1
|
Du G, Dong Z, Wang Z, Pan M, Zhang Y, Xiang W, Li S. Production of avermectins by Streptomyces avermitilis through solid-state fermentation using agro-industrial waste. BIORESOURCE TECHNOLOGY 2025; 431:132625. [PMID: 40328353 DOI: 10.1016/j.biortech.2025.132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/08/2025]
Abstract
The natural products (NPs) avermectins from Streptomyces show exceptional insecticidal activity and become the most widely produced and used biopesticides in the world. Avermectins are produced by submerged fermentation (SmF), generating significant amount of effluent, exhaust gas and solid waste. We therefore endeavored to establish a green and sustainable alternative through solid-state fermentation (SSF) using agro-industrial waste. We determined the optimal culture medium composition and fermentation style through SSF. The maximum concentration of avermectin B1a (3.83 mg/gds) was obtained with a substrate mixture containing wheat bran, corn cob, earthworm cast, sugarcane bagasse, cane molasses, ammonium sulfate and CoCl2 in shallow trays cultivated for 14 days at 28 °C by repeated-batch SSF, and the initial moisture content and inoculum size was set as 78.5 % and 25 %, respectively. Economic analysis demonstrated that avermectin production cost generated from the fermentation process by SSF was 8.38 % lower than that by SmF. Moreover, avermectin SSF products could be directly used as microbial pesticides for biological control of underground pests and nematodes. This is the first report on avermectin production via SSF, demonstrating great potential in industrial and agricultural applications. Our work also provides guidance to produce other NPs through SSF in other Streptomyces species.
Collapse
Affiliation(s)
- Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhuoxu Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Minghui Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China.
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Asri NA, Sezali NAA, Ong HL, Mohd Pisal MH, Lim YH, Fang J. Review on Biodegradable Aliphatic Polyesters: Development and Challenges. Macromol Rapid Commun 2024; 45:e2400475. [PMID: 39445644 DOI: 10.1002/marc.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Biodegradable polymers are gaining attention as alternatives to non-biodegradable plastics to address environmental issues. With the rising global demand for plastic products, the development of non-toxic, biodegradable plastics is a significant topic of research. Aliphatic polyester, the most common biodegradable polyester, is notable for its semi-crystalline structure and can be synthesized from fossil fuels, microbial fermentation, and plants. Due to great properties like being lightweight, biodegradable, biocompatible, and non-toxic, aliphatic polyesters are used in packaging, medical, agricultural, wearable devices, sensors, and textile applications. The biodegradation rate, crucial for biodegradable polymers, is discussed in this review as it is influenced by their structural properties and environmental conditions. This review discusses currently available biodegradable polyesters, their emerging applications, and the challenges in their commercialization. As research in this area grows, this review emphasizes the innovation in biodegradable aliphatic polyesters and their role in advancing environmental sustainability.
Collapse
Affiliation(s)
- Nur Asnani Asri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Nur Atirah Afifah Sezali
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Hui Lin Ong
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Mohd Hanif Mohd Pisal
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
- Centre of Excellence for Biomass Utilization and Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - Ye Heng Lim
- Platinum Phase Sdn. Bhd., Plot 155, Jalan PKNK Utama, Kawasan Perusahaan Taman Ria Jaya, Sungai Petani, Kedah, 08000, Malaysia
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Zeng D, Zhang Y, Ma X, Li J, Yin F, Li D, Bie W. Biosynthesis of poly(β-L-malic acid) from rubberwood enzymatic hydrolysates in co-fermentation by Aureobasidium pullulans. Int J Biol Macromol 2024; 257:128605. [PMID: 38061508 DOI: 10.1016/j.ijbiomac.2023.128605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Co-fermentation of multiple substrates has emerged as the most effective method to improve the yield of bioproducts. Herein, sustainable rubberwood enzymatic hydrolysates (RWH) were co-fermented by Aureobasidium pullulans to produce poly(β-L-malic acid) (PMA), and RWH + glucose/xylose was also investigated as co-substrates. Owing to low inhibitor concentration and abundant natural nitrogen source content of RWH, a high PMA yield of 0.45 g/g and a productivity of 0.32 g/L/h were obtained by RWH substrate fermentation. After optimization, PMA yields following the fermentation of RWH + glucose and RWH + xylose reached 59.92 g/L and 53.71 g/L, respectively, which were 52 % and 36 % higher than that after the fermentation of RWH. RWH + glucose more significantly affected the correlation between PMA yield and substrate concentration than RWH + xylose. The results demonstrated that the co-fermentation of RWH co-substrate is a promising method for the synthesis of bioproducts.
Collapse
Affiliation(s)
- Dongdong Zeng
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yutian Zhang
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaojun Ma
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Jianing Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, PR China
| | - Fen Yin
- College of Mechanical Engineering, Qinghai University, Xining 810016, PR China
| | - Dongna Li
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Wenxuan Bie
- College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| |
Collapse
|
4
|
Hu H, Wu C, Ge F, Ren Y, Li W, Li J. Poly-γ-glutamic acid-producing Bacillus velezensis fermentation can improve the feed properties of soybean meal. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
5
|
Huang X, Xu L, Qian H, Wang X, Tao Z. Polymalic acid for translational nanomedicine. J Nanobiotechnology 2022; 20:295. [PMID: 35729582 PMCID: PMC9210645 DOI: 10.1186/s12951-022-01497-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
With rich carboxyl groups in the side chain, biodegradable polymalic acid (PMLA) is an ideal delivery platform for multifunctional purposes, including imaging diagnosis and targeting therapy. This polymeric material can be obtained via chemical synthesis, or biological production where L-malic acids are polymerized in the presence of PMLA synthetase inside a variety of microorganisms. Fermentative methods have been employed to produce PMLAs from biological sources, and analytical assessments have been established to characterize this natural biopolymer. Further functionalized, PMLA serves as a versatile carrier of pharmaceutically active molecules at nano scale. In this review, we first delineate biosynthesis of PMLA in different microorganisms and compare with its chemical synthesis. We then introduce the biodegradation mechanism PMLA, its upscaled bioproduction together with characterization. After discussing advantages and disadvantages of PMLA as a suitable delivery carrier, and strategies used to functionalize PMLA for disease diagnosis and therapy, we finally summarize the current challenges in the biomedical applications of PMLA and envisage the future role of PMLA in clinical nanomedicine. The biosynthesis of polymalic acid (PMLA) and its biotechnical high-grade production from microorganisms compared with the chemical synthesis of PMLA The physicochemical and biological characteristics of PMLA and its derivatives How PMLA’s general chemical characteristics can be used to generate various macromolecular compounds for pharmaceutical delivery The concepts of biological and clinical targeting exemplified by PMLA-based drugs and imaging agents and their biodistribution and biodegradability An evaluation of the mechanisms that generate preclinical antitumor efficacy and the translational potential for clinical imaging
Collapse
Affiliation(s)
- Xing Huang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Liusheng Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,Zhenjiang Key Laboratory of High Technology Research On Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xinghuan Wang
- Center for Evidence-Based and Translational Medicine, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Zhenjiang Key Laboratory of High Technology Research On Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
6
|
Arias-Roblero M, Mora-Villalobos V, Velazquez-Carrillo C. Evaluation of Fed-Batch Fermentation for Production of Polyhydroxybutyrate With a Banana Pulp Juice Substrate From an Agro Industrial By-Product. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pollution resulting from the persistence of plastics in the environment has driven the development of substitutes for these materials through fermentation processes using agro-industrial wastes. Polyhydroxybutyrate (PHB) is a rapidly biodegradable material with chemical and mechanical properties comparable to those of some petroleum-derived plastics. PHB accumulates intracellularly as an energy reserve in a wide variety of microorganisms exposed to nutritionally imbalanced media. The objective of this study was to evaluate the use of a banana waste product as a carbon source for PHB production. PHB was extracted by acid methanolysis and detected by gas chromatography-mass spectrometry. Eleven bacterial strains with potential for PHB production were evaluated by in vitro fermentation in a culture broth containing fructose as the carbon source and limited nitrogen. A 22 central composite rotational design was applied to optimize the concentrations of banana juice and ammonium chloride needed to maximize the PHB-producing biomass concentration. The process was then carried out in a 3 L fed-batch fermentation system that included an initial stage of biomass growth. Banana juice was used as the carbon source and fructose pulses were added to maintain the test sugar concentrations of 30, 40, and 50 g/L. The control strain, Cupriavidus necator (ATCC 17699), produced 2.816 g/L of PHB, while productivity of the most promising isolate, C. necator (CR-12), was 0.495 g/L. Maximum biomass production was obtained using 5% banana juice and 2 g/L ammonium chloride. PHB production was not detected in fed-batch fermentations supplemented with 30 or 40 g/L of fructose, while the mean PHB production in fermentations with 50 g/L of fructose was 1.3 g/L.
Collapse
|
7
|
Feng WM, Liu P, Yan H, Zhang S, Shang EX, Yu G, Jiang S, Qian DW, Ma JW, Duan JA. Impact of Bacillus on Phthalides Accumulation in Angelica sinensis (Oliv.) by Stoichiometry and Microbial Diversity Analysis. Front Microbiol 2021; 11:611143. [PMID: 33488552 PMCID: PMC7819887 DOI: 10.3389/fmicb.2020.611143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Plant-microorganism interaction in the rhizosphere is thought to play an important role in the formation of soil fertility, transformation and absorption of nutrients, growth and development of medicinal plants, and accumulation of medicinal ingredients. Yet, the role that they play in the phthalides accumulation of Angelica sinensis (Oliv.) Diels remains unclear. In the present study, we report a correlative analysis between rhizosphere microorganisms and phthalides accumulation in A. sinensis from Gansu, China where was the major production areas. Meanwhile, Bacillus was explored the potential functions in the plant growth and phthalide accumulation. Results revealed that the common bacterial species detected in six samples comprised 1150 OTUs which were involved in 368 genera, and predominant taxa include Actinobacteria, Acidobacteria, and Proteobacteria. The average contents of the six phthalides were 4.0329 mg/g. The correlation analysis indicated that 20 high abundance strains showed positive or negative correlations with phthalides accumulation. Flavobacterium, Nitrospira, Gaiella, Bradyrhizobium, Mycobacterium, Bacillus, RB41, Blastococcus, Nocardioides, and Solirubrobacter may be the key strains that affect phthalides accumulation on the genus level. By the plant-bacterial co-culture and fermentation, Bacillus which were isolated from rhizosphere soils can promote the plant growth, biomass accumulation and increased the contents of the butylidenephthalide (36∼415%) while the ligustilide (12∼67%) was decreased. Altogether, there is an interaction between rhizosphere microorganisms and phthalides accumulation in A. sinensis, Bacillus could promote butylidenephthalide accumulation while inhibiting ligustilide accumulation.
Collapse
Affiliation(s)
- Wei-Meng Feng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Wei Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
|
9
|
Wang K, Chi Z, Liu GL, Qi CY, Jiang H, Hu Z, Chi ZM. A novel PMA synthetase is the key enzyme for polymalate biosynthesis and its gene is regulated by a calcium signaling pathway in Aureobasidium melanogenum ATCC62921. Int J Biol Macromol 2020; 156:1053-1063. [DOI: 10.1016/j.ijbiomac.2019.11.188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
|
10
|
Gao H, Lu C, Wang H, Wang L, Yang Y, Jiang T, Li S, Xu D, Wu L. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int J Biol Macromol 2020; 150:955-964. [DOI: 10.1016/j.ijbiomac.2019.10.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
|
11
|
Liu X, Yan Y, Zhao P, Song J, Yu X, Wang Z, Xia J, Wang X. Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation. BIORESOURCE TECHNOLOGY 2019; 294:122194. [PMID: 31585340 DOI: 10.1016/j.biortech.2019.122194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Oil crop wastes are attractive feedstocks in microbial processes due to their low cost. However, the product yields can be limited by their undesirable nitrogen surplus. Present study proposed a one-step solid state fermentation (SSF) method for producing erythritol from unrefined oil crop wastes using a modified strain Y. lipolytica M53-S. Enhanced erythritol production (185.4 mg/gds) was obtained from peanut press cake mixed with 40% sesame meal and 10% waste cooking oil. The process was performed at pH 4.0 in 5 L flasks, with initial moisture content, NaCl addition, and inoculum size of 70%, 0.02 g/gds, and 7.5 × 104 cells/gds, respectively. This procedure showed advantages in terms of lower material cost than that of submerged fermentation and shorter culture cycle (96 h) than other SSF processes. In repeated-batch fermentation, erythritol was continuously produced for seven cycles. This study presents a feasible approach in developing an efficient erythritol cultivation from nitrogen-rich wastes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China.
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Pusu Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jie Song
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhipeng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
12
|
Jiang K, Tang B, Wang Q, Xu Z, Sun L, Ma J, Li S, Xu H, Lei P. The bio-processing of soybean dregs by solid state fermentation using a poly γ-glutamic acid producing strain and its effect as feed additive. BIORESOURCE TECHNOLOGY 2019; 291:121841. [PMID: 31349173 DOI: 10.1016/j.biortech.2019.121841] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Soybean dregs are restricted as feed additives because they contain anti-nutrient factors. Herein, soybean dreg was bio-transformed by solid-state fermentation (SSF) using a poly γ-glutamic acid (γ-PGA) producing stain Bacillus amyloliquefaciens NX-2S. The maximum γ-PGA production of 65.79 g/kg was reached in a 5 L fermentation system while the conditions are 70% initial moisture of soybean dregs with addition of molasses meal, 12% inoculum size, 30 °C fermentation temperature, initial pH of 8, and 60 h fermentation time. Meanwhile, continuous batch fermentation was proved feasible. After SSF, the anti-nutritional factors such as trypsin inhibitor, phytic acid and tannin were reduced by 98.7%, 97.8%, and 63.2%, respectively. Compared with unfermented soybean dregs, adding fermented soybean dregs to feed increased the average weight gain of rats by 15.6% and reduced the ratio of feed to meat by 11.3%. Therefore, this study provided a feasible strategy for processing soybean dregs as feed additive.
Collapse
Affiliation(s)
- Kang Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Liang Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Junjie Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
13
|
Zou X, Cheng C, Feng J, Song X, Lin M, Yang ST. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol 2019; 39:408-421. [DOI: 10.1080/07388551.2019.1571008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing, PR China
| | - Chi Cheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing, PR China
| | - Xiaodan Song
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, Chongqing, PR China
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Liu X, Yu X, Zhang T, Wang Z, Xu J, Xia J, He A, Yan Y, Xu J. Novel two-stage solid-state fermentation for erythritol production on okara-buckwheat husk medium. BIORESOURCE TECHNOLOGY 2018; 266:439-446. [PMID: 30005411 DOI: 10.1016/j.biortech.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
An economical model of two-stage solid state fermentation (SSF) (prefermentation stage with Mucor flavus and in situ erythritol fermentation stage with Yarrowia lipolytica) for enhancing erythritol production was investigated. Buckwheat husk (BH) was utilized as inert support for the first time and okara as the substrate. Morphological properties suggested yeast cells were exposed in adequate oxygen leading to high erythritol yield, and enzyme activities analysis indicated M. flavus and Y. lipolytica grew and cooperated well during the two ferment stages. Maximum erythritol production (143.3 mg/gds) was obtained from okara-BH mixture (5:2, w/w) supplemented with 0.01 g/gds NaCl, with an initial moisture content of 60% and pH of 4.0 for 192 h, while undesired mannitol and citric acid were suppressed. Compared with submerged fermentation, two-stage SSF was short period, energy conserving and operable for erythritol production from insoluble wastes, and this is the first report on erythritol production via SSF.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, Jiangsu Province, China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Tong Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Zhipeng Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China.
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Yubo Yan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| |
Collapse
|
15
|
Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers (Basel) 2018; 10:polym10050559. [PMID: 30966593 PMCID: PMC6415357 DOI: 10.3390/polym10050559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/23/2022] Open
Abstract
Based on simple mixing and polymerization of a hydroxyl-containing derivative of perylene bisimide (PBI) and l-malic acid, here, we demonstrate a new type of dye-polymer conjugate, PBI-poly(α,β-malic acid) (PBI–PMA). Benefiting from the excellent water-solubility of weak polyanionic PMA structure and the high fluorescence of PBI, the PBI-PMA conjugates readily dissolve in water, displaying strong pH-dependent fluorescence with the highest intensity at pH 6. Due to the excellent biocompatibility of PMA, those conjugates showed low cytotoxicity on L929 cells. Using L929 and HeLa cells, we also confirmed that the PBI-PMA-labeled cells display intense fluorescence. Overall, the PBI-PMA conjugate demonstrates high potential as a cell labeling agent with its synthesis ease, good solubility in aqueous medium, low cytotoxicity, and high fluorescence.
Collapse
|
16
|
Iyyappan J, Bharathiraja B, Baskar G, Jayamuthunagai J, Barathkumar S, Anna Shiny R. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol. BIORESOURCE TECHNOLOGY 2018; 251:264-267. [PMID: 29288953 DOI: 10.1016/j.biortech.2017.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India.
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India
| | - J Jayamuthunagai
- Centre for Biotechnology, Anna University, Chennai 600025, India
| | - S Barathkumar
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Anna Shiny
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| |
Collapse
|