1
|
Derakhshesh S, Abdollahzadeh Sharghi E, Bonakdarpour B. Enhancing the anaerobic sludge characteristics and inorganic impurities removal from synthesis wastewater through integration of electrocoagulation process with up-flow anaerobic sludge blanket reactor. Bioprocess Biosyst Eng 2025; 48:233-245. [PMID: 39585372 DOI: 10.1007/s00449-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The present study investigated effects of coupling electrocoagulation (EC) process with an anaerobic digestion bioreactor, namely up-flow anaerobic sludge blanket (UASB), for the synthetic wastewater treatment. The EC-UASB mode of operation consisted of one anode and two cathodes subjected to an intermittent electrical current (10 min ON/30 min OFF) with current density of 1.5 mA/cm2. In light of this integration, the concentration of mixed liquor suspended solids and mixed liquor volatile suspended solids within anaerobic granular sludge (AGS) increased by 20.0 ± 1.4% and 12.8 ± 0.8%, respectively. The results of sludge volume index, loosely and tightly bound extracellular polymeric substances and their constituents (protein and carbohydrate) revealed that through this integration the quality of AGS has been improved. Furthermore, results of scanning electron microscopy and Fourier-transform infrared spectroscopy showed alteration in the morphology and functional groups of AGS, respectively. Additionally, this combination has demonstrated promising results in terms of performance improvement by increasing the removal efficiency of total dissolved solids by 12.1 ± 0.3% and reducing the ionic pollution in treated wastewater. However, the integration of the EC system within the UASB resulted in energy consumption and operating cost of 1.33 kWh/m3 and 0.099 USD/m3, respectively.
Collapse
Affiliation(s)
- Saeed Derakhshesh
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Babak Bonakdarpour
- Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
2
|
Belli TJ, Dalbosco V, Bassin JP, Lunelli K, Costa RED, Lapolli FR. Treatment of azo dye-containing wastewater in a combined UASB-EMBR system: Performance evaluation and membrane fouling study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121701. [PMID: 38968882 DOI: 10.1016/j.jenvman.2024.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
This work investigated the treatment of azo dye-containing wastewater in an upflow anaerobic sludge blanket (UASB) reactor combined with an electro-membrane bioreactor (EMBR). Current densities of 20 A m-2 and electric current exposure mode of 6'ON/30'OFF were applied to compare the performance of the EMBR to a conventional membrane bioreactor (MBR). The results showed that dye (Drimaren Red CL-7B) removal occurred predominantly in the UASB reactor, which accounted for 57% of the total dye removal achieved by the combined system. When the MBR was assisted by electrocoagulation, the overall azo dye removal efficiency increased from 60.5 to 67.1%. Electrocoagulation batch tests revealed that higher decolorization rates could be obtained with a current density of 50 A m-2. Over the entire experimental period, the combined UASB-EMBR system exhibited excellent performance in terms of chemical oxygen demand (COD) and NH4+-N removal, with average efficiencies above 97%, while PO43--P was only consistently removed when the electrocoagulation was used. Likewise, a consistent reduction in the absorption spectrum of aromatic amines was observed when the MBR was electrochemically assisted. In addition to improving the pollutants removal, the use of electrocoagulation reduced the membrane fouling rate by 68% (0.25-0.08 kPa d-1), while requiring additional energy consumption and operational costs of 1.12 kWh m-3 and 0.32 USD m-3, respectively. Based on the results, it can be concluded that the combined UASB-EMBR system emerges as a promising technological approach for textile wastewater treatment.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil.
| | - Vlade Dalbosco
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, Brazil
| | - Karina Lunelli
- Civil Engineering Department, Santa Catarina State University, ZIP 89140-000, Ibirama, SC, Brazil
| | - Rayra Emanuelly da Costa
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, ZIP 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
3
|
Zhang E, Wilkins D, Crane S, Chelliah DS, van Dorst J, Abdullah K, Tribbia DZ, Hince G, Spedding T, Ferrari B. Urea amendment decouples nitrification in hydrocarbon contaminated Antarctic soil. CHEMOSPHERE 2024; 354:141665. [PMID: 38490611 DOI: 10.1016/j.chemosphere.2024.141665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Hydrocarbon contaminated soils resulting from human activities pose a risk to the natural environment, including in the Arctic and Antarctic. Engineered biopiles constructed at Casey Station, Antarctica, have proven to be an effective strategy for remediating hydrocarbon contaminated soils, with active ex-situ remediation resulting in significant reductions in hydrocarbons, even in the extreme Antarctic climate. However, the use of urea-based fertilisers, whilst providing a nitrogen source for bioremediation, has also altered the natural soil chemistry leading to increases in pH, ammonium and nitrite. Monitoring of the urea amended biopiles identified rising levels of nitrite to be of particular interest, which misaligns with the long term goal of reducing contaminant levels and returning soil communities to a 'healthy' state. Here, we combine amplicon sequencing, microfluidic qPCR on field samples and laboratory soil microcosms to assess the impact of persistent nitrite accumulation (up to 60 months) on nitrifier abundances observed within the Antarctic biopiles. Differential inhibition of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) Nitrobacter and Nitrospira in the cold, urea treated, alkaline soils (pH 8.1) was associated with extensive nitrite accumulation (76 ± 57 mg N/kg at 60 months). When the ratio of Nitrospira:AOB dropped below ∼1:1, Nitrobacter was completely inhibited or absent from the biopiles, and nitrite accumulated. Laboratory soil microcosms (incubated at 7 °C and 15 °C for 9 weeks) reproduced the pattern of nitrite accumulation in urea fertilized soil at the lower temperature, consistent with our longer-term observations from the Antarctic biopiles, and with other temperature-controlled microcosm studies. Diammonium phosphate amended soil did not exhibit nitrite accumulation, and could be a suitable alternative biostimulant to avoid excessive nitrite build-up.
Collapse
Affiliation(s)
- Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia
| | - Daniel Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Sally Crane
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia
| | - Kris Abdullah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia
| | - Dana Z Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia
| | - Greg Hince
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Tim Spedding
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, 203 Channel Highway, Kingston, TAS, 7050, Australia
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, NSW, 2052, Australia; Evolution and Ecology Research Centre, UNSW Sydney, 2052, Australia.
| |
Collapse
|
4
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Zhang QQ, Yu Y, Liu JZ, Fu WJ, Quan JY, Chen Y, Zhao JQ, Wang S, Jin RC. Evaluation the role of soluble microbial products for denitrification sludge characteristic under starvation stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163319. [PMID: 37030357 DOI: 10.1016/j.scitotenv.2023.163319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Physiological changes with the assist role of soluble microbial products (SMP) of preserved denitrifying sludge (DS) undergoing long-term stress of starvation under different storage temperature is extremely important. In this study, SMP extracted from DS were added into DS in starvation condition under room temperature (15-20 °C), 4 °C and -20 °C with three different bio-augmentation phases of 10, 15 and 30 days. Experimental results showed that added SMP in room temperature was optimal for preservation of DS under starvation stress with optimized dosage of 2.0 mL mL-1 sludge and bio-augmentation phase of 10 d. SMP was more effective in maintaining the specific denitrification activity of DS, and it was nearly boosted to 94.1 % of control one due to assist of 2 times SMP addition with 10 days interval of each. Under assist of SMP, extracellular polymeric substances (EPS) secretion was enhanced as the defense layer to withstand starvation stress, and the protein may be utilized as an alternative substrate to gain energy, accelerate electron transport and transfer during denitrification process. This investigation revealed the feasibility of SMP as an economical and robust strategy for preservation of DS.
Collapse
Affiliation(s)
- Qian-Qian Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China.
| | - Yan Yu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Ze Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Wen-Jing Fu
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Jin-Yang Quan
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Ying Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Jian-Qiang Zhao
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Sha Wang
- College of Environment and Life Sciences, Weinan Normal University, Weinan 714099, Shaanxi, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Wang F, Li L, Li X, Hu X, Zhang B. Pulsed electric field promotes the growth metabolism of aerobic denitrifying bacteria Pseudomonas putida W207-14 by improving cell membrane permeability. ENVIRONMENTAL TECHNOLOGY 2023; 44:2327-2340. [PMID: 35001840 DOI: 10.1080/09593330.2022.2027028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/11/2021] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to explore the stimulation mechanism of low pulsed electric field (PEF) strength treatment to promote the growth metabolism of aerobic denitrifying bacteria Pseudomonas putida W207-14. The results indicated that compared with the control group, the strain W207-14 treated with PEF entered the logarithmic growth phase 5 h earlier, the growth time to reached the maximum cell optical density at 600 nm (OD600) of 1.935 ± 0.04 was only 24 h, which shortened by half. With the reduction of growth time, the metabolic rate of the strain increased significantly, in which the removal efficiency of COD, NO3--N and TN was 97.67 ± 1.12%, 90.34 ± 0.73% and 90.13 ± 0.10% in 24 h, respectively. The maximum nitrate removal rate increased from 3.49 mg/L/h to 7.53 mg/L/h. A large number of cells with simultaneous cell membrane damage and high physiological activity were observed by flow cytometry (FCM) in combination with fluorescence staining analysis, which confirmed the reversible electroporation on the cell membrane of strain W207-14 treated with PEF. Transcriptomic analysis indicated that PEF activated the highly significant differential expression of membrane porin (opdB, opdC, and oprB) and cytochrome oxidoreductase related genes (ccoP, ccoN, cioA and cioB) on the cell membrane, which promoted the transport of nutrients through the cell membrane and electron transfer during aerobic respiration and provided an explanation for the possible mechanism of PEF promoting the growth metabolism of strain W207-14 at the micro level. These results lay a foundation for the practical application of PEF enhanced aerobic denitrification technology.
Collapse
Affiliation(s)
- Fan Wang
- School of Resource & Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Liang Li
- School of Resource & Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Xuejie Li
- School of Resource & Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Xiaomin Hu
- School of Resource & Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| | - Bo Zhang
- School of Resource & Civil Engineering, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
7
|
Wang R, You H, Li Z, Xie B, Qi S, Zhu J, Qin Q, Wang H, Sun J, Ding Y, Jia Y, Liu F. A novel reduced graphene oxide/polypyrrole conductive ceramic membrane enhanced electric field membrane bioreactor: Mariculture wastewater treatment performance and membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2023; 376:128917. [PMID: 36934909 DOI: 10.1016/j.biortech.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A novel electric field membrane bioreactor (EMBR) for mariculture wastewater treatment utilizing reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) was constructed and compared with MBRs using CM support and rGO/PPy CM. EMBR (rGO/PPy) obtained the highest pollutant removal rates (84.99% for TOC, 85.98% for NH4+-N), the lowest average membrane fouling rate (2.42 kPa/d) and pollutant adhesion performance by characterization. Meanwhile, the specific fluxes of characteristic foulants in EMBR were enhanced, and the total resistances were reduced by 8.12% to 62.46%. The underlying mechanisms included reduced attraction energy and improved electrostatic repulsion between contaminants in EMBR and membrane by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, DLVO model and force analysis. Therefore, this study complemented the understanding of antifouling effect and mechanism in EMBR by interaction energy and force analysis of characteristic pollutants. These findings also provided new insights into the application of EMBR for mariculture wastewater treatment.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shaojie Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Han Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinxu Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology at Shenzhen, Shenzhen 518055, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Feng Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
8
|
Zeng G, Wang J, Dai M, Meng Y, Luo H, Zhou Q, Lin L, Zang K, Meng Z, Pan X. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: Applications, mechanisms, and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161826. [PMID: 36708820 DOI: 10.1016/j.scitotenv.2023.161826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Natural iron-bearing minerals are widely distributed in the environment and show prominent catalytic performance in pollutant removal. This work provides an overview of groundwater restoration technologies utilizing heterogeneous electro-Fenton (HEF) techniques with the aid of different iron forms as catalysts. In particular, applications of natural iron-bearing minerals in groundwater in the HEF system have been thoroughly summarized from either the view of organic pollutant removal or degradation. Based on the analysis of the catalytic mechanism in the HEF process by pyrite (FeS2), goethite (α-FeOOH), and magnetite (Fe3O4) and the geochemistry analysis of these natural iron-bearing minerals in groundwater, the feasibility and challenges of HEF for organic degradation by using typical iron minerals in groundwater have been discussed, and natural factors affecting the HEF process have been analyzed so that appropriate in situ remedial measures can be applied to contaminated groundwater.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ji Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutong Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academic of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Belli TJ, Bassin JP, de Sousa Vidal CM, Hassemer MEN, Rodrigues C, Lapolli FR. Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58412-58427. [PMID: 36991202 DOI: 10.1007/s11356-023-26593-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, Ibirama, SC, ZIP 89140-000, Brazil.
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Carlos Magno de Sousa Vidal
- Environmental and Sanitary Engineering Department, State University of Centro-Oeste (UNICENTRO), PR 153, Km 07, Riozinho, P.O. Box 21, Irati, PR, Brazil
| | - Maria Eliza Nagel Hassemer
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Caroline Rodrigues
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| |
Collapse
|
10
|
Meng LJ, Hu X, Wen B, Liu YH, Luo GZ, Gao JZ, Chen ZZ. Microplastics inhibit biofloc formation and alter microbial community composition and nitrogen transformation function in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161362. [PMID: 36610618 DOI: 10.1016/j.scitotenv.2022.161362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Biofloc technology, extensively used in intensive aquaculture systems, can prompt the formation of microbial aggregates. Microplastics (MPs) are detected abundantly in aquaculture waters. This study explored the effects of MPs on biofloc formation, microbial community composition and nitrogen transformation function in simulated biofloc aquaculture production systems. The formation process and settling performance of bioflocs were examined. High-throughput sequencing of 16S and 18S rRNA genes was used to investigate the microbial community compositions of bioflocs. Nitrogen dynamics were monitored and further explained from functional genes and microorganisms related to nitrogen transformation by metagenome sequencing. We found that the aggregates consisting of bioflocs and MPs were formed and the systems with MPs had relatively weak settling performance. No significant differences in bacterial diversity (p > 0.05) but significant differences in eukaryotic diversity (p < 0.05) were found between systems without and with MPs. Significant separations in the microbial communities of prokaryotes (p = 0.01) and eukaryotes (p = 0.01) between systems without and with MPs were observed. The peak concentration of nitrite nitrogen (NO2--N) in systems with MPs was lower than that in systems without MPs (pControl/MPs Low = 0.02 and pControl/MPs High = 0.03), probably due to the low abundance of hao and affiliated Alphaproteobacteria_bacterium_HGW-Alphaproteobacteria-1 and Alphaproteobacteria_bacterium, but the high abundance of nxrA and affiliated Alphaproteobacteria_bacterium_SYSU_XM001 and Hydrogenophaga_pseudoflava that related to nitrification. The low concentration of NO2--N in systems with MPs suggested that the presence of MPs might inhibit ammonia oxidation but promote nitrite oxidation by altering the microbial community structure and function. These results indicated that aggregates consisting of bioflocs and MPs could be formed in aquaculture water, and thus, inhibiting their settlement and altering nitrogen transformation function by affecting the microbial community composition.
Collapse
Affiliation(s)
- Liu-Jiang Meng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Hu
- Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China.
| | - Yuan-Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Guo-Zhi Luo
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Liu H, Qin S, Li A, Wen J, Lichtfouse E, Zhao H, Zhang X. Bioelectrochemical systems for enhanced nitrogen removal with minimal greenhouse gas emission from carbon-deficient wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160183. [PMID: 36384176 DOI: 10.1016/j.scitotenv.2022.160183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution and the rising amount of wastewater generation are calling for advanced wastewater treatments, which is particularly necessary for carbon-deficient wastewater that contains multi-species inorganic nitrogen, since conventional heterotrophic denitrification processes cannot remove nitrogen completely when carbon sources are insufficient. For that, bioelectrochemical systems (BES) have been recently developed because they can simultaneously produce electricity and remove resistant nitrogen from the carbon-deficient wastewater. However, the simultaneous removal of multi-species inorganic nitrogen cannot be achieved by electroautotrophic denitrification using BES alone. Moreover, the efficiency of nitrogen removal and power generation has been thwarted by the low energy output, high internal resistance of the device, and electron competition in non-denitrification pathways. This review article discusses the latest developments for nitrogen removal through BES-enhanced denitrification and elucidates multiple coupled BES-based denitrification pathways to remove multi-species inorganic nitrogen simultaneously. Focus points of the research area include coupling BES technologies with emerged methods, electron transfer enhancement, and avoiding electron competition that improves performance with less cost. The prospect of reducing emissions of greenhouse gases is also critically reviewed, in the hope of reducing potential intermediate products of denitrification, such as nitrous oxide (a potent greenhouse gas), through multi-factor regulation. We imply that BES is a good choice for future scale-up applications of MFC coupled with MEC to treat carbon-deficient wastewater. Overall, this review will provide useful information for the development of advanced technologies to treat carbon-deficient wastewater with less emission of greenhouse gases.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Song Qin
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Anze Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Jian Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France.
| | - Heping Zhao
- College of Environmental and Resources Sciences, Zhejiang University, 866 Yuhang Tang Road, 310058 Hangzhou, China.
| | - Xianzhong Zhang
- Shanghai Urban Construction Design & Research Institute [Group] Co., Ltd., 3447 Dongfang Road, 200125 Shanghai, China
| |
Collapse
|
12
|
Single-stage or two-stages bio-electrochemical treatment process of drainage from soilless tomato cultivation with alternating current. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Hu Z, Li J, Zhang Y, Liu W, Wang A. Exerting applied voltage promotes microbial activity of marine anammox bacteria for nitrogen removal in saline wastewater treatment. WATER RESEARCH 2022; 215:118285. [PMID: 35303561 DOI: 10.1016/j.watres.2022.118285] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
To date, the application of marine anammox bacteria (MAB) is still a challenge in saline wastewater treatment due to the low growth rate and high sensitivity. Herein, bioelectrochemical system with applied voltage was exerted for the first time to promote the activity of MAB for removing nitrogen from saline wastewater. At the optimal voltage of 1.5 V, the mean total nitrogen removal rate (TNRR) reached the maximum of 0.65 kg/m3•d, which was 27.45% higher than that without applied voltage. Besides, applied voltage reduced the microbial diversity of MAB-based consortia, but the relative abundance of Candidatus Scalindua increased by 4.63% at 1.5 V compared with that without applied voltage. Also, proper applied voltage promoted the secretion of EPS and heme c, which resulted in the enhancement of MAB activity. Based on the remodified Logistic model analysis, the lag time of the nitrogen removal process was shortened by 0.72 h at the voltage of 1.5 V. Furthermore, it was found that higher voltage (> 2.0 V) had a negative effect on the MAB activity for low TNRR of 0.33 kg/m3•d (2.5 V). However, TNRR increased back to 0.61 kg/m3•d after removing the high applied voltage, which implied that the bioactivity was recoverable after being inhibited. These findings demonstrated that external electrical stimulation is an effective strategy to promote nitrogen removal and MAB activity for treating saline wastewater.
Collapse
Affiliation(s)
- Zhi Hu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yulong Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
14
|
Zhang F, Yang C, Zhu H, Li Y, Gui W. Optimal setting strategy of electrocoagulation process in heavy metal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114724. [PMID: 35192983 DOI: 10.1016/j.jenvman.2022.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
With the increasingly stringent environmental protection policies of various countries, the contradiction between the treatment cost and the purification degree of environmental pollutants has become increasingly significant, which has become a major factor restricting the efficient operation of wastewater treatment plants. Hence, keeping the ion concentration at the outlet as low as possible while reducing the cost are the main objectives of treating heavy metal wastewater by electrocoagulation (EC) process. However, due to the complicated mechanism and uncertain production conditions, it is difficult to achieve those goals by manually setting the current through operators' experience. In this paper, we develop a dynamic multi-objective optimization strategy for EC process to balance these two conflicting production targets. First, we define the removal efficiency (RE) to measure the effectiveness of the EC process. Due to the anodic passivation and cathodic polarization in the EC process, the current reversing period (CRP) is proposed and optimized to ensure the stable performance of the electrodes. Then the current setting problem is formulated as a constrained multi-objective optimization problem with competing objectives of RE and cost. An interval-adjustable control parameterization (CP) approach is developed to reduce the complexity of this optimization problem. To compute this optimization problem, a heuristic method named multi-objective state transition algorithm (MOSTA) with evaluation value is investigated. The effectiveness of our model and optimization strategy is demonstrated by a successful implementation in an EC process of a wastewater treatment plant in Chenzhou, China.
Collapse
Affiliation(s)
- Fengxue Zhang
- School of Automation, Central South University, Changsha, 410083, PR China
| | - Chunhua Yang
- School of Automation, Central South University, Changsha, 410083, PR China.
| | - Hongqiu Zhu
- School of Automation, Central South University, Changsha, 410083, PR China
| | - Yonggang Li
- School of Automation, Central South University, Changsha, 410083, PR China
| | - Weihua Gui
- School of Automation, Central South University, Changsha, 410083, PR China
| |
Collapse
|
15
|
He Y, Huang X, Zhang H, Li H, Zhang Y, Zheng X, Xie L. Insights into the effect of iron-carbon particle amendment on food waste composting: Physicochemical properties and the microbial community. BIORESOURCE TECHNOLOGY 2022; 351:126939. [PMID: 35247558 DOI: 10.1016/j.biortech.2022.126939] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The effects of iron-carbon (Fe-C) particle amendment on organic matter degradation, product quality and functional microbial community in food waste composting were investigated. Fe-C particles (10%) were added to the material and composted for 32 days in a lab-scale composting system. The results suggested that Fe-C particle enhanced organic matter degradation by 12.3%, particularly lignocellulose, leading to a greater humification process (increased by 15.5%). In addition, NO3--N generation was enhanced (15.9%) by nitrification with more active ammonia monooxygenase and nitrite oxidoreductase activities in the cooling and maturity periods. Fe-C particles not only significantly increased the relative abundances of Bacillus and Aspergillus for organic matter decomposition, but also decreased the relative abundances of acid-producing bacteria. RDA analysis demonstrated that the bacterial community was significantly influenced by dissolved organic matter, C/N, NO3--N, humic acid, volatile fatty acids and pH, while electrical conductivity was the key factor affecting the fungal community.
Collapse
Affiliation(s)
- Yingying He
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xia Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Hongning Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yidie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
16
|
Huang Y, Zhang H, Liu X, Ma B, Huang T. Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3407-3418. [PMID: 35239323 DOI: 10.1021/acs.est.1c05254] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although many source waterbodies face nitrogen pollution problems, the lack of organic electron donors causes difficulties when aerobic denitrifying bacteria are used to treat micro-polluted water. Different forms of iron with granular activated carbon (AC) as carriers were used to stimulate aboriginal microorganisms for the purification of micro-polluted source water. Compared with the iron-absent AC system, targeted pollutants were significantly removed (75.76% for nitrate nitrogen, 95.90% for total phosphorus, and 80.59% for chemical oxygen demand) in the sponge-iron-modified AC system, which indicated that iron promoted the physical and chemical removal of pollutants. In addition, high-throughput sequencing showed that bacterial distribution and interaction were changed by ion dosage, which was beneficial for pollutant transformation and reduction. Microbial functions, such as pollutant removal and expression of functional enzymes that were responsible for the transformation of nitrate nitrogen to ammonia, were highly efficient in iron-applied systems. This study provides an innovative strategy to strengthen in situ remediation of micro-pollution in waterbodies.
Collapse
Affiliation(s)
- Yuwei Huang
- Xi'an Weiyuan Environmental Protection and Technology Co., Ltd., Xi'an 710054, China
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
17
|
Xiang Y, Rene ER, Ma W. Enhanced bio-reductive degradation of fluoroglucocorticoids in the groundwater fluctuation zone by external electron donors: Performance, microbial community, and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127015. [PMID: 34482082 DOI: 10.1016/j.jhazmat.2021.127015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/03/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the effectiveness of external electron donors on the bio-reductive degradation enhancement of fluoroglucocorticoids (FGCs) in the groundwater fluctuation zone during the wet season when reverse upward fluctuation of the groundwater table occurs and the dry season after the groundwater table declines. The results showed that the external electron donors, provided by the addition of nano zero-valent iron-modified biochar (nZVI@BC), inhibited the migration and enhanced the reductive defluorination of triamcinolone acetonide (TA), a representative FGC. The accumulation rate constant with temporal fluctuation depth and the attenuation rate constant with vertical fluctuation depth were -2.55 × 10-3 and 4.20 × 10-2, respectively, in the groundwater of the natural groundwater fluctuation zone (N-FZ). In contrast, the accumulation and attenuation rate constants were, respectively, 35.6% and 2.64 times higher in the groundwater fluctuation zone amended with nZVI@BC (nZVI@BC-FZ) as compared with those observed in the N-FZ. Furthermore, the decay rate constant of the TA residue in the dry season was 0.843 × 10-2 μg/d in N-FZ and was 2.19 times higher in nZVI@BC-FZ. This enhancement effect, caused by the addition of external electrons, was positively correlated with the evolution of the microbial community and the expression of functional genes. The microbes evolved into functional genera with reductive dehalogenation (Xylophilus and Hydrogenophaga) and iron-oxidizing (Lysobacter, Pseudoxanthomonas, and Sphingomonas) abilities in the nZVI@BC-FZ system, which increased dehalogenation and iron oxide genes by a 4-5 order of magnitude. The utilization proportion of external electrons for TA metabolism was 50.04%, of which 30.82%, 10.26%, and 8.96% were utilized for defluorination, hydrogenation, and ring-opening, respectively. This study provides an effective method to reduce pollutant diffusion and enhance the bio-reductive degradation caused by groundwater table fluctuation.
Collapse
Affiliation(s)
- Yayun Xiang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
18
|
Liu Z, Zhang X, Zhang S, Qi H, Hou Y, Gao M, Wang J, Zhang A, Chen Y, Liu Y. A comparison between exogenous carriers enhanced aerobic granulation under low organic loading in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. BIORESOURCE TECHNOLOGY 2022; 346:126567. [PMID: 34923077 DOI: 10.1016/j.biortech.2021.126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, polymeric ferric sulfate (PFS), aluminum sulfate (AS) and diatomite were added to enhance the aerobic granulation under low organic loading rate (OLR) of 0.6 kg·COD/(m3·d), and their effects of aerobic granule formation, extracellular polymeric substances (EPS) secretion and microbial community were investigated. The results showed that adding carriers could facilitated the growth of aerobic granules and improve the sludge settleability and biomass retention. Nutrient removal efficiencies were also enhanced. Compared with diatomite, adding PFS and AS resulted in more significant increase in EPS production, especially for the extracellular proteins. For microbial community, the dominated bacteria (Zoogloea, 18.47-23.95%) in the mature granular consortia were similar. Moreover, the introduction of PFS and diatomite contributed to the enrichment of Paracoccus, which was responsible for denitrification. Adding carriers potentially activated the functional genes related to metabolism and genetic information processing, and PFS had the most significant effects.
Collapse
Affiliation(s)
- Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xuhua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Shumin Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Hao Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiwen Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Min Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Jiaxuan Wang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an 710054, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yiping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, No. 10 Fenghui South Road, Xi'an 710075, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
19
|
Zhu J, Li T, Liao C, Li N, Wang X. A promising destiny for Feammox: From biogeochemical ammonium oxidation to wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148038. [PMID: 34090165 DOI: 10.1016/j.scitotenv.2021.148038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ammonium is one of the most common forms of nitrogen that exists in wastewater, and it can cause severe pollution when it is discharged without treatment. New technologies must be developed to effectively remove ammonium because conventional nitrification-denitrification methods are limited by the lack of organic carbon. Anaerobic ammonium oxidation coupled to Fe(III) reduction is known as Feammox, and is a recently discovered nitrogen cycling process. Feammox can proceed under autotrophic or anaerobic conditions and effectively transforms ammonium to stable, innocuous dinitrogen gas, using the ferric iron as an electron acceptor. This method is cost-effective, environmentally friendly, and conducive to joint application with other nitrogen removal reactions in low-C/N municipal wastewater treatments. This review provides a comprehensive survey of Feammox mechanistic investigations and presents studies regarding the functional microorganism colonies. The potential for Feammox to be applied for the removal of nitrogen from various polluted water sources and the combination of the Feammox process with other frontier environmental technologies are also discussed. In addition, future perspectives for removing ammonium using Feammox are presented.
Collapse
Affiliation(s)
- Jiaxuan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
20
|
Zhang Y, Meng C, He Y, Wang X, Xue G. Influence of cell lysis by Fenton oxidation on cryptic growth in sequencing batch reactor (SBR): Implication of reducing sludge source discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148042. [PMID: 34323827 DOI: 10.1016/j.scitotenv.2021.148042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The cell lysis-cryptic growth was implemented by Fenton oxidation in sequencing batch reactor. Optimizing sludge lysis condition could maximize the release of nutrients and sludge disintegration degree. After Fenton oxidation, the extracellular polymeric substance was obviously destroyed with the sludge average particle decreased from 64 μm to 36 μm. After 5% of the settled sludge in sequencing batch reactor (SBR) was oxidized by Fenton and then returned to SBR, the mixed liquor suspended solids (MLSS) decreased by 19.3% at the end of 35 days operation, the average mixed liquor volatile suspended solids/mixed liquor suspended solids (MLVSS/MLSS) was promoted by 13.3% during the entire operation. Returning lysed sludge had no significant influence on the organics and nitrogen removal, but the total phosphorus removal was distinctly enhanced by generating FePO4 precipitate. Additionally, returning lysed sludge suppressed nitrifying bacteria and promoted denitrifying bacteria slightly. Consequently, the cell lysis-cryptic growth for reducing sludge source discharge from wastewater biological treatment could be achieved on the premise of ensuring effluent quality.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengcheng Meng
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Tianjin United Environmental Protection Engineering Design Co., Ltd., Tianjin 300110, China
| | - Yueling He
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaonuan Wang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Shanghai 201620, China.
| |
Collapse
|
21
|
Udomkittayachai N, Xue W, Xiao K, Visvanathan C, Tabucanon AS. Electroconductive moving bed membrane bioreactor (EcMB-MBR) for single-step decentralized wastewater treatment: Performance, mechanisms, and cost. WATER RESEARCH 2021; 188:116547. [PMID: 33126002 DOI: 10.1016/j.watres.2020.116547] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Membrane bioreactor (MBR) is an advantageous technology for wastewater treatment. However, efficient nutrient removal and membrane fouling mitigation remain major challenges in its applications. In this study, an electroconductive moving bed membrane bioreactor (EcMB-MBR) was proposed for simultaneous removal of organics and nutrients from domestic wastewater. The EcMB-MBR was composed of a submerged MBR, filled with electrodes and free-floating conductive media. Conductive media were introduced to reduce energy consumption in an electrochemical MBR, to improve nitrogen removal, and to mitigate membrane fouling. The results showed that COD, total nitrogen, and total phosphorus removal was up to 97.1 ± 1.4%, 88.8 ± 4.2%, and 99.0 ± 0.9%, respectively, in comparison with those of 93.4 ± 1.5%, 65.2 ± 5.3%, and 20.4 ± 11.3% in a conventional submerged MBR. Meanwhile, a total membrane resistance reduction of 26.7% was obtained in the EcMB-MBR. The optimized operating condition was determined at an intermittent electricity exposure time of 10 min-ON/10 min-OFF, and a direct current density of 15 A/m2. The interactions between electric current and conductive media were explored to understand the working mechanism in this proposed system. The conductive media reduced 21% of the electrical resistivity in the mixed liquor at a selected packing density of 0.20 (v/v). The combination of electrochemical process and conductive media specially enhanced the reduction of nitrate-nitrogen (NO3--N) through hybrid bio-electrochemical denitrification processes. These mechanisms involved with electrochemically assisted autotrophic denitrification by autotrophic denitrifying bacteria. As a result, 5.2% of NO3--N remained in the effluent of EcMB-MBR in comparison with that of 29.5% in the MBR. Membrane fouling was minimized via both mechanical scouring and electrochemical decomposition/precipitation of organic/particulate foulants. Furthermore, a preliminary cost analysis indicated that an additional operating cost of 0.081 USD/m3, accounting for 10 - 30% increment of the operating cost of a conventional MBR, was needed to enhance the nitrogen and phosphorus removal correspondingly in the EcMB-MBR.
Collapse
Affiliation(s)
- Nutkritta Udomkittayachai
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Wenchao Xue
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand.
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chettiyappan Visvanathan
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | | |
Collapse
|
22
|
Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol Adv 2020; 44:107610. [DOI: 10.1016/j.biotechadv.2020.107610] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
23
|
Roy D, Drogui P, Rahni M, Lemay JF, Landry D, Tyagi RD. Effect of cathode material and charge loading on the nitrification performance and bacterial community in leachate treating Electro-MBRs. WATER RESEARCH 2020; 182:115990. [PMID: 32629320 DOI: 10.1016/j.watres.2020.115990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Electro-MBR technology, which combines an electrocoagulation process inside the mixed liquor of a membrane bioreactor, was studied for the treatment of a high-strength ammonia leachate (124 ± 4 mg NH4-N L-1). A lab-scale aerobic Electro-MBR was operated with a solid retention time of 45 days, hydraulic retention times of 24h and 12h, and charge loading ranging from 100 to 400 mAh L-1. At 400 mAh L-1, with a combination of a Ti/Pt cathode and a sacrificial iron anode, removal percentages for ammonia nitrogen, total organic carbon, and total phosphorus were 99.8%, 38%, and 99.0%, respectively. At 400 mAh L-1, the estimated ferric ion dosage was 325 mg Fe3+ L-1. Experiments conducted with different cathode materials showed that previously reported inhibition phenomena may result from a cathodic nitrate reduction into ammonia nitrogen. Conventional cathode materials, such as graphite, have electrochemical nitrate reduction rates of -0.03 mg NO3-N mAh-1. By comparison, when using Ti/Pt, the rate was -0.0045 mg NO3-N mAh-1(85% lower than graphite due to its low hydrogen overpotential). Charge loading tested in this study had no significant impact on both nitrification performance and microbial population diversity. However, the relative abundance of the mixed liquor's Nitrosomonas increased from 4.8% to 8.2% when the charge loading increased from 0 to 400 mAh L-1. Results from this study are promising for future applications of the Ti/Pt - Iron Electro-MBR in various high-strength ammonia wastewater treatment applications.
Collapse
Affiliation(s)
- Dany Roy
- INRS, 490, rue de la Couronne, Québec, Qc, G1K 9A9, Canada.
| | - Patrick Drogui
- INRS, 490, rue de la Couronne, Québec, Qc, G1K 9A9, Canada.
| | | | | | - Dany Landry
- Englobe Corp, 505 Boul. de Parc Technologique, Québec, Qc, G1P 4S7, Canada
| | | |
Collapse
|
24
|
Guo Y, Wang J, Shinde S, Wang X, Li Y, Dai Y, Ren J, Zhang P, Liu X. Simultaneous wastewater treatment and energy harvesting in microbial fuel cells: an update on the biocatalysts. RSC Adv 2020; 10:25874-25887. [PMID: 35518611 PMCID: PMC9055303 DOI: 10.1039/d0ra05234e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
The development of microbial fuel cell (MFC) makes it possible to generate clean electricity as well as remove pollutants from wastewater. Extensive studies on MFC have focused on structural design and performance optimization, and tremendous advances have been made in these fields. However, there is still a lack of systematic analysis on biocatalysts used in MFCs, especially when it comes to pollutant removal and simultaneous energy recovery. In this review, we aim to provide an update on MFC-based wastewater treatment and energy harvesting research, and analyze various biocatalysts used in MFCs and their underlying mechanisms in pollutant removal as well as energy recovery from wastewater. Lastly, we highlight key future research areas that will further our understanding in improving MFC performance for simultaneous wastewater treatment and sustainable energy harvesting.
Collapse
Affiliation(s)
- Yajing Guo
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jiao Wang
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Shrameeta Shinde
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Xin Wang
- Department of Microbiology, Miami University Oxford OH 45056 USA
| | - Yang Li
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Yexin Dai
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Jun Ren
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| | - Pingping Zhang
- College of Food Science and Engineering, Tianjin Agricultural University Tianjin 300384 PR China
| | - Xianhua Liu
- Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University Tianjin 300354 PR China
| |
Collapse
|
25
|
Liu X, Huang M, Bao S, Tang W, Fang T. Nitrate removal from low carbon-to-nitrogen ratio wastewater by combining iron-based chemical reduction and autotrophic denitrification. BIORESOURCE TECHNOLOGY 2020; 301:122731. [PMID: 31927457 DOI: 10.1016/j.biortech.2019.122731] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Nitrate removal from low carbon-to-nitrogen ratio (C/N) wastewater has always been a knotty problem due to the deficiency of organics. Here, a novel iron-based chemical reduction and autotrophic denitrification (ICAD) system was developed. ICAD system could maintain average nitrate removal efficiency of 97.2% for 131 days with feeding 20.3 mg NO3--N/L at hydraulic retention time (HRT) of 24 h. The optimal operational conditions was further explored, and results demonstrated that average nitrate removal efficiency of 85.5% and 98.4% could be achieved at HRT of 12 h and 24 h (influent 20.3 mg NO3--N/L), while average nitrate removal efficiency could reach 96.3% at optimal HRT of 12 h (influent 10.3 mg NO3--N/L). Hydrogenophaga, which can carry out hydrogenotrophic denitrification, showed a positive correlation with nitrate removal efficiency of the ICAD system. Low cost and simple operation make the ICAD system suitable for large-scale application.
Collapse
Affiliation(s)
- Xiawei Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manqi Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Al-Qodah Z, Al-Qudah Y, Omar W. On the performance of electrocoagulation-assisted biological treatment processes: a review on the state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28689-28713. [PMID: 31414385 DOI: 10.1007/s11356-019-06053-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The combined treatment systems have become a potential alternative to treat highly polluted industrial wastewater to achieve high-quality treated effluents. The current review focuses on the treatment systems compromising electrocoagulation (EC) as a pretreatment step followed by a biological treatment step. The reasons for applying EC as a pretreatment process were mainly to (1) detoxify the wastewater by removing inhibitors of the biotreatment step or (2) to remove the major part of the COD or (3) the dissolved materials that could cause fouling to membrane bioreactors or (4) to increase the activity of the microorganisms. This combination represents a new and promising application characterized by higher performance and removal efficiency. The main published findings related to this application are presented and analyzed. Besides, the statistical models used to optimize the process variables and the kinetics of microorganism growth rate are discussed herein. Most of the previous investigations were conducted in a laboratory-scale level with biologically treated water as a feed to the EC process. Only a few works applied a hybrid system consisting of the biological step and the EC step. In all studies, improved performance and higher removal efficiencies of the combined process were achieved particularly when applying aluminum electrodes, providing more than 95% removal efficiency. Many researchers have reported that they had faced a significant problem in the operation of the electrocoagulation process associated with the reduction of electrodes' efficiency caused by deposits of the coagulation complex. This problem needs to be effectively resolved.
Collapse
Affiliation(s)
- Zakaria Al-Qodah
- Chemical Engineering Department, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134, Jordan.
| | - Yahiya Al-Qudah
- Chemistry Department, Faculty of Science, Al-Balqa Applied University, Salt, Jordan
| | - Waid Omar
- Chemical Engineering Department, Faculty of Engineering Technology, Al-Balqa Applied University, Amman, 11134, Jordan
| |
Collapse
|
27
|
Yang Y, Qiao S, Jin R, Zhou J, Quan X. A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling. WATER RESEARCH 2019; 151:54-63. [PMID: 30594090 DOI: 10.1016/j.watres.2018.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
A novel electro-assisted membrane bioreactor (EMBR) was constructed by integrating conductive carbon nanotubes hollow fiber membranes (CNTs-HFMs) into an aerobic activated sludge system. Herein, the CNTs-HFMs served as anode and filtration core simultaneously. Contrasted with the other two MBRs (PVDF-HFMs and CNTs-HFMs without electro-assistance), the effluent COD and NH4+N were lower than 40 mg/L and 3 mg/L at +1.0 V even HRT as short as 4 h. However, they were mostly over 50 mg/L (COD) and 5 mg/L (NH4+N) under the same conditions in the other two MBRs. The hydraulic cleaning for electro-assisted CNTs-HFMs was carried out only once during 60-day operation, and the permeate flux recovered to 100% of the original status. While four and five times hydraulic cleaning were executed for other two MBRs (PVDF-HFMs and CNTs-HFMs), respectively. Furthermore, merely 50 min continuous electrochemical oxidation was enough to resume flux of the heavily fouled CNTs-HFMs, i.e. flux recovered to 2020.87 L/(bar•m2•h) from 394.68 L/(bar•m2•h) (pure water flux, ∼2200 L/(bar·m2·h)). Simpson and Shannon indexes indicated enhanced microbial community stability in EMBR. Thus, electro-assisted CNTs-HFMs endow EMBR excellent anti-fouling ability and good effluent quality.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
28
|
Li Z, Zhang Q, Jiang Q, Zhan G, Li D. The enhancement of iron fuel cell on bio-cathode denitrification and its mechanism as well as the microbial community analysis of bio-cathode. BIORESOURCE TECHNOLOGY 2019; 274:1-8. [PMID: 30496969 DOI: 10.1016/j.biortech.2018.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
To address the issue of insufficient electrons during denitrification, an iron fuel cell (IFC) bioreactor using iron as abiotic anode was designed. The nitrogen removal efficiency (NRE) of IFC (2.54 ± 0.016%) was significantly lower than microbial fuel cell (MFC) (32.58 ± 0.033%) with same bio-cathode under autotrophic conditions, which was due to the permeation of acetate on proton exchange membrane (PEM) affected the process of enriching autotrophic denitrifying bacteria by MFC. When used in heterotrophic conditions, the NRE of the closed-circuits of IFC was 29.04%, 10.53%, 8.33% higher than open-circuits, respectively, when the COD/nitrogen (C/N) ratios was 1, 2 and 3. The enhancement of IFC was the iron anode could convert a portion of nitrate to nitrite according to the abiotic cathode control experiments. The mainly functional bacteria of bio-cathode was Paracoccus (53.04%). In conclusion, the IFC could be a theoretical model for using inorganic electron donor during denitrification.
Collapse
Affiliation(s)
- Zehua Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
| | - Qinrui Jiang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Zhan
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Li L, Qian G, Ye L, Hu X, Yu X, Lyu W. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant. WATER RESEARCH 2018; 140:77-89. [PMID: 29698857 DOI: 10.1016/j.watres.2018.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH4+-N, and NO3--N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas.
Collapse
Affiliation(s)
- Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Guangsheng Qian
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| | - Linlin Ye
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Xin Yu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| | - Weijian Lyu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|