1
|
Lu X, Chen X, Vancov T, Zhu F, Zhu W, Hong L, Yao Y, Li P, Wang W, Hong C. Combined remediation effect of ryegrass-earthworm on heavy metal composite contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138477. [PMID: 40327931 DOI: 10.1016/j.jhazmat.2025.138477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/20/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Combining plants and soil organisms offers an effective strategy for managing heavy metal contamination. A pot experiment was conducted by using ryegrass (Lolium perenne L.) and earthworms (Eisenia fetida) under five levels of heavy metal contamination, applied individually and in combination. After 80 days, plant and earthworm growth, heavy metal accumulation, and residual soil metal concentrations were analysed to assess the potential of ryegrass-earthworm for remediation of heavy metal contaminated soil. The results indicated that the combined treatment significantly enhanced ryegrass and earthworm growth, increasing both the density and biomass yield of ryegrass and earthworms compared to the individual treatments. This approach also improved heavy metal accumulation, achieving the maximum decreases Cd, Pb, and Cu in soil of 38 %, 42 %, and 34 %, respectively. Structural equation modeling analysis revealed mutual growth promotion between ryegrass and earthworms, though competition for heavy metal accumulation was noted. The combined treatment achieved the highest subordinate function value (0.50), outperforming ryegrass alone (0.48) and earthworms alone (0.43). These findings highlight the superior effectiveness of the combined ryegrass-earthworm strategy, particularly at higher heavy metal concentrations, making it a promising strategy for remediating contaminated soils.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyang Chen
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Fengxiang Zhu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijing Zhu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leidong Hong
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlai Yao
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Penghao Li
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiping Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunlai Hong
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Foroughi M, Weil RR. Soil lead, zinc, and copper in two urban forests as influenced by highway proximity. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:275-288. [PMID: 39433466 PMCID: PMC11718127 DOI: 10.1002/jeq2.20642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Heavy metals emitted by vehicles have the potential to accumulate in soil near roadways, threatening the health of soil, plants, animals, and humans. This study evaluates Pb, Zn, and Cu levels in forest O-horizons, mineral soil, and earthworms near busy roadways in the metro-Washington, DC area. The study sites comprised road-edge environments within urban parks. Six transects were sampled in each park, collecting mineral soil at 1- to 30-m distances from the road edge and dividing it into eight depth increments (0-30 cm). O-horizon plant litter and earthworm samples were also collected at these locations. All samples underwent total Pb, Zn, and Cu X-ray fluorescence analysis. Generally, Pb concentrations (in upper 0-10 cm) were 1-4.8 times higher at 3 m compared to 30 m from the road, with less consistent gradients for Zn and Cu. Concentrations peaked near the soil surface, with lower levels in the O-horizon above and deeper soil layers. Leaded vehicle fuel was phased out by the early 1980s, but legacy Pb contamination persisted in roadside forests, averaging 365 mg kg-1 in the upper 10 cm within 3 m of the roadway (< EPA action level of 1200 mg kg-1 for non-play areas). Zinc, often present in vehicle tires, accumulated in earthworms to 192-592 mg kg-1, concentrations exceeding those in the soil, while Pb and Cu were less concentrated in earthworms than in either O-horizon or mineral soil. Factors such as plant uptake, erosion, wind, soil texture, and metal solubility influence how heavy metals redistribute and bioaccumulate in the O-horizon, mineral soil, and soil fauna.
Collapse
Affiliation(s)
- Maryam Foroughi
- Environmental Science & TechnologyUniversity of MarylandCollege ParkMarylandUSA
| | - Raymond R. Weil
- Environmental Science & TechnologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
3
|
Kharmawphlang IM, Deka H, Hussain N. Unravelling the detoxification trail of potential toxic heavy metals: an insight into heavy metal auditing and ecological health upon valorisation by Lampito mauritii and Eudrilus eugeniae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64007-64022. [PMID: 39528892 DOI: 10.1007/s11356-024-35417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Evidence on prospective remediation of municipal solid waste contaminated with toxic heavy metals by Eudrilus eugeniae (Eu) and Lampito mauritii (L) is very scarce and yet to be explored. In this study, heavy metal detoxification potential of E. eugeniae and L. mauritii in municipal solid waste (MSW) + cowdung (CD) (3:1)-based feedstocks were investigated against Eisenia fetida (E) (a well-known vermi-remediator) and aerobic composting. Excellent reduction (70.01-93.04%) of potentially toxic heavy metals (PTHMs) (Pb, Cr, Cd and Zn) were evident in both E. eugeniae and L. mauritii employed treatments. Moreover, the results on heavy metal budget quotient clearly demonstrated the unique detoxification route undertaken by E. eugeniae and L. mauritii via humic composite facilitated chelation over the nominal bioaccumulation pathway. The principal component analysis (PCA) confirmed the strong negative correlation between the heavy metal (HM) level in earthworm gut and MSW substrate, whereas a strong positive correlation between humic substances and HM remediation. Furthermore, analysis of ecological health parameters indicated substantial reduction of environmental risk and guaranteed negligible risk of PTHM if utilized as manure. Moreover, significant increment in total N content (3.2-3.8-fold), available P (4-5.9-fold), exchangeable K (3.66-fourfold) and enzyme activity along with significant reduction of TOC (~ 87%) confirmed E. eugeniae and L. mauritii could effectively stabilize MSW. Thus, the metal-binding potential of humic substances produced by earthworms during the detoxification of municipal solid waste (MSW), coupled with a metal budget analysis, has offered valuable insights into the usage of E. eugeniae and L. mauritii as effective contenders for sanitizing heavy metal-laden MSW.
Collapse
Affiliation(s)
| | - Hemen Deka
- Department of Botany, Gauhati University, Guwahati, 781014, Assam, India
| | - Nazneen Hussain
- Department of Bio-Sciences, Assam Don Bosco University, Sonapur, 782402, Assam, India.
| |
Collapse
|
4
|
Mekersi N, Kadi K, Hackenberger DK, Casini S, Addad D, Thangaraj R, Chen Z, Zhang C, Yuvaraj A. Accumulation of heavy metals from single and combined olive mill wastewater and pomace in soil and bioaccumulation in tissues of two earthworm species: Endogeic (Aporrectodea trapezoides) and Epigeic (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45280-45294. [PMID: 38963619 DOI: 10.1007/s11356-024-34087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Soil and earthworms are threatened by anthropogenic contamination resulting from olive mill waste dumping on the soil due to their pollutant properties. While several studies have explored the effects of olive mill waste on soil properties and the accumulation of heavy metals in soil, there is currently a gap in the literature regarding the potential bioaccumulation of heavy metals from olive mill waste in earthworms. In this study, soil with earthworms from two ecological categories (endogeic: Aporrectodea trapezoides and epigeic: Eisenia fetida) was treated with increasing doses of olive mill wastewater (OMWW) and olive mill pomace (OMP), applied individually or combined, in an indoor experiment in plastic containers, under laboratory conditions. The results revealed the presence of significant concentrations of heavy metals in the two types of wastes ranging as follows: Fe˃ Zn˃ Cu˃ Cd˃ Cr for OMWW, and Fe˃ Zn˃ Cu˃ Cr for OMP (with Cd below the detection limit). The study demonstrated distinct effects of OMWW and OMP, both individually and in combination, on soil heavy metal content, ranging as follows: soil OMWW > soil Combination > soil OMP for Cd; soil Combination > soil OMWW > soil OMP for Cr and Fe; and soil Combination > soil OMP > soil OMWW for Cu and Zn. Additionally, our investigation showed that both earthworm species exhibited significant uptake of these metals into their tissues, particularly the endogeic species. Interestingly, the most significant difference between species was in the accumulation of Cu, with the epigeic species accumulating significantly lower amounts.
Collapse
Affiliation(s)
- Nawal Mekersi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | - Kenza Kadi
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
| | | | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy
| | - Dalila Addad
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour, Khenchela, Algeria
- Natural Resources and Management of Sensitive Environments Laboratory, Larbi Ben M'hidi University, 04000, Oum El Bouaghi, Algeria
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague-Suchdol, 16500, Czech Republic
| | - Chi Zhang
- Key Laboratory of the Ministry of Agriculture for Arable Land Conservation in South China, Key Laboratory of Guangdong Province for Land Use and Consolidation, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, Tamil Nadu, 636 011, India
| |
Collapse
|
5
|
Ju X, Zhu Y, Xiong P, Lei L, Wu Y, Zhang Y, Zhang R. Characterization of a bla NDM-1-positive Citrobacter freundii strain isolated from earthworms. J Glob Antimicrob Resist 2024; 36:33-35. [PMID: 38013133 DOI: 10.1016/j.jgar.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES Earthworms are one of the key components of soil, and they play a crucial role in the transformation of various nutrients and pollutants in the soil. The purpose of this study is to characterize the NDM-1-producing C. freundii isolated from soil-dwelling earthworms near a hospital, exploring their potential role as carriers of carbapenem-resistant genes. METHODS Isolates were isolated from the intestines of earthworms and identified by MALDI-TOF MS. The presence of NDM enzyme was verified through the CARBA-5 Assay. Whole genome sequencing was conducted using the Illumina NovaSeq PE150 platform. Antimicrobial susceptibility testing and conjugation experiment were performed for phenotypic analysis. RESULTS This isolate exhibited a multidrug-resistant profile, including resistance to imipenem, meropenem, and ertapenem and successfully transferred blaNDM-1 gene to Escherichia coli. Whole genomic sequencing showed that blaNDM-1 gene was located on an IncFIIY-type plasmid. Phylogenetic analysis revealed a close relationship between the QY221001 strain obtained from earthworms and the human isolate F2021 in the NCBI database, both of which were collected in Hangzhou, China. CONCLUSION To our knowledge, this is the first report of an NDM-1-producing bacteria isolated from the intestine of an earthworm. Our finding suggested that earthworms could be a potential reservoir of carbapenem resistance genes, emphasizing the importance of enhanced environmental monitoring of antimicrobial resistance.
Collapse
Affiliation(s)
- Xiaoyang Ju
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang Province, China
| | - Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Lin'an District, Hangzhou, Zhejiang Province, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Zhou Y, Li H, Guo W, Liu H, Cai M. The synergistic effect between biofertility properties and biological activities in vermicomposting: A comparable study of pig manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116280. [PMID: 36183526 DOI: 10.1016/j.jenvman.2022.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Vermicomposting is a resource technology for managing animal excreta, whereas the internal relationships of the process are vital for its wide applications. The present study examined how macronutrient and micronutrient concentrations, microbial communities, and enzymatic activity of pig manure (PM) changed during the composting and vermicomposting processes and their internal interactions. The vermicomposting process increased macronutrients more significantly than composting (32.40% of total available nitrogen, 21.70% of total available phosphorous, and 12.70% of total available potassium). The vermicomposting reduced total organic carbon (7.91%), C/N ratio (61.35%), and humification index (56.47%) more than composting due to the quick decomposition of PM. After continual fertility optimization, the total microbial population, with the exception of total fungi, rose significantly to accelerate organics mineralization and improve macronutrients in vermicomposting compared to composting. Moreover, earthworm addition favored the stabilization of the PM containing higher concentrations of micronutrients after being catalyzed by the enhanced catalase activity and reduced sucrase activity after 90 days of vermicomposting. Principal component analysis and chord plots found that the generated vermicomposting products had higher fertility properties and biological activities induced by the synergistic effect of microorganisms and earthworms. These findings highlight vermicomposting is an eco-friendly management technology for processing PM and can be scaled up for agricultural applications.
Collapse
Affiliation(s)
- Yong Zhou
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, 432000, PR China.
| | - Huankai Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Wenwei Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Hui Liu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
7
|
Preethee S, Saminathan K, Chandran M, Kathireswari P. Valorization of phyto-biomass with tertiary combination of animal dung for enriched vermicompost production. ENVIRONMENTAL RESEARCH 2022; 215:114365. [PMID: 36162467 DOI: 10.1016/j.envres.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A study was conducted for 90 days in two cycles on 45thday (Cycle I), and 90th day (Cycle II) in 144 vermibins with precomposted cow dung (T1), elephant dung (T2), cow dung + elephant dung (T3) in combination with leaf substrates of Ficus religiosa, Azadirachta indica, Terminalia catappa, Carica papaya, Vitex negundo, Acalypha indica and Borassus flabellifer to generate nutrient-enriched vermicompost. Different vermibin feedstock materials were retained as experimental setup in other substrates with earthworm (vermicompost) and without earthworm (compost). This method was employed in the current study to decompose environmental leaf debris into the earthworm's mass production and transform it into high-value manure for long-term soil fertility control. The majority of the substrates exhibit pH and electrical conductivity in vermicomposts showed an increment while the total organic carbon and carbon to nitrogen ratio were significantly lowered. A prominent percentage increment of total NPK contents (P < 0.05) in vermicompost over initial values (N: 7.09-164.03; P: 4.39-101.09; K: 0.45-84.10). Among the vermibed substrates, Ficus religiosa leaf litter mixed with T3 showed stabilized cocoons and juveniles in Cycle I (45 days), while sub-adults and adults growth was favored in Cycle II (90 days). The higher reproductive potential of earthworms could be due to the composition and palatability of the substrate combination. This study provides a platform for utilizing leaf wastes in combination with animal wastes amended to reproduce earthworms, nutrient enrichment which could benefit soil fertility improvement.
Collapse
Affiliation(s)
- Saravanan Preethee
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India
| | - Kulandaivel Saminathan
- Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India
| | - Masi Chandran
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - Palanisamy Kathireswari
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, 641029, Tamil Nadu, India.
| |
Collapse
|
8
|
Dume B, Hanc A, Svehla P, Michal P, Solcova O, Chane AD, Nigussie A. Nutrient recovery and changes in enzyme activity during vermicomposting of hydrolysed chicken feather residue. ENVIRONMENTAL TECHNOLOGY 2022:1-15. [PMID: 36368925 DOI: 10.1080/09593330.2022.2147451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Chicken feathers are hazardous to the environment because of their poor digestibility and potential as a source of environmental contaminants. However, this waste contains valuable plant nutrients that can be recovered and used to improve soil fertility and agricultural productivity. The objectives of this study were to evaluate how effective vermicomposting is at recovering nutrients and changes in enzymatic activity during vermicomposting of hydrolysed chicken feather residues (HCFR). The study included four treatments with three replications at different HCFR and pelletized wheat straw (PWS) mixing proportions: (T1) 25% HCFR+75% PWS with earthworms, (T2) 25% HCFR+75% PWS without earthworms, (T3) 50% HCFR+50% PWS with earthworms, and (T4) 50% HCFR+50% PWS (w/w) without earthworms. Eisenia andrei was used in the experiment for 120 days. Earthworm treatments recovered more available plant nutrients than non-earthworm treatments by 14% N - NO 3 - (T1); 50% K (T3); 47% Mg (T3); 75% P (T3); 55% B (T3); 34% Cu (T3); 40% Fe (T1); 46% Mn (T3); 11% Zn (T1). However, N - NH 4 + was significantly reduced by -80% (T1). Acid phosphatase, arylsulphatase, alanine aminopeptidase, and leucine aminopeptidase were more active in the treatments with earthworms and positively correlated with P and C: N ratio. Alanine aminopeptidase (3752 µmol AMCA.g-1.h-1) and leucine aminopeptidase (4252 µmol AMCL.g-1.h-1) had higher activities in T3 on day 60 of vermicomposting. As a result, the earthworm treatment recovers more plant nutrients than the non-earthworm treatments, and it can be recommended as a better vermicomposting approach for nutrient recovery from HCFR.
Collapse
Affiliation(s)
- Bayu Dume
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Ales Hanc
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Svehla
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Pavel Michal
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Olga Solcova
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Abraham Demelash Chane
- Faculty of Agrobiology, Food, and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences, Prague, Czech Republic
| | - Abebe Nigussie
- Jimma University, College of Agriculture, Jimma, Ethiopia
| |
Collapse
|
9
|
IndraKumar Singh S, Singh WR, Bhat SA, Sohal B, Khanna N, Vig AP, Ameen F, Jones S. Vermiremediation of allopathic pharmaceutical industry sludge amended with cattle dung employing Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 214:113766. [PMID: 35780853 DOI: 10.1016/j.envres.2022.113766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study aims to vermiremediate allopathic pharmaceutical industry sludge (AS) amended with cattle dung (CD), in different feed mixtures (AS:CD) i.e (AS0) 0:100 [Positive control], (AS25) 25:75, (AS50) 50:50, (AS75) 75:25 and (AS100) 100:0 [Negative Control] for 180 days using earthworm Eisenia fetida. The earthworms could thrive and grow well up to the AS75 feed mixture. In the final vermicompost, there were significant decreases in electrical conductivity (29.18-18.70%), total organic carbon (47.48-22.39%), total organic matter (47.47-22.36%), and C: N ratio (78.15-54.59%). While, significant increases in pH (9.06-16.47%), total Kjeldahl nitrogen (69.57-139.58%), total available phosphorus (30.30-81.56%), total potassium (8.92-22.22%), and total sodium (50.56-62.12%). The heavy metals like Cr (50-18.60%), Cd (100-75%), Pb (57.14-40%), and Ni (100-50%) were decreased, whereas Zn (8.37-53.77%), Fe (199.03-254.27%), and Cu (12.90-100%) increased significantly. The toxicity of the final vermicompost was shown to be lower in the Genotoxicity analysis, with values ranging between (76-42.33%). The germination index (GI) of Mung bean (Vigna radiata) showed a value ranging between 155.02 and 175.90%. Scanning electron microscopy (SEM) analysis showed irregularities with high porosity of texture in the final vermicompost than in initial mixtures. Fourier Transform-Infrared Spectroscopy (FT-IR) spectra of final vermicompost had low peak intensities than the initial samples. The AS50 feed mixture was the most favorable for the growth and fecundity of Eisenia fetida, emphasizing the role of cattle dung in the vermicomposting process. Thus, it can be inferred that a cost-effective and eco-friendly method (vermicomposting) with the proper amendment of cattle dung and employing Eisenia fetida could transform allopathic sludge into a nutrient-rich, detoxified, stable, and mature vermicompost for agricultural purposes and further could serve as a stepping stone in the allopathic pharmaceutical industry sludge management strategies in the future.
Collapse
Affiliation(s)
- Soubam IndraKumar Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Waikhom Roshan Singh
- Manipur Pollution Control Board (MPCB), Imphal West, DC Office Complex, Imphal, 795001, Manipur, India
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Bhawana Sohal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Namita Khanna
- Department of Physiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, 151203, Punjab, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India; Punjab Pollution Control Board (PPCB), Vatavaran Bhawan, Nabha Road, Patiala, 147001, Punjab, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sumathi Jones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
10
|
Jiang D, Jiang K, Li R, Zhao L, Liu Z, Xiong B, Jin D, Hao X, Zhu L, Kang B, Bai L. Influence of different inoculation densities of black soldier fly larvae (Hermetia illucens) on heavy metal immobilization in swine manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54378-54390. [PMID: 35298800 DOI: 10.1007/s11356-022-19623-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The disposal of organic waste by the biocomposting of black soldier fly larvae (BSFL) has drawn broad attention. However, the discrepancies in heavy metal immobilization between BSFL biocomposting with different inoculation densities and aerobic composting need to be further researched. In this study, BSFL with inoculation densities of 0.08%, 0.24% and 0.40% was added to swine manure to investigate its influence on heavy metal bioaccumulation and bioavailability. The physicochemical properties, BSFL growth performance and amino acid contents were measured. The results showed that the germination index, total prepupal yield and bioavailable fraction removal rate (%) of Cr and Pb at an inoculation density of 0.40% of BSFL were the highest among all of the BSFL biocomposting groups. Although the bioaccumulation factor and heavy metal (Cd, Cr, Cu and Zn) concentrations of the BSFL body from swine manure with inoculation densities of 0.24% and 0.40% of BSFL were similar, the BSFL inoculation density of 0.40% had the best absorption effect on these heavy metals in terms of total prepupal yield. Therefore, this study provides a basis for exploring the optimal inoculation density of BSFL biocomposting to reduce the harmful effects of heavy metals in swine manure.
Collapse
Affiliation(s)
- Dongmei Jiang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kunhong Jiang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Li
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liangbin Zhao
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zile Liu
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bangjie Xiong
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Du Jin
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Kang
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Bai
- Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Upadhyay SK, Chauhan PK. Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea Mays L.) plant growth, Na uptake reduction and saline soil restoration. ENVIRONMENTAL RESEARCH 2022; 211:113081. [PMID: 35304115 DOI: 10.1016/j.envres.2022.113081] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/05/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Soil salinity is progressively affecting global agriculture area, and act as a brutal environmental factor for the productivity of plants, therefore, sustainable remediation of the saline soil is urgently required. In this study, we tested the effectiveness of PM (poultry manure), SMS (spent mushroom substrate), and CD (cow dung) for the recovery of salt soil and the optimization of the productivity of the maize plant. PM and SMS showed the valuable source of OC, N, P, K as the CD. The HCA analysis showed that 47% of the bacterial population from PM, SMS, and CD survived at 6% NaCl (w/v), which had PGP attributes such as IAA, P-solubilizers, and siderophore activity. The results from pot experiments of plant growth and PCA analysis of bacterial PGP attributes reveled re formulation of PM, SMS, and CD, which were further optimized at the saline field level. T-2 treated plant increased their shoot length, chlorophyll content, reducing sugar, nitrogen, phosphorus, and potassium levels significantly after 30 and 60 days, followed by T-4 and T-3 as the control. A significant (P < 0.01) increase in particle density and decrease in bulk density was observed for all combinations treated (T-2 to T-7). A two-year field study revealed that the T-2 combination increased 43% OC, 57% N, 66% P, 48% K, 32% DHA, 76% PPO in the soil than the control after 60 days. T2-combination decreased ≈50% of Na content in root and shoot, and increased 27% of maize crop yield. The dose of 10% PM + 10% SMS can significantly induce the growth of maize plants and the restoration of saline soil health.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| |
Collapse
|
12
|
Deciphering waste bound nitrogen by employing psychrophillic Aporrectodea caliginosa and priming of coprolites by associated heterotrophic nitrifiers under high altitude Himalayas. Sci Rep 2022; 12:9556. [PMID: 35688921 PMCID: PMC9187671 DOI: 10.1038/s41598-022-12972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Himalayan ecosystem is characterized by its fragile climate with rich repositories of biodiversity. Waste collection and disposal are becoming increasingly difficult due to topographical variations. Aporrectodea caligenosa, a versatile psychrophillic soil dweller, is a useful biocatalyst with potent bio-augmented capability for waste treatment at low temperatures. Microcosm experiments were conducted to elucidate the comprehensive nature of biogenic nitrogen transformation to NH4+ and NO3− produced by coupling of earthworm-microbes. Higher biogenic recovery of NH4+-N from coprolites of garden soil (47.73 ± 1.16%) and Himalayan goat manure (86.32 ± 0.92%) with an increment of 14.12 and 47.21% respectively over their respective control (without earthworms) with a linear decline beyond 4th week of incubation was reported. NO3–-N recovery progressively sustained in garden soil and goat manure coprolites during entire incubation with highest 81.81 ± 0.45 and 87.20 ± 1.08 µg-N g−1dry weight recorded in 6th and 5th week of incubation respectively and peak increments as 38.58 and 53.71% relative to respective control (without earthworms). Declined NH4+–N in coprolites at low temperature (15.0 ± 2.0 °C) evidenced increased nitrification rates by taking over the process by abundant nitrifying microbes. Steady de-nitrification with progressive incubation on an average was 16.95 ± 0.46 ng-N g−1 per week and 21.08 ± 0.87 ng-N g−1 per week compared to 14.03 ± 0.58 ng-N g−1 per week and 4.50 ± 0.31 ng-N g−1 per week in respective control treatments. Simultaneous heterotrophic nitrification and aerobic denitrification (SHNAD) was found to be a prominent bioprocess at low temperature that resulted in high and stable total nitrogen and nitrate accumulation from garden soil and goat manure with relative recovery efficiency of 11.12%, 14.97% and 14.20%; 19.34%. A. caligenosa shows promising prospects for mass applicability in biogenic N removal from manure of Himalayan goat.
Collapse
|
13
|
Lirikum, Kakati LN, Thyug L, Mozhui L. Vermicomposting: an eco-friendly approach for waste management and nutrient enhancement. Trop Ecol 2022. [DOI: 10.1007/s42965-021-00212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Prasad A, Kothari N. Cow products: boon to human health and food security. Trop Anim Health Prod 2021; 54:12. [PMID: 34894304 PMCID: PMC8665701 DOI: 10.1007/s11250-021-03014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
The world population exceeded 7.8 billion people in 2020 and is predicted to reach 9.9 billion by 2050 as per the current increasing rate of 25%. In view of this, ensuring human health and food security has become an issue of key importance to countries with different degrees of economic development. At the same time, the livestock sector plays a strategic role in improving the economic, environmental, and sociocultural stewardship of any nation. The cow (Bos indicus) has held a distinctive role in human history ever since its domestication because of its valued harvests like dairy products (milk, clarified butter, yogurt, curd, and buttermilk) excreta like dung and urine. These products, except dung, provide all the necessary energy and nutrients to ensure the proper growth and development of the human. They are the source of many bioactive substances, which possess immense pharmacotherapeutic action against various physiological, metabolic and infectious disorders, including COVID-19. The use of urine and dung can be considered a low-cost agricultural practice for farmers and has been extensively used in modern agriculture practices to ensure food security via soil fertility, plant pathogens, and pests. Cow urine mediated synthesized nanomaterial also display distinctive characteristics and novel applications in various fields of science and technology. Thus, this paper aims to provide a comprehensive overview of cow products, describing their biochemical constituents, bioactivities, and their utilization in the area ranging from human welfare to agriculture sustainability. An attempt is also made to present possible applications in bioenergy production and pollution reduction.
Collapse
Affiliation(s)
- Arti Prasad
- Laboratory of Public Health Entomology, Department of Zoology, M. L. Sukhadia University, Udaipur, Rajasthan, India
| | - Naresh Kothari
- Laboratory of Public Health Entomology, Department of Zoology, M. L. Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
15
|
Chang X, Sun Y, Zhao L, Li X, Yang S, Weng L, Li Y. Exposure to fomesafen alters the gut microbiota and the physiology of the earthworm Pheretima guillelmi. CHEMOSPHERE 2021; 284:131290. [PMID: 34198065 DOI: 10.1016/j.chemosphere.2021.131290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The application of herbicide fomesafen plays a crucial role in ensuring global soybean productivity in modern agriculture, but it results in both adverse effects on soil ecosystems and phytotoxicity to succeeding crops. Soil pollution due to herbicides has raised much concern worldwide. However, there has been little investigations concerning their effects on soil fauna, especially on the gut microbial communities of earthworms. In this study, the soil endogeic earthworm Pheretima guillelmi was incubated for 20 days in natural and fomesafen-polluted soils to investigate the effects of the herbicide on gut bacterial microbiota and the earthworm's physiological indices, including energy resource (protein) and antioxidant enzyme (superoxide dismutase, SOD) of earthworms in the soil ecosystem. A significantly different and smaller microbial community was presented in the earthworm's gut compared with the cast and the surrounding soil, with exposure to fomesafen further reducing the bacterial diversity and altering the gut community composition. This was observed as significant changes in the relative abundance of the phyla Actinobacteria, Firmicutes, and Proteobacteria as well as the genera Bacillus, Microvirga, Blastococcus, Nocardioides, and Gaiella. Moreover, exposure to fomesafen reduced earthworms' energy resources and activated the antioxidant system, with both effects being significantly correlated with the gut microbial diversity. These findings unravel the fact that exposure to the herbicide fomesafen may affect non-target soil fauna via changes in their microbiota and physiological indices, thereby contributing new knowledge regarding the adverse impacts of fomesafen on the terrestrial ecosystem.
Collapse
Affiliation(s)
- Xingping Chang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Side Yang
- Jilin Agricultural University, Changchun, 130118, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China; College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Tian X, Han B, Liang J, Yang F, Zhang K. Tracking antibiotic resistance genes (ARGs) during earthworm conversion of cow dung in northern China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112538. [PMID: 34325199 DOI: 10.1016/j.ecoenv.2021.112538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Using cow dung to breed earthworms poses a risk of environmental transmission of antibiotic resistance genes (ARGs). The purpose of this study was to address the occurrence, persistence and environmental fate of ARGs during earthworm conversion of cow dung. The results showed that ARGs persisted through the whole process. Notably, earthworm conversion effectively reduced some ARGs in cow dung, but a definite concentration of ARGs still remained in earthworms and vermicompost (up to 10-1 and 10-2 copies/16S copies, respectively). We found that tet-ARGs were the most abundant in 15 earthworm farms (10-6~10-1 copies/16S copies) and some high-risk ARGs (i.e., blaampC, blaOXA-1 and blaTEM-1) were even prevalent in these farms. Interestingly, although ARGs differ widely in cow dung (10-10~10-1 copies/16S copies), the ARGs levels were comparable in vermicompost samples from different farms (10-8~10-2 copies/16S copies). Notably, earthworm conversion effectively reduced some ARGs in cow dung, but significant level of ARGs still remained in earthworms and vermicompost (up to 10-1 and 10-2 copies/16S copies, respectively). Nevertheless, the concentrations of some heavy metals (Cu, Zn and Ni), the abundance of mobile genetic elements (MGEs) and total nitrogen content were confirmed to be correlated to the enrichment of some ARGs. Overall, this study demonstrated the high prevalence of ARGs contamination in earthworm farms, and also highlighted the dissemination risk of ARGs during the earthworm conversion of cow dung.
Collapse
Affiliation(s)
- Xueli Tian
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Junfeng Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
17
|
Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189713. [PMID: 34574635 PMCID: PMC8469537 DOI: 10.3390/ijerph18189713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022]
Abstract
DNA sequencing of active cells involved in vermicomposting can clarify the roles of earthworms in regulating functional microorganisms. This study aimed to investigate the effect of earthworms on functional microbial communities in sludge by comparing biodegradation treatments with and without earthworms. PCR and high throughput sequencing based on pretreatment of propidium monoazide (PMA) were used to detect the changes in active bacterial 16S rDNA and eukaryotic 18S rDNA during vermicomposting. The results showed that the nitrate in sludge vermicomposting and control were significantly different from day 10, with a more stable product at day 30 of vermicomposting. Compared with the control, the Shannon indexes of active bacteria and eukaryotes decreased by 1.9% and 31.1%, respectively, in sludge vermicompost. Moreover, Proteobacteria (36.2%), Actinobacteria (25.6%), and eukaryotic Cryptomycota (80.3%) were activated in the sludge vermicompost. In contrast, the control had Proteobacteria (44.8%), Bacteroidetes (14.2%), Cryptomycota (50.00%), and Arthropoda (36.59%). Network analysis showed that environmental factors had different correlations between active bacterial and eukaryotic community structures. This study suggests that earthworms can decrease the diversity of bacterial and eukaryotic communities, forming a specific-functional microbial community and thus accelerating organic matter decomposition during vermicomposting of dewatered sludge.
Collapse
|
18
|
Pei P, Sun Y, Wang L, Liang X, Xu Y. In-situ stabilization of Cd by sepiolite co-applied with organic amendments in contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111600. [PMID: 33396120 DOI: 10.1016/j.ecoenv.2020.111600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Field experiments was conducted to evaluate the effectiveness of sepiolite (S), sepiolite + fungi residues (SFR) and sepiolite + vermicompost (SVC) on in situ immobilization remediation of Cd contaminated soils. The results showed that treatments of S, SFR and SVC decreased soil Cd availability by 15.2-47.8%, 17.5-44.9% and 13.2-44.9%, respectively, when compared with the control groups. Moreover, the content of Cd in edible parts of Lactuca sativa L., Cichorium endivia L. and Brassica campestris L. was experienced a decrease of 15.9-41.9%, 1.6-38.0% and 29.0-37.4% reduction, respectively, under the amended soil. The improvement of soil fertility was obtained under addition of SVC and SFR, while the amounts of available P, K, organic matter, microbial carbon, microbial nitrogen and dehydrogenase activity were increased by 9.6-68.2%, 1.2-28.3%, 37.5-70.5%, 4.1-121.0%, 220-640% and 6.8-56.8%, respectively, in contrast to CK. Moreover, high-throughput sequencing analysis showed that the combined treated soils got higher values of alpha diversity indices, Chao1, ACE and Shannon. The number of dominant phyla (Proteobacteria, Acidobacteria, Gemmatimonadetes, Crenarchaeota) and genera (Aquicella, Lysobacter, Candidatus Nitrososphaera, Sphingopyxis, Mesorhizobium) were enhanced. Therefore, the use of sepiolite and organic amendments could be an adequate strategy to immobilization remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Penggang Pei
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Lin Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
19
|
Zhao W, Gu J, Wang X, Hu T, Wang J, Yu J, Dai X, Lei L. Effects of shrimp shell powder on antibiotic resistance genes and the bacterial community during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142162. [PMID: 33207525 DOI: 10.1016/j.scitotenv.2020.142162] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/16/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The present study compared the effects of adding shrimp shell powder (SSP) at four levels comprising 0% (CK), 5% (L), 10% (M), and 15% (H) on the abundance of antibiotic resistance genes (ARGs) and the bacterial community succession during swine manure composting. The relative abundances of 5/11 ARGs were reduced in CK, and 7/11 in H. Moreover, the removal rate was enhanced by adding SSP. Thus, H decreased the total abundance of ARGs by 32.68%, whereas CK increased it by 6.31%. Redundancy analysis indicated that mobile genetic elements (MGEs) (46.6%) and the bacterial community (31.1%) mainly explained the changes in ARGs. H enhanced the removal of MGEs, prolonged the thermophilic phase, stabilized copper and zinc, and retained nitrogen. LEfSe analysis and non-metric multidimensional scaling indicated that the bacterial community changed in the composting process, and it was optimized by H. The abundances of the potential bacterial co-hosts (such as Lactobacillus, Corynebacterium_1, and Ornithinicoccus) of ARGs and MGEs were lower and the decomposition of organic matter was higher in H compared with CK. Thus, composting with 15% SSP can reduce the risk of ARGs and improve the practical value for agronomic application.
Collapse
Affiliation(s)
- Wenya Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxia Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Cao Y, Tian Y, Wu Q, Li J, Zhu H. Vermicomposting of livestock manure as affected by carbon-rich additives (straw, biochar and nanocarbon): A comprehensive evaluation of earthworm performance, microbial activities, metabolic functions and vermicompost quality. BIORESOURCE TECHNOLOGY 2021; 320:124404. [PMID: 33212386 DOI: 10.1016/j.biortech.2020.124404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Vermicomposting is an eco-friendly method for treating organic wastes. This study investigated the effects of the addition of straw (S), biochar (B), nanocarbon (N), S + B and S + N to cow dung (CD) on earthworm (Eisenia fetida) performance, microbial properties and vermicompost quality. In general, the earthworm growth rate and cocoon production were enhanced by straw addition, but were inhibited by biochar or nanocarbon addition. However, biochar and nanocarbon increased microbial communities associated with organic matter decomposition, and improved metabolic functions, enzyme activities and vermicompost properties. Moreover, addition of straw in combination with nanocarbon resulted in the highest vermicompost quality index (VQI), and significantly increased the biomass of three different test crops (radish, lettuce and pakchoi). These results indicated that biochar and nanocarbon mainly improved microbial activities, while straw primarily enhanced earthworm performance during vermicomposting. In addition, straw combined with nanocarbon can be used to enhance the agronomic performance of vermicompost.
Collapse
Affiliation(s)
- Yune Cao
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Yongqiang Tian
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China; College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China.
| | - Qing Wu
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Jianshe Li
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Hongyan Zhu
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| |
Collapse
|
21
|
Lai C, Li D, Qin J, Li J, Yan Z, Chen G, Li H. The migration of cadmium and lead in soil columns and their bioaccumulation in a multi-species soil system. CHEMOSPHERE 2021; 262:127718. [PMID: 32763573 DOI: 10.1016/j.chemosphere.2020.127718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
A soil microcosm experiment was carried out to quantify the transfer of cadmium (Cd) and lead (Pb) in a multi-species soil system (MS·3). Red earth from Jiangxi (S1), fluvo-aquic soil from Henan (S2), fluvo-aquic soil from Beijing (S3), and black soil from Heilongjiang (S4) were used for soil column packing with S1, S3, or S4 as the 20-50 cm layer and S2, which was Cd- and Pb-contaminated, as the top 0-20 cm layer. For each soil combination, four treatments were set up: CK (no wheat and no earthworm), W (only wheat), E (only earthworm), and E + W (earthworm and wheat). The results showed that the coexistence of earthworm with wheat reduced Cd and Pb contents in wheat plants and earthworms, and increased plant biomass, but had no significant effect on the survival rate and mean weight change rate of earthworms. Total Cd and Pb decreased remarkably in the 0-20 cm layer while increased in the 20-50 cm layer, and approximately 32.8%-51.1% of Cd and 0.35%-7.0% of Pb migrated down into the 20-50 cm soil layers from the 0-20 cm soil layers. The migration varied between the treatments from S2 to S1, S2, and S3. In S2-S1 and S2-S4 columns, the amount of Cd migration decreased when the earthworms coexisted with wheat, while in S2-S3 column, there was no significant difference on such amount regardless of the coexistence of earthworms with wheat. Taken together, the results indicated that the migration of Cd and Pb was not only associated with wheat and earthworm, but also depended on soil types.
Collapse
Affiliation(s)
- Changhong Lai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Dongqin Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China; Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Junhao Qin
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China
| | - Jia Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Zengguang Yan
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Guikui Chen
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China.
| | - Huashou Li
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, 510642, China
| |
Collapse
|
22
|
Wang J, Hao X, Liu Z, Guo Z, Zhu L, Xiong B, Jiang D, Shen L, Li M, Kang B, Tang G, Bai L. Biochar improves heavy metal passivation during wet anaerobic digestion of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:635-644. [PMID: 32816179 DOI: 10.1007/s11356-020-10474-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) is regarded as an effective treatment to stabilize organic materials and recycle the energy in pig manure. In this study, 0%, 3%, 5%, and 7% biochar (based on dry weight) were added to pig manure to investigate its influence on improving biogas production and reducing heavy metal bioavailability. The potential ecological risk of heavy metals (namely Mn, Zn, Cu, Ni, As, Cd, Pb, and Cr) in digestates was also assessed. Results show that the methane yield was significantly (P < 0.05) increased by 26.7%, 23.0%, and 26.4% following addition of 3%, 5%, and 7% biochar, respectively. Moreover, there was a significant change in the heavy metal speciation in amendment each group. The 5% biochar group showed the highest passivation rate of Ni, As, and Pb, while the highest passivation rate of Cd, Cr, Mn, and Zn was observed with 7% biochar. Although the anaerobic digestion process slightly increased the ecological risk of heavy metals, all tested digestates were still classified as a moderate risk. Results of this study can provide a reference for the treatment of heavy metal pollution in large- and medium-sized anaerobic digesters treating pig manure.
Collapse
Affiliation(s)
- Jun Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Hao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zile Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zili Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bangjie Xiong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongmei Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingzhou Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Animal Environment Hygiene Laboratory, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140008. [PMID: 32562986 DOI: 10.1016/j.scitotenv.2020.140008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 05/21/2023]
Abstract
Increasing evidence demonstrated the critical role the earthworm gut played in sustaining earthworm's metabolism and transformation of nutrients and pollutants in the environment. Being rich in nutrients, the earthworm gut is favorable for the colonization of (facultative) anaerobic bacteria, which bridge the host earthworm gut with adjacent terrestrial environment. Therefore, the status quo of earthworm gut research was primarily reviewed in this work. It was found that most studies focused on the bacterial composition and diversity of the earthworm gut, and their potential application in nutrient element and pollutant transformation, such as nitrification, methanogens, heavy metal detoxification, etc. Yet limited information was available about the specific mechanism of intestinal bacteria in nutrient and pollutant transformation. Therefore, in this work we highlighted the current problems and concluded the future prospect of worm's intestinal bacteria research. On one hand, high throughput sequencing and bioinformatics tools are critical to break the bottleneck in the intestinal bacteria research via clarifying the molecular mechanism involved in the transformation processes described above. In addition, a global dataset concerning worm gut bacteria will be needed to provide comprehensive information about intestinal bacteria pool, and act as a communication platform to further encourage the progress of worm gut research.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Jiang L, Wang B, Liang J, Pan B, Yang Y, Lin Y. Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115020. [PMID: 32574893 DOI: 10.1016/j.envpol.2020.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H2O2) and superoxide anion radicals (O2-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H2O2 and O2-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
Collapse
Affiliation(s)
- Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jingqi Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bo Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
25
|
Paul S, Goswami L, Pegu R, Sundar Bhattacharya S. Vermiremediation of cotton textile sludge by Eudrilus eugeniae: Insight into metal budgeting, chromium speciation, and humic substance interactions. BIORESOURCE TECHNOLOGY 2020; 314:123753. [PMID: 32619804 DOI: 10.1016/j.biortech.2020.123753] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Information on prospective metal remediation by Eudrilus eugeniae during vermicomposting of cotton textile sludge (CTS) is rather scarce. This investigation, therefore, evaluates the sanitization efficiency of this species in CTS and CTS + cow-dung (CD) based feedstocks against aerobic composting. Accordingly, reduction in Pb, Cd, Cr, and Zn concentrations was between 50 and 70% under vermicomposting. Budget equations substantiated that humic compound mediated chelation was the dominant route of metal removal, against nominal bioaccumulation by earthworms. Correlation statistics revealed that formation of humic compounds (humic acid, fulvic acid, and humin) greatly influenced the transition of toxic Cr6+ to benign Cr3+ during vermicomposting. Moreover, increase in total N content and P availability was significantly greater under vermicomposting than composting. Thus, E. eugeniae efficiently stabilized the feedstocks by reducing pH, Ca, S, and organic C and CTS + CD(2:1) was the most favorable feedstock for E. eugeniae vermicomposting in respect of metal detoxification and nutrient stabilization.
Collapse
Affiliation(s)
- Sarmistha Paul
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Linee Goswami
- Department of Botany, Visva Bharati, Santiniketan, West Bengal 731235, India
| | - Ratul Pegu
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India.
| |
Collapse
|
26
|
Rini J, Deepthi MP, Saminathan K, Narendhirakannan RT, Karmegam N, Kathireswari P. Nutrient recovery and vermicompost production from livestock solid wastes with epigeic earthworms. BIORESOURCE TECHNOLOGY 2020; 313:123690. [PMID: 32585456 DOI: 10.1016/j.biortech.2020.123690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study nutrient recovery and vermicompost production from livestock solid wastes of indigenous and exotic cow breeds with epigeic earthworms. Fourteen days pre-decomposed dung of Vechur native (CD1) and exotic Jersey (CD2) breeds were vermicomposted with Perionyx excavatus and Eudrilus eugeniae for 45 days (Cycle I) and 90 days (Cycle II) including respective controls without earthworms. Vermicomposts from CD1 and CD2 substrates during Cycle I and II showed increase in NPK, Ca and micro-nutrients (P < 0.05); whereas, pH, total organic carbon, C/N and C/P ratios disclosed decrease (P < 0.05) over initial levels for both the earthworms. E. eugeniae was found efficient in vermicomposting cattle solid wastes in 45 days and CD1 yielded nutrient rich vermicompost. The study concludes that Cycle I is suitable for nutrient recovery and vermicompost production, in addition to mass multiplication of earthworms in Cycle II.
Collapse
Affiliation(s)
- Joseph Rini
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | - Madathil Peedika Deepthi
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | - Kulandaivel Saminathan
- Department of Chemistry, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India
| | | | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Palanisamy Kathireswari
- Department of Zoology, Kongunadu Arts and Science College (Autonomous), Coimbatore 641 029, Tamil Nadu, India.
| |
Collapse
|
27
|
Abstract
Due to a need for sustainability in agriculture, waste products ought to be utilized in the most appropriate way. A study was undertaken relating to the vermicomposting of Cameroon sheep dung (CSD) by the earthworm Dendrobaena veneta. Processing of this waste was investigated using unadulterated CSD and in a 1:1 mixture with unpalatable (waste) hay (CSDH). Results demonstrated that these materials were actively processed by D. veneta with vermicomposts obtained which can be characterized by a higher amount of total nitrogen, phosphorus and potassium (average, respectively, 17.0, 10.5, 13.2 g kg−1 d.m.), as well as lower total carbon and magnesium content (respectively, 340 and 3.2 g kg−1 d.m.), compared with the initial waste material. No significant differences were found between CSD and CSDH vermicomposts with respect to chemistry. Levels of selected trace elements (average: Cu 17.5–18.8, Cr 5.7–5.8, Pb 13.5–14.4, Ni < 3, Cd < 0.4 mg kg−1 d.m.) in both vermicomposts did not exclude their application to agricultural soil as a fertilizer.
Collapse
|
28
|
Peng H, Wu Y, Guan T, He W, Xu L, Liang Y, Liu W. Sludge aging stabilizes heavy metals subjected to pyrolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109984. [PMID: 31767461 DOI: 10.1016/j.ecoenv.2019.109984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, we analyzed the effects of sludge aging pre-treatment on the stabilization mechanisms of heavy metals during sludge pyrolysis. First, the form of copper (Cu) and chromium (Cr) was conducted using the sequential extraction procedure proposed by the European Community Bureau of Reference (BCR). The stabilization mechanisms for the sludge pyrolysis of Cu and Cr were then analyzed using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Results indicate the following: 1) with aging pre-treatment, the improvement in adsorption performance and the formation of newly crystallized materials, like polyhydroxy copper phosphate and chromium phosphate minerals, occur concurrently with the stabilization of heavy metals during pyrolysis; 2) after four weeks of aging, active functional groups like amino and carboxyl groups were significantly sharpened, and caused sustained complexation of the heavy metals. Results suggested that the aging pre-treatment aided the stabilization of heavy metals during sludge pyrolysis. Notably, the aging effect can decrease the potential ecological risk of heavy metals.
Collapse
Affiliation(s)
- Huanlong Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Yukun Wu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Tong Guan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Wei He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Liang Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China
| | - Yongmei Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
29
|
Hao J, Wei Z, Wei D, Ahmed Mohamed T, Yu H, Xie X, Zhu L, Zhao Y. Roles of adding biochar and montmorillonite alone on reducing the bioavailability of heavy metals during chicken manure composting. BIORESOURCE TECHNOLOGY 2019; 294:122199. [PMID: 31586731 DOI: 10.1016/j.biortech.2019.122199] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to explore the effects of adding biochar and montmorillonite alone on the correlations between bacteria and bioavailability of heavy metals (HM) during chicken manure composting. Three composting experiments were conducted, containing the without ameliorant, 10% biochar and 10% montmorillonite. The results showed that biochar and montmorillonite ameliorants significantly reduced the bioavailability of Cu by 90.3%, 81.2%, while that of Zn by 11.7%, 15.6%, respectively. Meanwhile, they also significantly changed bacterial community structure and enhanced the correlation between bacterial bands (i.e., 19, 24, 26 and 30) and HM fractions. This correlation was validated in network analysis. Structural equation models further confirmed that bacteria had a complete and effective pathway to influence the bioavailability of HM. In summary, this study suggested that biochar and montmorillonite additions were an effective regulation method to reduce the bioavailability of HM from composting system.
Collapse
Affiliation(s)
- Jingkun Hao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt
| | - Huimin Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Xie
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Xiang Y, Kang F, Xiang Y, Jiao Y. Effects of humic acid-modified magnetic Fe 3O 4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109424. [PMID: 31299478 DOI: 10.1016/j.ecoenv.2019.109424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of a humic acid-layered double hydroxide (HA-LDH) hybrid was purposed for the remediation of contaminated soils in mining area. The hybrid was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscope and energy dispersive spectrometer. In order to investigate the effect of HA-LDH on the mine soil, greenhouse experiments of Artemisia ordosica were carried out under different concentrations of amendments (0, 1%, 3%, 5%, 7%). The plant growth, metal availability, and soil enzyme activities were studied to determine the effects of HA-LDH. The mine soil with 5% HA-LDH was the optimum proportion, and the growth of Artemisia ordosica was in good status. The HA-LDH and Artemisia ordosica could effectively decrease the bioavailability of heavy metals (such as Pb, Cr, Ni, Cd, Zn, and As) in the mine soil, and improve the enzyme activities of β-glucosidase, urease, and phosphatase. The HA-LDH with magnetism could be easily separated. The characteristics and reusability of HA-LDH could be well maintained after five cycles of remediation. Consequently, the HA-LDH is promising for the remediation of contaminated soils in mining area.
Collapse
Affiliation(s)
- Yulin Xiang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China.
| | - Furen Kang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China
| | - Yuxiu Xiang
- Department of Management Engineering, Qiqihar Institute of Engineering, Qiqihar 161005, Heilongjiang, China
| | - Yurong Jiao
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China
| |
Collapse
|
31
|
Chen X, Zhao Y, Zeng C, Li Y, Zhu L, Wu J, Chen J, Wei Z. Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models. BIORESOURCE TECHNOLOGY 2019; 289:121657. [PMID: 31229860 DOI: 10.1016/j.biortech.2019.121657] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to explore the pathways to mitigate the bioavailability of heavy metals (HM) during chicken and beef cattle manures composting. For raw materials, HM contents in animal manures from breeding farm were 1.5-3 times as much as that of domestic animal manures. Structural equation models (SEMs) based on denaturing gradient gel electrophoresis (DGGE) showed that mitigating bioavailability of HM was mainly attributed to physicochemical properties (organic matters content and temperature) during beef cattle manures composting. However, both physicochemical properties (organic matters content, temperature, pH and moisture) and bacterial community were critical factors during chicken manures composting. Furthermore, the statistical analysis from high-throughput sequencing verified the results of SEMs. Therefore, the bioavailability of HM will be mitigated by different deactivation pathways according to diverse raw materials composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Cici Zeng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingjun Li
- Beijing Vocational College of Agriculture, Beijing 100012, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian Chen
- Beijing Tongzhou Agriculture Products Quality Inspection & Testing Center, Beijing 101149, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
32
|
Zhang J, Sugir ME, Li Y, Yuan L, Zhou M, Lv P, Yu Z, Wang L, Zhou D. Effects of vermicomposting on the main chemical properties and bioavailability of Cd/Zn in pure sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20949-20960. [PMID: 31115804 DOI: 10.1007/s11356-019-05328-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
To study the effects of vermicomposting on the chemical properties and bioavailability of Cd/Zn in sludge, earthworms (Eisenia foetida) at different densities were inoculated into pure sludge, and sludge and earthworms were collected regularly to determine the earthworm biomass, the main chemical indexes, the structure of the functional groups, and the Cd/Zn content in the sludge. The results showed that the growth curve of earthworms in pure sludge could be well fitted by the logistic model. Earthworm activity eventually reduced the total organic carbon (TOC), fulvic acid (FA), and C/N ratio and increased the electrical conductivity (EC), total nitrogen (TN), humic acid (HA), and HA/FA ratio in the sludge. TOC, TN, and pH inhibited the bioavailability of Cd/Zn, while HA and EC promoted the bioavailability of Cd/Zn. Earthworm activity ultimately increased the content of Cd/Zn in the sludge. The bioavailability of Cd/Zn was reduced during the rapid growth period of the earthworms but increased during the stable growth period of the earthworms. A suitable vermicomposting time should be determined to ensure the activation or passivation of Cd/Zn.
Collapse
Affiliation(s)
- Jizhou Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Maral Erdene Sugir
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunying Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Yuan
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Meng Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- Department of Biological Center, Harbin Academy of Agricultural Sciences, Harbin, 150028, China
| | - Pin Lv
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Zhimin Yu
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Limin Wang
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Cai K, Yu Y, Zhang M, Kim K. Concentration, Source, and Total Health Risks of Cadmium in Multiple Media in Densely Populated Areas, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2269. [PMID: 31252543 PMCID: PMC6651708 DOI: 10.3390/ijerph16132269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022]
Abstract
Cadmium (Cd) is a non-essential and harmful element to humans. Cadmium contamination is a serious issue for human health, especially in densely populated agroecology areas. In this study, the investigation of an agroecology area was conducted to gain insight into the relationship between Cd in wheat and soil and then evaluate the Cd total risk for human health. The soil samples and their matching wheat samples, underground water samples, and atmospheric deposition (air) samples were collected from a wheat-growing area in an agroecology plain. The cadmium concentration in the four types of media, in order, was air > soil > wheat > water. The mean concentration of the geoaccumulation index (Igeo) showed that the total Cd in soil (Cd-T) and Cdair reached a mild and moderate pollution level. The results of the correlation and principal component analysis (PCA) showed that the majority of Cdwheat originated from Cd-2 (exchangeable), Cd-4 (humic acid-bound), and Cd-7 (residual). Furthermore, the results of the stepwise multiple linear regression (SMLR) showed that three fractions were primarily controlled by Cd-T: clay, cation exchange capacity (CeC), and total organic carbon (TOC). In addition, the total cancer risk (CR) of Cd in multiple media was, in the order wheat > water > soil > air. It is noteworthy that the Cd content in underground water and wheat by the ingestion pathway posed cancer risks to the local residents and provided a comprehensive insight into multiple media environment management. Furthermore, it provides a very significant basic study for detailed research into the mobility and transformation for factions.
Collapse
Affiliation(s)
- Kui Cai
- Department of Geological Science & Engineering, Kunsan National University, Gunsan 573-701, Korea
- Institute of Geological Survey, Hebei GEO University, Shijiazhuang 050031, China
- Department of Environmental Engineering, Kunsan National University, Gunsan 573-701, Korea
| | - Yanqiu Yu
- Department of Geological Science & Engineering, Kunsan National University, Gunsan 573-701, Korea
- College of Resources, Hebei GEO University, Shijiazhuang 050031, China
| | - Minjie Zhang
- Department of Geological Science & Engineering, Kunsan National University, Gunsan 573-701, Korea
- College of Resources, Hebei GEO University, Shijiazhuang 050031, China
| | - Kangjoo Kim
- Department of Geological Science & Engineering, Kunsan National University, Gunsan 573-701, Korea.
- Department of Environmental Engineering, Kunsan National University, Gunsan 573-701, Korea.
| |
Collapse
|
34
|
Chao H, Kong L, Zhang H, Sun M, Ye M, Huang D, Zhang Z, Sun D, Zhang S, Yuan Y, Liu M, Hu F, Jiang X. Metaphire guillelmi gut as hospitable micro-environment for the potential transmission of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:353-361. [PMID: 30884260 DOI: 10.1016/j.scitotenv.2019.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Earthworm gut played an important role in the transformation of various contaminants in the soil environments. With the increasing application of organic fertilizer recently, the ingestion of antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) made the earthworm gut a potential favorable micro-environment for the transmission of ARGs in the soil. In this work, the conventional plate incubation and high-throughput sequencing methods were both employed to investigate the composition of the cultivable and overall ARB/ARGs in the Metaphire guillelmi earthworm gut. A total of 87 cultivable isolates that resisted tetracycline (TC) and/or sulfadiazine (SD) were obtained, most of which belonged to phylum Firmicutes, genus Bacillus. Meanwhile, the counts of isolates with TC-SD dual resistance were higher than those with sole SD or TC resistance. Moreover, higher ARB counts and diversity were detected in the earthworm gut by high-throughput sequencing technique than those by the classical plate cultivation. Overall, the combination of conventional cultivable bacteria isolation and high-throughput sequencing methods provided a comprehensive understanding of the ARB composition in the earthworm gut. The results demonstrate that the earthworm gut is a hospitable micro-environment for ARB colonization. The potential role of earthworm intestinal ARB and ARGs proliferation in soil environments warrants further research.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lingya Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of China, Nanjing 210008, China
| | - Huixin Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dawei Sun
- Beijing GeoEnviron Engineering & Technology, lnc., Beijing 100095, China
| | - Shengtian Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yilin Yuan
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
35
|
Nova Pinedo ML, Ferronato N, Ragazzi M, Torretta V. Vermicomposting process for treating animal slurry in Latin American rural areas. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:611-620. [PMID: 30950327 DOI: 10.1177/0734242x19839483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The management of animal slurry is a big issue in low-income rural areas worldwide. Bolivia suffers this issue related to collection, treatment and final disposal since the main solution applied is the open dumping. The aim of this study is to introduce a feasible treatment of animal slurry in the rural area of Carmen Pampa, where about 670 kg of dung are produced per day and disposed of in open areas. The objective is the improvement of the environmental sustainability and human health, providing an alternative solution for encouraging the circular economy. The study is focused on the vermicomposting process, a sustainable solution for low-income regions. The analysis was conducted in function of the earthworm breeds used locally ( Eisenia fetida and Lumbricus terrestris) and the application of activated bacteria (AB) for improving the process. The mass loss, the treatment time, and the growing rate of the earthworms were analyzed. The results suggest that the different breed of the worms allows gaining up to 19 days, while the use of the AB allows saving about 30 days. Moreover, the vermicomposting process reduced the mass of the slurry of about 65% for the swine's dung and the bovine's dung, and 90% of the hens' dung. Finally, experimental evidence shows that the growing rate of the E. fetida is higher than the L. terrestris (F[1,8] = 78, p < 0.05), with an average of about 193%. The data obtained could be of interest for other stakeholders who live in similar environmental, climatic, and economic conditions for improving sustainability.
Collapse
Affiliation(s)
| | - Navarro Ferronato
- 2 University of Insubria, Department of Theoretical and Applied Sciences, Varese, Italy
| | - Marco Ragazzi
- 3 University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano, 77, I-38123, Trento, Italy
| | - Vincenzo Torretta
- 2 University of Insubria, Department of Theoretical and Applied Sciences, Varese, Italy
| |
Collapse
|
36
|
Liu H, Yin H, Tang S, Wei K, Peng H, Lu G, Dang Z. Effects of benzo [a] pyrene (BaP) on the composting and microbial community of sewage sludge. CHEMOSPHERE 2019; 222:517-526. [PMID: 30721810 DOI: 10.1016/j.chemosphere.2019.01.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Benzo [a] pyrene (BaP), the most ubiquitous polycyclic aromatic hydrocarbons (PAHs) found in sludge, can impact the composting processes of sewage sludge as well as the quality of compost produced. In the present study, we investigated the effects of BaP at various concentrations on physicochemical characteristics, heavy metal passivation, and microbial community during the composting processes. The removal efficiency of BaP at 5 and 20 mg kg-1 after composting was 51.1% and 74.2%, respectively. In comparison with the control, the content of residual Cu, Pb, Cr and Ni in 5 mg kg-1 BaP contained system declined dramatically on the second day of composting, while such content in 20 mg kg-1 BaP system significantly decreased on the 8th day. Regardless of the presence of BaP in the sludge, composting process had a positive passivation effect on Cu, Pb, Cr and Ni. A stronger inhibitory effect of BaP at higher concentration was observed on microorganism, which reduced microbial abundance and species in the composting, and influenced microbial diversity. Besides, microbial communities in BaP-containing composting would improve the transformation of silicates and minerals, increase the concentration of humus and extend the passivation time of heavy metals. As these results verified, composting process could remove BaP from the sludge effectively, and BaP had a significant impact on heavy metal passivation and abundance and composition of microbial community during the composting process.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China.
| | - Shaoyu Tang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Kun Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| |
Collapse
|
37
|
Chen Z, Hu S. Heavy metals distribution and their bioavailability in earthworm assistant sludge treatment wetland. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:615-623. [PMID: 30579227 DOI: 10.1016/j.jhazmat.2018.12.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/17/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Sludge treatment wetlands (STWs) have been used for sludge treatment in recent years, however, heavy metals (HMs) are one of the limiting factors for the final sludge application, and the fate of HMs in STWs are still not well studied. Therefore, six STWs with two plant species and earthworm addition were investigated to evaluate their effects on HMs distribution and bioavailability. The results showed that plant uptake of HMs was insignificant with earthworm addition. Earthworm had the highest enrichment for Cd with bioaccumulation factors of 6.9-7.3. Moreover, earthworm had a positive effect to remove HMs in accumulated sludge. Meanwhile, the bioavailability of Cd in accumulated sludge was decreased by earthworm addition, with the acid-soluble fraction decreased from range 16.5-22.7% to range 7.2-10.1%. Furthermore, HMs mass balance in the STWs revealed that HMs were widely distributed in the accumulated sludge, leachate and others, while their (except Cd) accumulation in the plants and earthworm are less than 1%. The Cd toxicity in the accumulated sludge can be reduced by the addition of earthworm with enrichment of 3.6-8.2%. Overall, earthworm addition have positive effects on distribution and bioavailability of HMs in STWs.
Collapse
Affiliation(s)
- Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic.
| | - Shanshan Hu
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| |
Collapse
|
38
|
Meng D, Li J, Liu T, Liu Y, Yan M, Hu J, Li X, Liu X, Liang Y, Liu H, Yin H. Effects of redox potential on soil cadmium solubility: Insight into microbial community. J Environ Sci (China) 2019; 75:224-232. [PMID: 30473288 DOI: 10.1016/j.jes.2018.03.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 05/08/2023]
Abstract
Understanding the role of microbes in the solubility of cadmium (Cd) is of fundamental importance for remediation of Cd toxicity. The present study aimed to identify the microbes that involved in regulating Cd solubility and to reveal possible mechanisms. Therefore, microbial communities were investigated through high-throughput sequencing approach, the molecular ecological network was constructed and metagenomes were predicted. Our results indicated that redox conditions affected both the solubility of soil Cd and the microbial communities. Anaerobic microbes, such as Anaerolineaceae, did not only play important roles in shaping the microbial community in soils, but might also be involved in regulating the Cd solubility. Two possible mechanisms that how Anaerolineaceae involved in Cd solubility are (1) Anaerolineaceae are important organic matter degraders under anoxic conditions and (2) Anaerolineaceae can co-exist with methane metabolism microbes, while methane metabolism promotes the precipitation of soluble Cd. Thus, application of Anaerolineaceae in bioremediation of soil Cadmium contamination is a potential approach. The study provided a novel insight into the role of microbial community in the regulation of Cd solubility under different redox conditions, and suggested a potential approach for the remediation of soil Cd contamination.
Collapse
Affiliation(s)
- Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China.
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Tianbo Liu
- College of Plant protection, Hunan Agricultural University, Changsha, 410128 China
| | - Yongjun Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128 China
| | - Mingli Yan
- School of Life Science, Hunan University of Science and Technology, Xiangtan, 411201 China
| | - Jin Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Xiaoqi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 China; Key laboratory of Biometallurgy, Ministry of Education, Changsha, 410083 China.
| |
Collapse
|
39
|
Liu K, Sun M, Ye M, Chao H, Zhao Y, Xia B, Jiao W, Feng Y, Zheng X, Liu M, Jiao J, Hu F. Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:28-37. [PMID: 30321709 DOI: 10.1016/j.envpol.2018.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Coexistence of antibiotics/heavy metals and the overexpression of resistance genes in the vermicompost has become an emerging environmental issue. Little is known about the interaction and correlation between chemical pollutants and biological macromolecular compounds. In this study, three typical vermicompost samples were selected from the Yangtze River Delta region in China to investigate the antibiotic, heavy metal and corresponding antibiotic resistance genes (ARGs) and heavy metal resistance genes (HRGs). The results indicated the prevalence of tetracycline (TC), copper (Cu), zinc (Zn), cadmium (Cd), corresponding TC-resistance genes (tetA, tetC, tetW, tetM, tetO, and tetS) and HRGs (copA, pcoA, cusA, czcA, czcB, and czcR) in the three vermicompost samples. In addition, the ARG level was positively associated with the water-soluble TC fraction in the vermicompost, and it was same between the HRG abundance and exchangeable heavy metal content (p < 0.05). Moreover, a positive correlation was found between ARG and HRG abundance in the vermicompost samples, suggesting a close regulation mechanism involving the expression of both genes. The result obtained here could provide new insight into the controlling risk of heavy metals, TC, and relevant resistance genes mixed contamination in the vermicompost.
Collapse
Affiliation(s)
- Kuan Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Zhao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Xia
- Anhui Academy of Environmental Science Research, Hefei, 230022, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 00085, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
40
|
Bhat SA, Singh S, Singh J, Kumar S, Vig AP. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. BIORESOURCE TECHNOLOGY 2018; 252:172-179. [PMID: 29321101 DOI: 10.1016/j.biortech.2018.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/28/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
Abstract
Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development.
Collapse
Affiliation(s)
- Sartaj Ahmad Bhat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Sharanpreet Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jaswinder Singh
- P.G. Department of Zoology, Khalsa College, Amritsar 143001, India
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Adarsh Pal Vig
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|