limonene under alkaline conditions can increase the relative abundance of Clostridium_sensu_stricto, significantly enhancing acidification. Moreover, it markedly inhibited methanogenesis by particularly reducing the relative abundance of Methanothrix that was responsible for acetate consumption, thus favoring the accumulation of VFA. The research reveals the potential mechanism of pH regulation and D-limonene on anaerobic fermentation acid production, providing a theoretical basis for improving the acid production performance of the anaerobic fermentation of WAS.
Collapse
Affiliation(s)
- Xinyun Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shifa Huang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shihao Wang
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Siyuan Chen
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shanyan Dong
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China.
| | - Yichun Zhu
- Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions (2023SSY02031), Jiangxi University of Science and Technology, Ganzhou, 341000, China; Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and control, Ganzhou, 341000, China
| |
Collapse
|
20
|
Mendoza MDL, Vaca L, Erazo P, Villa P. Perspectives on carboxylates generation from Ecuadorian agro-wastes. BIORESOURCE TECHNOLOGY 2024; 407:131080. [PMID: 38992479 DOI: 10.1016/j.biortech.2024.131080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Carboxylates generation from banana (peel and pulp), coffee, and cacao fermentation agro-waste, upon uncontrolled and controlled pHs of 6.6 (heat-driven methanogens inactivation) and 5.2 (pH inactivation), was studied. Regarding volatile fatty acids (VFAs), acetic was the highest for cocoa (96.2 g kg-1TVS) at pH 4.5. However, butyric was relevant for banana pulp (90.7 g kg-1TVS), at controlled pH 6.6. The highest medium chain fatty acid (MCFAs) level was hexanoic (cocoa, 3.5 g kg-1TVS), while octanoic reached a maximum of 2.8 g kg-1TVS for coffee at pH 6.6. At pH 5.2 MCFAs yield was relatively low. Uncontrolled pH conditions, using banana resulted in superior VFAs production compared to controlled conditions. Thus, pH became a determining variable when deciding the time and kind of carboxylic acid to be recovered. The bacterial community at the end of the chain elongation process was dominated by phyla Firmicutes, and Clostridium as the most common genera.
Collapse
Affiliation(s)
- Maria de Lourdes Mendoza
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Luis Vaca
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| | - Pablo Erazo
- Biosequence S.A.S Laboratory, Checoslovaquia and Eloy Alfaro E10-95, P.O. Box 170504 Quito, Ecuador
| | - Pablo Villa
- Faculty of Natural Science and Mathematics (FCNM), Environmental and Chemical Sciences Department (DCQA), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 090902 Guayaquil, Ecuador.
| |
Collapse
|
21
|
Li M, Jiang H, Mo X, Li R, Liu L, Wu W, Liu W, Xie Y, Li X, Yan F, Qiu Z. Biostimulation accelerates landfill stabilization and resource utilization efficiency, providing feasible technical support for the overall lifecycle management of landfills. CHEMOSPHERE 2024; 364:142984. [PMID: 39094700 DOI: 10.1016/j.chemosphere.2024.142984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Although sanitary landfill is one of the principal municipal solid waste (MSW) treatment and disposal methods, its limitations, such as insufficient use of resources, long stability time, and high risk of environmental pollution, must be urgently resolved. The effect of multifunctional microbial community (MMC) inoculation on MSW landfill process was investigated using simulated anaerobic bioreactor landfill (ABL), and composition and microbial community structure of waste, leachate water quality, and gas production were monitored. MMC inoculation significantly accelerated lignocellulose degradation, and the (Hemicellulose content + Cellulose content)/Lignin content ((C + H)/L) of MMC inoculation treatment was 0.89 ± 0.04 on day 44, which was significantly lower than that of the control group (1.14 ± 0.02). At the end of the landfill process, the reductive organic matter, ammonia nitrogen, and volatile fatty acids in the leachate of the MMC group decreased to 9400.00 ± 288.68, 332.78 ± 5.77, and 79.33 ± 6.44 mg L-1, respectively, significantly lower than those of the control group (24,167.00 ± 208.17, 551.14 ± 5.60, and 156.33 ± 8.22 mg L-1). Meanwhile, MMC inoculation increased the methane production to 118.12 ± 5.42 L kg-1 of dry matter, significantly higher than the output of the control group (60.60 ± 2.24 L kg-1). MMC inoculation optimized the microbial community structure in ABL and increased lignocellulose-degrading microorganisms (Brevundimonas, Cellvibrio, Leifsonia, and Devosia) and methanogen (Methanosaeta and Methanoculleus) abundance in the middle stage of landfill. Moreover, MMC introduction improved the abundance of carbon metabolism enzymes and increased saprophytic fungal abundance by 30.09% in the middle stage of landfill. Overall, these findings may help in developing an effective method to increase the lifespan of landfills and enhance their post-closure management.
Collapse
Affiliation(s)
- Mingxing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Hui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xiang Mo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Ruiding Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Lifeng Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Wenchan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Wendong Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Yong Xie
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xing Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, 617000, Sichuan, PR China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| |
Collapse
|
22
|
He J, Jiang X, Qiu Q, Miruka AC, Xu X, Zhang A, Li X, Gao P, Liu Y. Ionic liquid coupled plasma promotes acetic acid production during anaerobic fermentation of waste activated sludge: Breaking the restrictions of low bioavailable substrates and altering the metabolic activities of anaerobes. WATER RESEARCH 2024; 261:122048. [PMID: 38981353 DOI: 10.1016/j.watres.2024.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
This study explored the potential application of plasma coupling ionic liquid on disintegration of waste activated sludge and enhanced production of short-chain fatty acids (SCFAs) in anaerobic fermentation. Under optimal conditions (dosage of ionic liquid [Emim]OTf = 0.1 g/g VSS (volatile suspended solids) and discharge power of dielectric barrier discharge plasma (DBD) = 75.2 W), the [Emim]OTf/DBD pretreatment increased SCFA production by 302 % and acetic acid ratio by 53 % compared to the control. Mechanistic investigations revealed that the [Emim]OTf/DBD combination motivated the generation of various reactive species (such as H2O2, O3, •OH, 1O2, ONOO-, and •O2-) and enhanced the utilization of physical energies (such as heat). The coupling effects of [Emim]OTf/DBD synergistically improved the disintegration of sludge and biodegradability of dissolved organic matter, promoting the sludge anaerobic fermentation process. Moreover, the [Emim]OTf/DBD pretreatment enriched hydrolysis and SCFAs-forming bacteria while inhibiting SCFAs-consuming bacteria. The net effect was pronounced expression of genes encoding key enzymes (such as alpha-glucosidase, endoglucanase, beta-glucosidase, l-lactate/D-lactate dehydrogenase, and butyrate kinase) involved in the SCFA-producing pathway, enhancing the production of SCFAs from sludge anaerobic fermentation. In addition, [Emim]OTf/DBD pretreatment facilitated sludge dewatering and heavy metal removal. Therefore, [Emim]OTf/DBD pretreatment is a promising approach to advancing sludge reduction, recyclability, and valuable resource recovery.
Collapse
Affiliation(s)
- Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xinyuan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Qi Qiu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xianbao Xu
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, Gdansk 80-233, Poland
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China.
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China; National Circular Economy Engineering Laboratory, Shanghai 201620, China
| |
Collapse
|
23
|
Perez-Esteban N, Vives-Egea J, Dosta J, Astals S, Peces M. Resilience towards organic load and activated sludge variations in co-fermentation for carboxylic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131034. [PMID: 38925408 DOI: 10.1016/j.biortech.2024.131034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Two perturbations were investigated in acidogenic co-fermentation of waste activated sludge (WAS) and food waste in continuous mesophilic fermenters: increasing the organic loading rate (OLR) and changing the WAS. A control reactor maintained an OLR of 11 gVS/(L·d), while a test reactor had a prolonged OLR change to 18 gVS/(L·d). For each OLR, two WAS were studied. The change in OLR led to differentiated fermentation product profile without compromising the fermentation yields (∼300 mgCOD/gVS). At 11 gVS/(L·d), the product profile was dominated by acetic, butyric, and propionic acids while at 18 gVS/(L·d) it shifted to acetic acid, ethanol, and caproic acid. Reverting the OLR also reverted the fermentation profile. The biomass immigration with the WAS changed the fermentation microbial structure and introduced acetic acid-consuming methanogens, which growth was only delayed by the OLR increase. Microbial monitoring and post-fermentation tests can be used for early detection of acetic acid-consuming events.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Vives-Egea
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
24
|
Wang Y, He C, Xu C, Yang J, Feng J, Wang W. Influence of oxygen partial pressure on homoacetogenesis and promotion of acetic acid accumulation through low pH regulation under microaerobic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42766-42778. [PMID: 38878240 DOI: 10.1007/s11356-024-33952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Homoacetogenesis is an important pathway for bio-utilization of CO2; however, oxygen is a key environmental influencing factor. This study explored the impact of different initial oxygen partial pressures (OPPs) on homoacetogenesis, while implementing low pH regulation enhanced acetic acid (HAc) accumulation under microaerobic conditions. Results indicated that cumulative HAc production increased by 18.2% in 5% OPP group, whereas decreases of 31.3% and 56.0% were observed in 10% and 20% OPP groups, respectively, compared to the control group. However, hydrogenotrophic methanogens adapted to microaerobic environment and competed with homoacetogens for CO2, thus limiting homoacetogenesis. Controlling influent pH 5.0 per cycle increased cumulative HAc production by 18.3% and 18.2% in 5% and 10% OPP groups, respectively, compared with the control group. Consequently, regulating low pH effectively inhibited methanogenic activity under microaerobic conditions, thus increasing HAc production. This study was expected to expand the practical application of homoacetogenesis in bio-utilization of CO2.
Collapse
Affiliation(s)
- Yuwei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui JianZhu University, Hefei, 230009, China
| | - Changwen Xu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jing Yang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Jingwei Feng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei, 230009, China.
| |
Collapse
|
25
|
Gu X, Sun J, Wang T, Li J, Wang H, Wang J, Wang Y. Comprehensive review of microbial production of medium-chain fatty acids from waste activated sludge and enhancement strategy. BIORESOURCE TECHNOLOGY 2024; 402:130782. [PMID: 38701982 DOI: 10.1016/j.biortech.2024.130782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Microbial production of versatile applicability medium-chain fatty acids (MCFAs) (C6-C10) from waste activated sludge (WAS) provides a pioneering approach for wastewater treatment plants (WWTPs) to achieve carbon recovery. Mounting studies emerged endeavored to promote the MCFAs production from WAS while struggling with limited MCFAs production and selectivity. Herein, this review covers comprehensive introduction of the transformation process from WAS to MCFAs and elaborates the mechanisms for unsatisfactory MCFAs production. The enhancement strategies for biotransformation of WAS to MCFAs was presented. Especially, the robust performance of iron-based materials is highlighted. Furthermore, knowledge gaps are identified to outline future research directions. Recycling MCFAs from WAS presents a promising option for future WAS treatment, with iron-based materials emerging as a key regulatory strategy in advancing the application of WAS-to-MCFAs biotechnology. This review will advance the understanding of MCFAs recovery from WAS and promote sustainable resource management in WWTPs.
Collapse
Affiliation(s)
- Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
26
|
Zhang M, Zhao G, Wang X, Zhou B, Zhou Y, Wang D, Liang J, Zhou L. Insight into performance of nitrogen removal enhanced by adding lactic acid-rich food waste fermentation liquid as carbon source in municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 399:130602. [PMID: 38499205 DOI: 10.1016/j.biortech.2024.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lactic acid-rich fermentation liquid (LAFL) of food waste is found to act as a promising alternative carbon source for nitrogen removal in wastewater treatment. Here, LAFL was employed to investigate its impacts on nitrogen removal during raw municipal wastewater treatment with a comparison to sodium acetate (NaAc). Results indicated that nitrogen removals were comparable when incorporated with LAFL and NaAc (92.89 % v.s. 91.23 %). Unlike the utilization of NaAc, using LAFL could avoid suppressing the relative abundance of the nitrification genes and thus pose a negative risk to nitrogen removal during prolonged operation. The introduction of LAFL increased the stability and robustness of the functional microbial community and effectively reduced excess activated sludge (AS) generation by 109 % compared to NaAc addition, consequently enhancing nitrogen removal but diminishing the treatment cost. In general, LAFL exhibits prospective engineering application potentials and economic advantages in improving nitrogen removal by AS process.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangliang Zhao
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 21, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 21, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 21, China.
| |
Collapse
|
27
|
An X, Xu Y, Dai X. Biohythane production from two-stage anaerobic digestion of food waste: A review. J Environ Sci (China) 2024; 139:334-349. [PMID: 38105059 DOI: 10.1016/j.jes.2023.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 12/19/2023]
Abstract
The biotransformation of food waste (FW) to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems. To this end, a promising technique is two-stage anaerobic digestion (TSAD), in which the FW is transformed to biohythane, a gaseous mixture of biomethane and biohydrogen. This review summarises the main characteristics of FW and describes the basic principle of TSAD. Moreover, the factors influencing the TSAD performance are identified, and an overview of the research status; economic aspects; and strategies such as pre-treatment, co-digestion, and regulation of microbial consortia to increase the biohythane yield from TSAD is provided. Additionally, the challenges and future considerations associated with the treatment of FW by TSAD are highlighted. This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
Collapse
Affiliation(s)
- Xiaona An
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
28
|
Zhong H, Wang Q, Wu M, Zhao P, Song W, Wang X. Anaerobic acidification membrane bioreactor operating at acidic condition for treating concentrated municipal wastewater: Performance and implication. BIORESOURCE TECHNOLOGY 2024; 399:130644. [PMID: 38552856 DOI: 10.1016/j.biortech.2024.130644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
To address the low-carbon treatment requirements for municipal wastewater, a novel anaerobic acidification membrane bioreactor (AAMBR) was developed for recovering organic matter in terms of volatile fatty acids (VFAs). While the AAMBR successfully generated VFAs from municipal wastewater through forward osmosis (FO) membrane concentration, its operation was limited to a single pH value of 10.0. Here, performance of the AAMBR operating at acidic condition was evaluated and compared with that at alkaline condition. The findings revealed that the AAMBR with pH 5.0 efficiently transformed organic matter into acetic acid, propionic acid, and butyric acid, resulting in a VFAs yield of 0.48 g/g-CODfeed. In comparison with the AAMBR at pH 10.0, this study achieved a similar VFAs yield, a lower fouling tendency, a lower loss of nutrients and a lower controlling cost. In conclusion, this study demonstrated that a pH of 5.0 is optimal for the AAMBR treating municipal wastewater.
Collapse
Affiliation(s)
- Huihui Zhong
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Qiming Wang
- Scientific Research Academy of GuangXi Environmental Protection, Nanning 530022, PR China
| | - Mengfei Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Pin Zhao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Weilong Song
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Xinhua Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
29
|
Li C, Lü F, Peng W, He PJ, Zhang H. Functional Redundant Microbiome Enhanced Anaerobic Digestion Efficiency under Ammonium Inhibition Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6659-6669. [PMID: 38557040 DOI: 10.1021/acs.est.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.
Collapse
Affiliation(s)
- Chao Li
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wei Peng
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Pin-Jing He
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hua Zhang
- Institute of Waste Treatment & Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
30
|
Song L, Cai C, Lin C, Lv Y, Liu Y, Ye X, Liu M, Dai X. Enhanced lactic acid production from household food waste under hyperthermophilic conditions: Mechanisms and regulation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:57-65. [PMID: 38377769 DOI: 10.1016/j.wasman.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
An annual production of about 500 million tons of household food waste (HFW) has been documented, resulting in significant implications for human health and the environment in the absence of appropriate treatment. The anaerobic fermentation of HFW in an open system offers the potential to recover high value-added products, lactic acid (LA), thereby simultaneously addressing waste treatment and enhancing resource recovery efficiency. Most of LA fermentation studies have been conducted under mesophilic and thermophilic conditions, with limited research on the production of LA through anaerobic fermentation under hyperthermophilic conditions. This study aimed to produce LA through anaerobic fermentation from HFW under hyperthermophilic conditions (70 ± 1 °C), while varying pH values (5.0 ± 0.1, 7.0 ± 0.1, and 9.0 ± 0.1), and compare the results with LA production under mesophilic (35 ± 1 °C) and thermophilic (52 ± 1 °C) conditions. The findings of this study indicated that the combination of hyperthermophilic conditions and a neutral pH (pH7_70) yielded the highest concentration of LA, measuring at 17.75 ± 1.51 g/L. The mechanism underlying the high yield of LA at 70 °C was elucidated through the combined analysis of organics dissolution, enzymes activities, and 16S rRNA microbiome sequencing.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
31
|
Perez-Esteban N, Vives-Egea J, Peces M, Dosta J, Astals S. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:176-185. [PMID: 38401431 DOI: 10.1016/j.wasman.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
This work aims to improve the continuous co-fermentation of waste activated sludge (WAS) and food waste (FW) by investigating the long-term impact of temperature on fermentation performance and the underpinning microbial community. Acidogenic co-fermentation of WAS and FW (70:30 % VS-basis) to produce volatile fatty acids (VFA) was studied in continuous fermenters at different temperatures (25, 35, 45, 55 °C) at an organic loading rate of 11 gVS/(L·d) and a hydraulic retention time of 3.5 days. Two batches of WAS (A and B) were collected from the same wastewater treatment plant at different periods to understand the impact of the WAS microbioota on the fermenters' microbial communities. Solubilisation yield was higher at 45 °C (575 ± 68 mgCOD/gVS) followed by 55 °C (508 ± 45 mgCOD/gVS). Fermentation yield was higher at 55 °C (425 ± 28 mgCOD/gVS) followed by 35 °C (327 ± 17 mgCOD/gVS). Temperature also had a noticeable impact on the VFA profile. At 55 °C, acetic (40 %) and butyric (40 %) acid dominated, while acetic (37 %), butyric acid (31 %), and propionic acid (17 %) dominated at 35 °C. At 45 °C, an accumulation of caproic acid was detected which did not occur at other temperatures. Each temperature had a distinct microbial community, where the WAS microbiota played an important role. The biomass mass-balance showed the highest growth of microorganisms (51 %) at 35 °C and WAS_B, where a consumption of acetic acid was observed. Therefore, at 35 °C, there is a higher risk of acetic acid consumption probably due to the proliferation of methanogens imported from WAS.
Collapse
Affiliation(s)
- N Perez-Esteban
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Vives-Egea
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M Peces
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - J Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - S Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
32
|
Du J, Tian C, Xiao J, Liu Y, Zhang F, Gao X, Xing B, Zhao Y. Co-fermentation of titanium-flocculated-sludge with food waste towards simultaneous water purification and resource recovery. WATER RESEARCH 2024; 251:121110. [PMID: 38198972 DOI: 10.1016/j.watres.2024.121110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Recovery of resources from domestic sewage and food waste has always been an international-thorny problem. Titanium-based flocculation can achieve high-efficient destabilization, quick concentration and separation of organic matter from sewage to sludge. This study proposed co-fermentation of the titanium-flocculated sludge (Ti-loaded sludge) and food waste towards resource recovery by converting organic matter to value-added volatile fatty acids (VFAs) and inorganic matter to struvite and TiO2 nanoparticles. When Ti-loaded sludge and food waste were co-fermented at a mass ratio of 3:1, the VFAs yield reached 3725.2 mg-COD/L (VFAs/SCOD 91.0%), which was more than 4 times higher than the case of the sludge alone. The 48-day semicontinuous co-fermentation demonstrated stable long-term operation, yielding VFAs at 2529.0 mg-COD/L (VFAs/SCOD 89.8%) and achieving a high CODVFAs/NNH4 of 58.9. Food waste provided sufficient organic substrate, enriching plenty of acid-producing fermentation bacteria (such as Prevotella 7 about 21.0% and Bacteroides about 9.4%). Moreover, metagenomic sequencing analysis evidenced the significant increase of the relative gene abundance corresponding to enzymes in pathways, such as extracellular hydrolysis, substrates metabolism, and VFAs biosynthesis. After fermentation, the precious element P (≥ 99.0%) and extra-added element Ti (≥99.0%) retained in fermented residues, without releasing to VFAs supernatant, which facilitated the direct re-use of VFAs as resource. Through simple and commonly used calcination and acid leaching methodologies, 80.9% of element P and 82.1% of element Ti could be successfully recovered as struvite and TiO2 nanoparticles, respectively. This research provides a strategy for the co-utilization of domestic sludge and food waste, which can realize both reduction of sludge and recovery of resources.
Collapse
Affiliation(s)
- Jinming Du
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Chang Tian
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, 250353, Jinan, Shandong, China
| | - Jianan Xiao
- Shandong Huankeyuan Environmental Testing Co., Ltd, 250013, Shandong, China
| | - Yuyu Liu
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Fenfen Zhang
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Xiaomei Gao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China
| | - Baoshan Xing
- Shaanxi Provincial Key Lab of Environmental Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yanxia Zhao
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China.
| |
Collapse
|
33
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
34
|
Mohanakrishna G, Pengadeth D. Mixed culture biotechnology and its versatility in dark fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2024; 394:130286. [PMID: 38176598 DOI: 10.1016/j.biortech.2023.130286] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Over the years, extensive research has gone into fermentative hydrogen production using pure and mixed cultures from waste biomass with promising results. However, for up-scaling of hydrogen production mixed cultures are more appropriate to overcome the operational difficulties such as a metabolic shift in response to environmental stress, and the need for a sterile environment. Mixed culture biotechnology (MCB) is a robust and stable alternative with efficient waste and wastewater treatment capacity along with co-generation of biohydrogen and platform chemicals. Mixed culture being a diverse group of bacteria with complex metabolic functions would offer a better response to the environmental variations encountered during biohydrogen production. The development of defined mixed cultures with desired functions would help to understand the microbial community dynamics and the keystone species for improved hydrogen production. This review aims to offer an overview of the application of MCB for biohydrogen production.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India.
| | - Devu Pengadeth
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| |
Collapse
|
35
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
36
|
Fonoll X, Zhu K, Aley L, Shrestha S, Raskin L. Simulating Rumen Conditions Using an Anaerobic Dynamic Membrane Bioreactor to Enhance Hydrolysis of Lignocellulosic Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1741-1751. [PMID: 38184844 DOI: 10.1021/acs.est.3c06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An anaerobic dynamic membrane bioreactor (AnDMBR) mimicking rumen conditions was developed to enhance the hydrolysis of lignocellulosic materials and the production of volatile fatty acids (VFAs) when treating food waste. The AnDMBR was inoculated with cow rumen content and operated at a 0.5 day hydraulic retention time, 2-4 day solids retention time, a temperature of 39 °C, and a pH of 6.3, characteristics similar to those of a rumen. Removal rates of neutral detergent fiber and acid detergent fiber of 58.9 ± 8.4 and 69.0 ± 8.6%, respectively, and a VFA yield of 0.55 ± 0.12 g VFA as chemical oxygen demand g volatile solids (VS)fed-1 were observed at an organic loading rate of 18 ± 2 kg VS m-3 day-1. The composition and activity of the microbial community remained consistent after biofilm disruption, bioreactor upset, and reinoculation. Up to 66.7 ± 5.7% of the active microbial populations and 51.0 ± 7.0% of the total microbial populations present in the rumen-mimicking AnDMBR originated from the inoculum. This study offers a strategy to leverage the features of a rumen; the AnDMBR achieved high hydrolysis and fermentation rates even when treating substrates different from those fed to ruminants.
Collapse
Affiliation(s)
- Xavier Fonoll
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Energy Research & Innovation, Great Lakes Water Authority, 9300 W Jefferson Avenue, Detroit, Michigan 48209, United States
| | - Kuang Zhu
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lucy Aley
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
38
|
Cai F, Lin M, Wang L, Song C, Jin Y, Liu G, Chen C. Enhancing acidification efficiency of vegetable wastes through heat shock pretreatment and initial pH regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1079-1093. [PMID: 38030843 DOI: 10.1007/s11356-023-31025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Anaerobic digestion (AD) technology is a practical approach to alleviate severe environmental issues caused by vegetable wastes (VWs). However, its primary product is methane-rich biogas converted from the precursors (mainly volatile fatty acids, VFAs) after long fermentation periods, making traditional AD projects of low economic profits. Intervening in the methanogenesis stage artificially to produce high value-added VFAs can shorten the reaction time of the AD process and significantly improve profits, posing a promising alternative for treating VWs. Given this, this study applied heat shock (HS) pretreatment to inoculum to prevent methane production during AD and systemically investigated the effects of HS pretreatment and initial pH regulation on VFA production from VWs. The results showed that appropriate HS pretreatment effectively inhibited methane generation but promoted VFA accumulation, and VFA production was further enhanced by adjusting the initial pH to 8.0 and 9.0. The highest total VFA concentration of 14,883 mg/L with a VFA yield of 496.1 mg/gVS, 26.98% higher than that of the untreated group, was achieved at an initial pH 8.0 with HS pretreatment of 80 °C for 1 h. Moreover, pH regulation influenced the metabolic pathway of VFA production from VWs during AD, as butyrate was the dominant product at an initial pH of 6.0, while the increased initial pH improved the acetate proportion.
Collapse
Affiliation(s)
- Fanfan Cai
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ming Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Ligong Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chao Song
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Yan Jin
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China
| | - Chang Chen
- College of Chemical Engineering, Beijing University of Chemical Technology, 505 Zonghe Building A, 15 North 3rd Ring East Road, Beijing, 100029, China.
| |
Collapse
|
39
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Acidogenic fermentation of food waste to generate electron acceptors and donors towards medium-chain carboxylic acids production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119379. [PMID: 37898048 DOI: 10.1016/j.jenvman.2023.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
This study investigated the optimum pH, temperature, and food-to-microorganisms (F/M) ratio for regulating the formation of electron acceptors and donors during acidogenic fermentation to facilitate medium-chain carboxylic acids (MCCAs) production from food waste. Mesophilic fermentation at pH 6 was optimal for producing mixed volatile fatty acids (719 ± 94 mg COD/g VS) as electron acceptors. Under mesophilic conditions, the F/M ratio (g VS/g VS) could be increased to 6 to generate 22 ± 2 g COD/L of electron acceptors alongside 2 ± 0 g COD/L of caproic acid. Thermophilic fermentation at pH 6 was the best condition for producing lactic acid as an electron donor. However, operating at F/M ratios above 3 g VS/g VS under thermophilic settings significantly reduced lactic acid yield. A preliminary techno-economic evaluation revealed that converting lactic acid and butyric acid generated during acidogenic fermentation to caproic acid was the most profitable food waste valorization scenario and could generate 442-468 €/t VS/y. The results presented in this study provide insights into how to tailor acidogenic fermentation reactions to desired intermediates and will help maximize MCCAs synthesis.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
40
|
Chen W, Zeng Y, Liu H, Sun D, Liu X, Xu H, Wu H, Qiu B, Dang Y. Granular activated carbon enhances volatile fatty acid production in the anaerobic fermentation of garden wastes. Front Bioeng Biotechnol 2023; 11:1330293. [PMID: 38146344 PMCID: PMC10749581 DOI: 10.3389/fbioe.2023.1330293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.
Collapse
Affiliation(s)
- Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
41
|
Kuang ZY, Yang H, Shen SW, Lin YN, Sun SW, Neureiter M, Yue HT, Ye JW. Bio-conversion of organic wastes towards polyhydroxyalkanoates. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:118-126. [PMID: 39416913 PMCID: PMC11446391 DOI: 10.1016/j.biotno.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 10/19/2024]
Abstract
The bio-manufacturing of products with substantial commercial value, particularly polyhydroxyalkanoates (PHA), using cost-effective carbon sources through microorganisms, has garnered heightened attention from both the scientific community and industry over the past few decades. Opting for industrial PHA production from various organic wastes, spanning industrial, agricultural, municipal, and food-based sources, emerges as a wiser choice. This strategy not only eases the burden of recycling organic waste and curbs environmental pollution but also trims down PHA production costs, rendering these materials more competitive in commercial markets. In addition, PHAs are a family of renewable, environmentally friendly, fully biodegradable and biocompatible polyesters with a multitude of applications. This review provides an overview of recent developments in PHA production from organic wastes. It covers the optimization of diverse metabolic pathways for producing various types of PHA from organic waste sources, pre-treatment and downstream processing for PHA using unrelated organic wastes, and challenges in industrial production of PHA using unrelated organic waste feedstocks and the challenges faced in industrial PHA production from organic wastes, along with potential solutions. Lastly, this study suggests underlying research endeavors aimed at further enhancing of the feasibility of industrial PHA production from organic wastes as an alternative to current petroleum-based plastics in the near future.
Collapse
Affiliation(s)
- Zhe-Yi Kuang
- School of Future Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shi-Wei Shen
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Shu-Wen Sun
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Markus Neureiter
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Hai-Tao Yue
- School of Future Technology, Xinjiang University, Urumqi, 830017, PR China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, PR China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
42
|
Yang L, Chen L, Zhao C, Li H, Cai J, Deng Z, Liu M. Biogas slurry recirculation regulates food waste fermentation: Effects and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119101. [PMID: 37748298 DOI: 10.1016/j.jenvman.2023.119101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Regularly adding biogas slurry into fermentation reactors is an effective way to enhance hydrogen or methane production. However, how this method affects the production of valuable organic acids and alcohols is still being determined. This study investigated the effects of different addition ratios on semi-continuous fermentation reactors using food waste as a substrate. The results showed that an addition ratio of 0.2 increased lactic acid production by 30% with a yield of 0.38 ± 0.01 g/g VS, while a ratio of 0.4 resulted in mixed acid fermentation dominated by n-butyric acid (0.07 ± 0.01 g/g VS) and n-caproic acid (0.06 ± 0.00 g/g VS). The introduction of Bifidobacteriaceae by biogas slurry played a crucial role in increasing lactic acid production. In contrast, exclusive medium-chain fatty acid producers enhanced the synthesis of caproic acid and heptanoic acid via the reverse β-oxidation pathway. Mechanism analyses suggested that microbial community structure and activity, substrate hydrolysis, and cell membrane transport system and structure changed to varying degrees after adding biogas slurry.
Collapse
Affiliation(s)
- Luxin Yang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Liang Chen
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Chuyun Zhao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jiabai Cai
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540, Kyoto, Japan
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co. Ltm., Shenzhen, 518055, China
| | - Mengqian Liu
- Shenzhen Originwater Ecological Investment Construction Co., LTD, China
| |
Collapse
|
43
|
Quan C, Chen C, Li X, Gao N. Performance of volatile fatty acids production from food waste at the presence of alkyl ethoxy polyglycosides and sodium dodecyl sulfate. CHEMOSPHERE 2023; 343:140215. [PMID: 37734502 DOI: 10.1016/j.chemosphere.2023.140215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In the current context of technological and industrial development, strategies for sustainable development and resource utilization have become increasingly important. FW anaerobic fermentation (Fermentation of Wastes) is a process that utilizes organic waste for biotransformation and is widely used for the production of volatile fatty acids (VFAs). Volatile fatty acids (VFAs) are a kind of high value-added product generated from anaerobic fermentation process, and has extensive applications in chemical synthesis and electricity generation. This study investigated the performance of VFAs production from food waste at the presence of alkyl ethoxy polyglycosides (AEG) and sodium dodecyl sulfate (SDS). The highest yield of VFAs was obtained at 0.1 g AEG/g TS (14.53 g COD/L), which increased by 25.80% than the Blank. But inhibited phenomenon was observed at other reactors with relatively low yield and delayed fermentation time. The inhibition of lactate's production and bioconversion delayed the fermentation time, and SDS has changed the acidogenic fermentation type from lactate-butyrate fermentation to acetate fermentation. In addition, more organic matter dissolved in the fermentation liquor with the addition of AEG and SDS, but the hydrolysis and acidification of polysaccharide were inhibited to some extent. Microbial community analysis showed that the abundance of key bacteria Clostridium has significantly decreased from 82.71% (Blank) to 33.54% (AEG) and 23.72% (SDS), leading to low VFAs production performance.
Collapse
Affiliation(s)
- Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changxiang Chen
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinggang Li
- Xi'an Aerospace Chemical Propulsion Co., Ltd, Xi'an, 710049, China
| | - Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
44
|
Arcila-Saenz J, Hincapié-Mejía G, Londoño-Cañas YA, Peñuela GA. Role of the hydrolytic-acidogenic phase on the removal of bisphenol A and sildenafil during anaerobic treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1552. [PMID: 38032365 PMCID: PMC10689534 DOI: 10.1007/s10661-023-12009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
This paper presents the main results of the removal of two pharmaceutical and personal care products (PPCPs), bisphenol A (BPA) and sildenafil (SDF), by applying anaerobic biological batch tests. The biomass used was previously acclimatized and the experiment lasted 28 days. The effect of factors such as compound (BPA and SDF), concentration and type of inoculum was assessed, considering the factorial experimental design. The results indicated that evaluated factors did not significantly affect the PPCPs elimination in the evaluated range with a confidence level of 95%. On the other hand, the removal percentages obtained with BPA were mainly related to mechanisms, such as sorption and abiotic reactions. Regarding SDF, biodegradation was the predominant mechanism of removal under the experimental conditions of this study; however, the degradation of SDF was partial, with percentages lower than 43% in the tests with hydrolytic/acidogenic inoculum (H/A) and lower than 41% in the tests with methanogenic inoculum (MET). Finally, these findings indicated that hydrolysis/acidogenesis phase is a main contributor to SDF biodegradation in anaerobic digestion. The study provides a starting point for future research that seeks to improve treatment systems to optimize the removal of pollutants from different water sources.
Collapse
Affiliation(s)
- Jennifer Arcila-Saenz
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia.
| | - Gina Hincapié-Mejía
- Environment, Habitat and Sustainability Research Group, University Institution Colegio Mayor de Antioquia, Street 78 # 65 -, 46, Medellín, Colombia
| | - Yudy Andrea Londoño-Cañas
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia
| | - Gustavo A Peñuela
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 #, 52-21, Medellín, Colombia
| |
Collapse
|
45
|
Lago A, Greses S, Aboudi K, Moreno I, González-Fernández C. Effect of decoupling hydraulic and solid retention times on carbohydrate-rich residue valorization into carboxylic acids. Sci Rep 2023; 13:20590. [PMID: 37996698 PMCID: PMC10667524 DOI: 10.1038/s41598-023-48097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023] Open
Abstract
This research assessed the effect of decoupling hydraulic retention time (HRT) and solid retention time (SRT) on the production of volatile fatty acids (VFAs) via anaerobic fermentation of beet molasses. The performance of a continuous stirred tank reactor (CSTR, STR = HTR = 30 days) and two anaerobic sequencing batch reactors (AnSBR) with decoupled STR (30 days) and HRT (20 and 10 days) was compared. Previously, a temperature study in batch reactors (25, 35, and 55 °C) revealed 25 °C as the optimal temperature to maximize the VFAs yield and the long-chain VFAs (> C4) production, being selected for the continuous reactors operation. An HRT of 20 days in AnSBR led to an enhancement in bioconversion efficiency into VFAs (55.5% chemical oxygen demand basis) compared to the CSTR (34.9%). In contrast, the CSTR allowed the production of valuable caproic acid (25.4% vs 4.1% w/w of total VFAs in AnSBR). Decreasing further the HRT to 10 days in AnSBR was detrimental in terms of bioconversion efficiency (21.7%) due to primary intermediates (lactate) accumulation. By decoupling HRT and SRT, VFAs were maximized, revealing HRT as an effective tool to drive specific conversion routes (butyrate- or lactate-fermentation).
Collapse
Affiliation(s)
- Adrián Lago
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Kaoutar Aboudi
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Department of Chemical Engineering and Food Technology, Faculty of Sciences (Wine and Agri-Food Research Institute-IVAGRO and International Campus of Excellence-ceiA3), University of Cádiz, Republic Saharawi Avenue, P.O. Box No. 40, 11510, Puerto Real, Cádiz, Spain
| | - Inés Moreno
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
- Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain
| | - Cristina González-Fernández
- Biotechnological Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, S/N, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, Dr. Mergelina, S/N, 47011, Valladolid, Spain.
| |
Collapse
|
46
|
Waqas M, Nizami AS, Aburiazaiza AS, Jabeen F, Arikan OA, Anees A, Hussain F, Javed MH, Rehan M. Unlocking integrated waste biorefinery approach by predicting calorific value of waste biomass. ENVIRONMENTAL RESEARCH 2023; 237:116943. [PMID: 37619627 DOI: 10.1016/j.envres.2023.116943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
The current study analyzed the high heating values (HHVs) of various waste biomass materials intending to the effective management and more sustainable consumption of waste as clean energy source. Various biomass waste samples including date leaves, date branches, coconut leaves, grass, cooked macaroni, salad, fruit and vegetable peels, vegetable scraps, cooked food waste, paper waste, tea waste, and cardboard were characterized for proximate analysis. The results revealed that all the waste biomass were rich in organic matter (OM). The total OM for all waste biomass ranged from 79.39% to 98.17%. Likewise, the results showed that all the waste biomass resulted in lower ash content and high fixed carbon content associated with high fuel quality. Based on proximate analysis, various empirical equations (HHV=28.296-0.2887(A)-656.2/VM, HHV=18.297-0.4128(A)+35.8/FC and HHV=22.3418-0.1136(FC)-0.3983(A)) have been tested to predict HHVs. It was observed that the heterogeneous nature of various biomass waste considerably affects the HHVs and hence has different fuel characteristics. Similarly, the HHVs of waste biomass were also determined experimentally using the bomb calorimeter, and it was observed that among all the selected waste biomass, the highest HHVs (21.19 MJ kg-1) resulted in cooked food waste followed by cooked macaroni (20.25 MJ kg-1). The comparison revealed that experimental HHVs for the selected waste biomass were slightly deviated from the predicted HHVs. Based on HHVs, various thermochemical and biochemical technologies were critically overviewed to assess the suitability of waste biomass to energy products. It has been emphasized that valorizing waste-to-energy technologies provides the dual benefits of sustainable management and production of cleaner energy to reduce fossil fuels dependency. However, the key bottleneck in commercializing waste-to-energy systems requires proper waste collection, sorting, and continuous feedstock supply. Moreover, related stakeholders should be involved in designing and executing the decision-making process to facilitate the global recognition of waste biorefinery concept.
Collapse
Affiliation(s)
- M Waqas
- Department of Environmental Sciences, Kohat University of Science and Technology, 26000, Kohat, Pakistan.
| | - A S Nizami
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - A S Aburiazaiza
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F Jabeen
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - O A Arikan
- Department of Environmental Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - A Anees
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - F Hussain
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - M H Javed
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - M Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Zhang Q, Cao W, Liu Z, Liu Y, Zhang H, Meng H, Meng G, Zheng J. Performance and mechanisms of urea exposure for enhancement of biotransformation of sewage sludge into volatile fatty acids. BIORESOURCE TECHNOLOGY 2023; 388:129776. [PMID: 37709152 DOI: 10.1016/j.biortech.2023.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Herein, a cost-effective method for improving the anaerobic fermentation performance of sewage sludge (SS) is proposed. The highest volatile fatty acids (VFAs) reached up to 5550 mg COD/L with the supplementation of 0.2 g urea/g total suspended solids (TSS). Intensive exploration showed that SS decomposition was profoundly triggered by urea and the free ammonia generated due to the hydrolysis of urea, providing adequately bioaccessible substrates for acidogenic reactions and thus contributing to VFAs formation. Microbial composition analysis indicated that functional bacteria (i.e., Tissierella and Clostridium) associated with VFAs generation were enriched. Moreover, the metabolic activities of functional flora (i.e., membrane transport and fatty acid synthesis) were up-regulated due to the stimulation of urea. In general, the increase in bioavailable organic matter and functional microbes, and thus the increased microbial metabolic activities, improved the efficient production of VFAs. This study could provide a cost-effective approach for resource recovery from SS.
Collapse
Affiliation(s)
- Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Wangbei Cao
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zailiang Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Yiyun Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Huijuang Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Hailing Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Jun Zheng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China.
| |
Collapse
|
48
|
Tian Z, Li G, Xiong Y, Cao X, Pang H, Tang W, Liu Y, Bai M, Zhu Q, Du C, Li M, Zhang L. Step-feeding food waste fermentation liquid as supplementary carbon source for low C/N municipal wastewater treatment: Bench scale performance and response of microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118434. [PMID: 37385198 DOI: 10.1016/j.jenvman.2023.118434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Municipal wastewater treatment often lacks carbon source, while carbon-rich organics in food waste are deficiently utilized. In this study, the food waste fermentation liquid (FWFL) was step-fed into a bench-scale step-feed three-stage anoxic/aerobic system (SFTS-A/O), to investigate its performance in nutrients removal and the response of microbial community as a supplementary carbon source. The results showed that the total nitrogen (TN) removal rate increased by 21.8-109.3% after step-feeding FWFL. However, the biomass of the SFTS-A/O system was increased by 14.6% and 11.9% in the two phases of the experiment, respectively. Proteobacteria was found to be the dominant functional phyla induced by FWFL, and the increase of its abundance attributed to the enrichment of denitrifying bacteria and carbohydrate-metabolizing bacteria was responsible for the biomass increase. Azospira belonged to Proteobacteria phylum was the dominant denitrifying genera when step-fed with FWFL, its abundance was increased from 2.7% in series 1 (S1) to 18.6% in series 2 (S2) and became the keystone species in the microbial networks. Metagenomics analysis revealed that step-feeding FWFL enhanced the abundance of denitrification and carbohydrates-metabolism genes, which were encode mainly by Proteobacteria. This study constitutes a key step towards the application of FWFL as a supplementary carbon source for low C/N municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhenjun Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guowen Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Xiong
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Xiaoxin Cao
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Hongtao Pang
- China Water Environment Group Co. Ltd., Beijing, 101101, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Miaoxin Bai
- Inner Mongolia Enterprise Key Laboratory of Damaged Environment Appraisal, Evaluation and Restoration, Hohhot, 010020, China
| | - Qiuheng Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Caili Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Maotong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lieyu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
49
|
Lu Y, Chen R, Huang L, Wang X, Chou S, Zhu J. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. J Biotechnol 2023; 374:114-121. [PMID: 37579845 DOI: 10.1016/j.jbiotec.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
As a renewable carbon source produced from organic wastes by acidogenic fermentation, volatile fatty acids (VFAs) are important intermediates in chemical and biological fields and beneficial to resource recovery and carbon neutrality. Maximizing VFA production by some strategies without additional chemicals is critical to increasing economic and environmental benefits. In this study, the effects of initial organic load (OL) on the performance of VFA production, variations of intermediate metabolites, and the thermogravimetric properties of potato peel waste (PPW) during batch acidogenic fermentation were studied. The results showed that the concentration of VFAs increased with the increase of initial OL, while the VFA yield decreased with the increase of initial OL. When the initial OL was in the range of 28.4 g VS/L-91.3 g VS/L, the fermentation type of PPW was butyric acid fermentation. The highest butyric acid proportion of 61.3% was achieved with the initial OL of 71.5 g VS/L. With the increase of initial OL, the proportion of acetic acid and the utilization rate of protein in the PPW decreased. VFAs were produced from proteins and carbohydrates in the early stage and mainly produced from carbohydrates in the later stage. The production efficiency of VFA was relatively high with the initial OL of 71.5 g VS/L, because more easily-biodegradable compounds were solubilized. The results showed that suitably increased initial OL could accelerate acidogenesis, reduce hydrolysis time, and increase the proportion of butyric acid. The findings in this work suggest that PPW is a promising feedstock for butyric acid biosynthesis and appropriate initial OL is beneficial to VFA production.
Collapse
Affiliation(s)
- Yu Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Jiasixie Agronomy College of Weifang University of Science and Technology, Shouguang 262700, China
| | - Ranran Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Liu Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Santao Chou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jiying Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
50
|
Ahmad N, Aslam S, Hussain N, Bilal M, Iqbal HMN. Transforming Lignin Biomass to Value: Interplay Between Ligninolytic Enzymes and Lignocellulose Depolymerization. BIOENERGY RESEARCH 2023; 16:1246-1263. [DOI: 10.1007/s12155-022-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/17/2024]
Abstract
Abstract
Lignin is the main constituent of lignocellulosic biomasses, which have a significant untapped ability to replace ecologically unfavorable and non-renewable fossil fuels. The lignin is broken down by ligninolytic bacteria, which also use a peripheral pathway to transform heterogeneous lignin derivatives into central intermediates like protocatechuate or catechol. By undergoing ring cleavage through the -ketoadipate pathway, these intermediates become metabolites by producing acetyl-CoA for internal product biosynthesis, including the creation of triacylglycerols and polyhydroxyalkanoates. Expanding our understanding of ligninolytic microbial communities, strains, and enzymes through bioprospecting can help us better understand the metabolism of aromatics. The most viable idea for sustainable development is the valorization of lignin into biopolymers as well as other high-value goods. This process is now being used to generate a variety of biopolymers, including polyesters, epoxies, phenol resins, poly (lactic acids), poly hydroxyl alkanoates, and polyurethanes. Furthermore, lignin recalcitrance remained a possible barrier to efficient lignin valorization, prompting several efforts to design high-efficiency bioprocesses to produce specific polymer types as well as other important bioproducts.
Graphical Abstract
Collapse
|