1
|
Zhao W, Shi L, Han Y, Wang X, Wang J, Xu S, Zhang X, Huang Z. Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application. Commun Biol 2024; 7:1716. [PMID: 39741173 DOI: 10.1038/s42003-024-07353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications. Within the domestication and application processes for treating phenolic resin wastewater, a powerful functional microbiome was built by self-assembly. This leads to an augmented biodiversity and the development of more intricate phenol and formaldehyde metabolic pathways. The incorporation of increased stochastic processes and random network characteristics further suggested the stability of the microbial community during the application phase. This study elucidates the self-assembly process of microbial communities during the artificial construction process, showcasing their adaptive evolution under different adverse conditions. It serves as a noteworthy case study for the artificial construction of a microbiome for the engineering application of treating industrial wastewater.
Collapse
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Liuyang Shi
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yifan Han
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xingbiao Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Song Xu
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
2
|
He Q, Tan B, Li M, Su J, Lin B, Wu NP, Shen HN, Chen JJ, Zhang Q. Deciphering the influence of salinity stress on the biological aniline degradation system: Pollutants degradation performance and microbial response. ENVIRONMENTAL RESEARCH 2024; 255:119162. [PMID: 38762003 DOI: 10.1016/j.envres.2024.119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
In order to evaluate the impact of salinity gradients on the aniline biodegradation system, six reactors at salinity concentrations (0%-5%) were established. The results presented the salinity except for 5% imposed negligible effects on aniline degradation performance. Nitrification had prominent resistance to salinity (0%-1.5%) while were significantly restrained when salinity increased. The total nitrogen (TN) removal efficiency of Z4 (1.5%) was 20.5% higher than Z1 (0%) during the stable operation phase. Moreover, high throughput sequencing analysis showed that halophilic bacterium, such as Halomonas, Rhodococcus, remained greater survival advantages in high salinity system. The substantial enrichment of Flavobacterium, Dokdonella, Paracoccus observed in Z4 ensured its excellent nitrogen removal performance. The close cooperation among dominant functional bacteria was strengthened when salt content was below 1.5% while exceeding 1.5% led to the collapse of metabolic capacity through integrating the toxicity of aniline and high osmotic pressure.
Collapse
Affiliation(s)
- Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd., Wuhan, 430056, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hao-Nan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jia-Jing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan, 572024, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Yang Y, Li X, Li X, Wang J, Song D. Quantitative assessment, molecular docking and novel metabolic pathways reveal the interaction mechanisms between norfloxacin biodegradation and environmental implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134521. [PMID: 38718513 DOI: 10.1016/j.jhazmat.2024.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Norfloxacin (NOR) is widely used in medicine and animal husbandry, but its accumulation in the environment poses a substantial threat to ecological and human health. Traditional physical, chemical, and rudimentary biological methods often fall short in mitigating NOR contamination, necessitating innovative biological approaches. This study proposes an engineered bacterial consortium found in marine sediment as a strategy to enhance NOR degradation through inter-strain co-metabolism of diverse substrates. Strategically supplementing the engineered bacterial consortium with exogenous carbon sources and metal ions boosted the activity of key degradation enzymes like laccase, manganese peroxidase, and dehydrogenase. Iron and amino acids demonstrated synergistic effects, resulting in a remarkable 70.8% reduction in NOR levels. The innovative application of molecular docking elucidated enzyme interactions with NOR, uncovering potential biodegradation mechanisms. Quantitative assessment reinforced the efficiency of NOR degradation within the engineered bacterial consortium. Four metabolic routes are herein proposed: acetylation, defluorination, ring scission, and hydroxylation. Notably, this study discloses distinctive, co-operative metabolic pathways for NOR degradation within the specific microbial community. These findings provide new ways of understanding and investigating the bioremediation potential of NOR contaminants, which may lead to the development of more sustainable and effective environmental management strategies.
Collapse
Affiliation(s)
- Yuru Yang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiong'e Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinyi Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiaxin Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Donghui Song
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, China.
| |
Collapse
|
4
|
Fan Y, Yan D, Chen X, Ran X, Cao W, Li H, Wan J. Novel insights into the co-metabolism of pyridine with different carbon substrates: Performance, metabolism pathway and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133396. [PMID: 38176261 DOI: 10.1016/j.jhazmat.2023.133396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Pyridine is a widely employed nitrogen-containing heterocyclic organic, and the discharge of pyridine wastewater poses substantial environmental challenges due to its recalcitrance and toxicity. Co-metabolic degradation emerged as a promising solution. In this study, readily degradable glucose and the structurally analogous phenol were used as co-metabolic substrates respectively, and the corresponding mechanisms were thoroughly explored. To treat 400 mg/L pyridine, all reactors achieved remarkably high removal efficiencies, surpassing 98.5%. And the co-metabolism reactors had much better pyridine-N removal performance. Batch experiments revealed that glucose supplementation bolstered nitrogen assimilation, thereby promoting the breakdown of pyridine, and resulting in the highest pyridine removal rate and pyridine-N removal efficiency. The high abundance of Saccharibacteria (15.54%) and the enrichment of GLU and glnA substantiated this finding. On the contrary, phenol delayed pyridine oxidation, potentially due to its higher affinity for phenol hydroxylase. Nevertheless, phenol proved valuable as a carbon source for denitrification, augmenting the elimination of pyridine-N. This was underscored by the abundant Thauera (30.77%) and Parcubacteria (7.21%) and the enriched denitrification enzymes (narH, narG, norB, norC, and nosZ, etc.). This study demonstrated that co-metabolic degradation can bolster the simultaneous conversion of pyridine and pyridine-N, and shed light on the underling mechanism.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Dengke Yan
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoni Ran
- Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China
| | - Wang Cao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; Research Center of Wastewater Low-Carbon Treatment and Resource Utilization, Huanghuai Laboratory, Zhengzhou 450046, China.
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Ma W, Zhang X, Han H, Shi X, Kong Q, Yu T, Zhao F. Overview of enhancing biological treatment of coal chemical wastewater: New strategies and future directions. J Environ Sci (China) 2024; 135:506-520. [PMID: 37778822 DOI: 10.1016/j.jes.2022.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 10/03/2023]
Abstract
Coal chemical wastewater (CCW) is a type of refractory industrial wastewater, and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry. Biological treatment is considered as an economical, effective and environmentally friendly technology for CCW treatment. However, conventional biological process is difficult to achieve the efficient removal of refractory organics because of CCW with the characteristics of composition complexity and high toxicity. Therefore, seeking the novel enhancement strategy appears to be a favorable solution for enhancing biological treatment efficiency of CCW. This review focuses on presenting a comprehensive picture about the exogenous enhancement strategies for CCW biological treatment. The performance and potential application of exogenous enhancement strategies, including co-metabolic substrate enhancement, biofilm filler enhancement, adsorption material enhancement and conductive mediator enhancement, were expounded. Meanwhile, the enhancing mechanisms of different strategies were comprehensively discussed from a biological perspective. Furthermore, the prospects of enhancement strategies based on the engineering performance, economic cost and environmental impact (3E) evaluation were introduced. And novel enhancement strategy based on "low carbon emissions", "resource recycling" and "water environment security" in the context of carbon neutrality was proposed. Taken together, this review provides technical reference and new direction to facilitate the regulation and optimization of typical industrial wastewater biological treatment.
Collapse
Affiliation(s)
- Weiwei Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoqi Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| | - Qiaoping Kong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
6
|
Hu M, Liu X, Liu S, Ya T, Zhang M, Zhang T, Gao X, Wang X. Responses of microbial interactions and functional genes to sulfamethoxazole in anammox consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119408. [PMID: 37879180 DOI: 10.1016/j.jenvman.2023.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Sulfamethoxazole (SMX) has been widely detected in various environments and its potential environmental risks have caused great concerns. However, the impact mechanism of SMX on microbial interactions among anammox consortia remain unknown. A long-term exposure experiments (140 d) was carried out to systematically examine the influence of SMX (0-1000 μg/L) on the anammox system, especially microbial network dynamics and variations of key metabolic genes. Results showed that anammox system could adapt to SMX below 500 μg/L and maintain a high nitrogen removal efficiency (NRE) of 85.35 ± 2.42%, while 1000 μg/L SMX significantly decreased the abundance of functional microbes and deteriorated denitrification performance with NRE dropped to 36.92 ± 15.01%. Co-occurrence network analysis indicated that 1000 μg/L SMX decreased the interactions between Proteobacteria and Chloroflexi and limited AnAOB from playing an important role as central nodes in the subnetwork of Planctomycetes. Metagenomics analysis found that genes associated with nitrogen removal (i.e., hdh, hzs, nirS, and hao) showed lower expression level after addition of SMX, while SMX-related ARGs (sul1 and sul2) increased by 1.22 and 2.68 times. This study provided us a relatively comprehensive perspective in response of microbial interactions and metabolic activity to various SMX concentrations.
Collapse
Affiliation(s)
- Meina Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaojing Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shidi Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China; Fuzhou Planning Design Research Institute, Fuzhou, 350108, China
| | - Tao Ya
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minglu Zhang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Gao
- Fuzhou Planning Design Research Institute, Fuzhou, 350108, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
7
|
Tang H, Liu Y, Liu X, Zhang A, Yang R, Han Y, Liu P, He HB, Li Z. Regulation methods and enhanced mechanism on the efficient degradation of aromatics in biochemical treatment system of coal chemical wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119358. [PMID: 37890402 DOI: 10.1016/j.jenvman.2023.119358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
In order to address the problems of poor treatment effect of coal chemical wastewater (CCW) biochemical treatment system resulting in non-compliance with effluent standards and unstable operation, a combination regulation method of co-substrate metabolism and predominant flora enhancement was constructed, and the performance and mechanism of enhanced degradation of aromatics in CCW was also investigated in this study. The results showed that when the influent concentration of chemical oxygen demand (COD) and aromatics was less than 600 mg/L and 180 mg/L respectively, there was no significant effect of the combined regulation method on the enhanced treatment of aromatics, the removal rate of total organic carbon (TOC) in the system could all more than 73%; while when the influent concentration of COD increased to 800 mg/L and the aromatics concentration increased to more than 240 mg/L, the ordinary activated sludge system had collapsed. Compared with the regulation method of co-substrate metabolism alone, the combination regulation method increased the removal rate of TOC by 21%. The analysis of antioxidant enzyme activity showed that under the combination regulation method, the antioxidant enzyme activity of microorganisms was higher and their resistance to adverse environments was stronger. EPS and dehydrogenase analysis indicated that the combination regulation method was more conducive to microbial degradation of aromatics. Meanwhile, the analysis of microbial community structure showed that the aromatics degradation bacteria genera Rhodococcus, Luteococcus, etc. were enriched under the combination regulation method. The study provides a theoretical basis and technical guidance for solving the problems of unstable operation of CCW biochemical treatment systems and non-compliance with effluent standards.
Collapse
Affiliation(s)
- Hui Tang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xingshe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Rushuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Yulu Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Hao Bo He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
8
|
Jiang J, Tian W, Lu Z, Chu M, Cao H, Zhang D. Cometabolic degradation of pyrene with phenanthrene as substrate: assisted by halophilic Pseudomonas stutzeri DJP1. Biodegradation 2023; 34:519-532. [PMID: 37354271 DOI: 10.1007/s10532-023-10035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
At present, cometabolic degradation is an extensive method for the biological removal of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in the marine environment. However, due to the refractory to degradation and high toxicity, there are few studies on pyrene (PYR) cometabolic degradation with phenanthrene (PHE) as substrate. In this study, a Pseudomonas stutzeri DJP1 strain isolated from sediments was used in the cometabolic system of PHE and PYR. The biomass and the activity of key enzymes such as dehydrogenase and catechol 12 dioxygenase of strain were improved, but the enhancement of biotoxicity resulted in the inhibition of cometabolism simultaneously. Seven metabolites were identified respectively in PYR, PHE degradation cultures. It was speculated that the cometabolism of PHE and PYR had a common phthalic acid pathway, and the degradation pathway of PHE was included in the downstream pathway of PYR. The functional genes such as PhdF, NidD and CatA involved in DJP1 degradation were revealed by Genome analysis. This study provides a reference for the biodegradation of PYR and PHE in real marine environment.
Collapse
Affiliation(s)
- Junfeng Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, People's Republic of China.
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Huimin Cao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Dantong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| |
Collapse
|
9
|
Tian H, Liu J, Zhang Y, Liu Q. Stress response and signalling of a low-temperature bioaugmentation system in decentralized wastewater treatment: Degradation characteristics, community structure, and bioaugmented mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118257. [PMID: 37290305 DOI: 10.1016/j.jenvman.2023.118257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Low temperatures present challenges for stable wastewater treatment operations in cold regions. Low-temperature effective microorganisms (LTEM) were added as a bioaugmentation strategy at a decentralized treatment facility to improve performance. The effects of a low-temperature bioaugmentation system (LTBS) with LTEM at low temperatures (4 °C) on organic pollutant performance, microbial community changes, and the metabolic pathways of functional genes and functional enzymes were studied. To explore the bioaugmentation mechanism of LTBS based on stress response and signalling. The results showed that the start-up time of the LTBS (S2) with LTEM was shorter (8 days) and that it removed COD and NH4+-N at higher rates (87 % and 72 %, respectively) at 4 °C. LTEM effectively degraded complex macromolecular organics into small molecular organics, and decomposing sludge flocs and the changing the extracellular polymeric substances (EPS) structure removed more organics and nitrogen. LTEM and local microbial communities (nitrifying and denitrifying bacteria) improved the ability of organic matter degradation and denitrification of the LTBS and formed a core microbial community dominated by LTEM (Bacillus and Pseudomonas). Finally, based on the functional enzymes and metabolic pathways of the LTBS, a low-temperature strengthening mechanism consisting of 6 cold stress responses and signal pathways under low temperatures was formed. This study demonstrated that the LTEM-dominated LTBS could provide an engineering alternative for future decentralized wastewater treatment in cold regions.
Collapse
Affiliation(s)
- Hongyu Tian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China
| | - Jianwei Liu
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System and Water Environment (Beijing University of Civil Engineering and Architecture), Ministry of Education, Beijing, 100044, China.
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Qianqian Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
10
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
11
|
Zhu S, Deng J, Jin X, Wu H, Wei C, Qiu G, Preis S, Wei C. Diverse and distinct bacterial community involved in a full-scale A/O1/H/O2 combination of bioreactors with simultaneous decarbonation and denitrogenation of coking wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2103-2117. [PMID: 35930152 DOI: 10.1007/s11356-022-22103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Taking into account difficulties in exhaustive simultaneous decarbonation and denitrogenation in biological treatment of coking wastewater (CWW), a novel full-scale CWW biological treatment sequentially combining anaerobic, aerobic, hydrolytic, and aerobic reactors (A/O1/H/O2) was designed performing excellent removal of carbon-containing pollutants in the bioreactors A and O1, while the nitrogen-containing compounds in the bioreactors H and O2. To provide an effective tool for the CWW treatment monitoring and control, the succession of microbial community in this unique toxic CWW habitat should be established and characterized in detail. The results of 16S rRNA genes revealed Acidobacteria dominating in the unique CWW habitat. The dominant groups in bioreactors A and O1 include Proteobacteria, Firmicutes, and Acidobacteria, while Proteobacteria, Acidobacteria, Nitrospirae, and Planctomycetes dominate in reactors H and O2. The genera of Rhodoplanes, Bacillus, and Leucobacter are rich in genes responsible for the xenobiotics biodegradation and metabolism pathway. The Mantel test and PCA results showed the microbial communities of A/O1/H/O2 sequence correlating strongly with SRT, and COD load and removal. The co-occurrence network analysis indicated decarbonation and denitrogenation driven by two network modules having the keystone taxa belonging to the Comamonadaceae and Hyphomicrobiaceae families. The results significantly expanded the knowledge on the diversity, structure, and function of the CWW active sludge differentiating the relationships between bacterial communities and environmental variables in CWW treatment.
Collapse
Affiliation(s)
- Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
12
|
Xiao K, Wang K, Yu S, Yuan Y, Qin Y, An Y, Zhao X, Zhou Z. Membrane fouling behavior in membrane bioreactors for nitrogen-deficient wastewater pretreated by ammonium ion exchange. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhang Y, Zhang Q, Peng H, Zhang W, Li M, Feng J, He J, Su J. The changing C/N of aggressive aniline: Metagenomic analysis of pollutant removal, metabolic pathways and functional genes. CHEMOSPHERE 2022; 309:136598. [PMID: 36174730 DOI: 10.1016/j.chemosphere.2022.136598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
In order to optimize the degradation of high-concentration aniline wastewater, the operation of sequencing batch bioaugmentation reactors with different aniline concentrations (200 mg/L, 600 mg/L, 1000 mg/L) was studied. The results showed that the removal rates of aniline and COD in the three reactors could reach 100%. When the aniline increased to 600 mg/L, the nitrogen removal efficiency reached the peak (51.85%). The increase of aniline inhibited the nitrification, while denitrification was enhanced due to the increase of C/N ratio. But this change was reversed by the toxicity of high concentrations of aniline. The metagenomic analysis showed that when the aniline concentration was 600 mg/L, the abundance distribution of microbial samples was more uniform. The improved of aniline concentration had led to the increase of aromatic compounds degradation metabolic pathways. In addition, the abundance of aniline degradation and nitrogen metabolism genes (dmpB, xylE, norB) was also promoted.
Collapse
Affiliation(s)
- Yunjie Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Haojin Peng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenli Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jing He
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Junhao Su
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
14
|
Wan D, Wang Y, Liu Y, Gu M, Liu Y, Xiao S, He Q. Effect of nitrate and sulfate coexistence on hydrogen autotrophic reduction of antimonate (Sb(V)) and microbial community structures. CHEMOSPHERE 2022; 308:136263. [PMID: 36055583 DOI: 10.1016/j.chemosphere.2022.136263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen autotrophic bioreduction of antimonate (Sb(V)) to antimonite (Sb(III)) is an alternative approach for removing antimony (Sb) from water. This study investigated Sb(V) reduction kinetics and the effects of various parameters on the Sb(V) removal performance in a hydrogen autotrophic reaction system (HARS). Sb(V) reduction in the HARS was well fitted to the Michaelis-Menten model, showing a positive correlation between the reaction rate and biomass. The maximum specific substrate removal rates were 0.29-4.86 and 6.82-15.87 mg Sb(V)/(g·VSS·h) at initial Sb(V) concentrations of 500 μg/L and 10 mg/L, respectively. Coexisting nitrate significantly inhibited Sb(V) reduction, and the inhibition intensified with increasing nitrate concentration. However, coexisting sulfate had a positive effect on Sb(V) reduction, and the sulfate effectively enhanced total antimony (TSb) removal performance by generating sulfide from sulfate reduction. Illumina high-throughput sequencing technology was used to determine the changes in microbial community structure during different periods in the HARS, revealing the effects of co-existing ions on the dominant Sb(V) reducing bacteria. In the HARS, Longilinea and Terrimonas were the dominant genera in the presence of nitrate, and Longilinea was the dominant genus in the presence of sulfate, at initial Sb(V) concentration of 500 μg/L. When the concentration of Sb(V) was 10 mg/L, Longilinea and Thauera were the dominant genus in the HARS for treating water co-polluted with nitrate and sulfate, respectively. These results provide a theoretical basis of the application of HARS for the bio-remediation of Sb(V) contaminated water.
Collapse
Affiliation(s)
- Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China.
| | - Yiduo Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yang Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Mengqi Gu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
15
|
Garg R, Singh SK. Treatment technologies for sustainable management of wastewater from iron and steel industry - a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75203-75222. [PMID: 36136191 DOI: 10.1007/s11356-022-23051-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The iron and steel industries are a vital driving force for propelling the nation's economic growth. In 2019, to boost the economy and to achieve the target of five trillion economies by 2024, government of India entails investments in several steel-related sectors. However, since their inception, steel and iron industries have been coupled with extensive environmental pollution and vast water utilization. Discharged effluent from the different units of plant loaded with toxic, hazardous, and unused components which have various harmful environmental and health impacts and need treatment. In the present review, the pollutants treatment efficiency of various treatment techniques, effluent volume product quality, and various measures for sound management of wastewater are reviewed. As most conventional wastewater treatment methods are not sufficient for complete reclamation and remediation of effluent, the potential of more advanced treatment such as membrane separation and membrane bioreactors is relatively untouched. In the end, this paper concluded that the integrated system combining chemical treatment with membrane separation can ensure a worthy rate of pollutant removal. Reuse and effective management of wastewater with process intensification guarantee commercial viability and eco-friendliness.
Collapse
Affiliation(s)
- Rachna Garg
- Department of Environment Engineering, Delhi Technological University, Delhi, 110042, India
| | - Santosh Kumar Singh
- Department of Environment Engineering, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
16
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
17
|
Guo Y, Guo L, Jin C, Zhao Y, Gao M, Ji J, She Z, Giesy JP. Comparison of primary and secondary sludge carbon sources derived from hydrolysis or acidogenesis for nitrate reduction and denitrification kinetics: Organics utilization and microbial community shift. ENVIRONMENTAL RESEARCH 2022; 212:113403. [PMID: 35525291 DOI: 10.1016/j.envres.2022.113403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Seeking available and economical carbon sources for denitrification process is an intractable issue for wastewater treatment. However, no study compared different types of waste sludge as carbon source from denitrification mechanism, organics utilization and microbial community aspects. In this study, primary and secondary sludge were pretreated by thermophilic bacteria (TB), and its hydrolysis or acidogenic liquid were prepared as carbon sources for denitrification. At C/N of 8-3, the variations of NO3--N and NO2--N were profiled in typical cycles and denitrification kinetics was analyzed. Primary sludge achieved a competitive NOX-N removal efficiency with less dosage than secondary sludge. Fourier transform infrared (FTIR) spectroscopy was introduced to analyze organic composition from functional-group perspective and the utilization of organic matters in different sludge carbon sources was investigated. To further analyze the microbial community shift in different denitrification systems, high-throughput sequencing technology was applied. Results showed that denitrifier Thauera, belonging to Proteobacteria, was predominant, and primary sludge acidogenic liquid enriched Thauera most intensively with relative abundance of 47.3%.
Collapse
Affiliation(s)
- Yiding Guo
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Educatin, Ocean University of China, Qingdao, 266100, China.
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
18
|
Yang C, Zhang L, Hu S, Diao Y, Jin X, Jin P, Chen C, Wu X, Wang XC. Electro-dissolved ozone flotation (E-DOF) integrated anoxic/oxic membrane reactor for leachate treatment from a waste transfer station. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55803-55815. [PMID: 35320482 DOI: 10.1007/s11356-022-19526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
With high organics and ammonia, leachate from waste transfer stations (WTSs) is among the most complex wastewater that cannot be easily disposed by signal biological processes. In this study, an electro-dissolved ozone flotation (E-DOF) was established, in which dissolved ozone flotation (DOF) and electro-coagulation (EC) occurred concurrently in one unit and integrated with anoxic/oxic membrane bioreactor (A/O-MBR) to dispose leachate from a WTS. In the integrated reactor, E-DOF acted as pretreatment and advanced treatment unit. A/O-MBR acted as secondary treatment unit. The E-DOF pretreatment achieved 34.48% COD and 16.96% NH3-N removal efficiency through synergistic effect between EC and DOF. BOD5/COD of leachate was increased from 0.32 to 0.51 after E-DOF pretreatment, indicating the enhancement of biodegradability. Molecular weight distribution (MWD) and three-dimensional excitation-emission matrix (3D-EEM) analysis demonstrate that the reduction of molecular weight and elimination of refractory organics through EC, ozone, and their interacted product (•OH) are attributed to biodegradability enhancement in lechate. Microbial community analysis proved that chemoheterotrophy and oxic chemoheterotrophy functions, mainly provided by Truepera, Aquamicrobium, Saprospiraceae, and Lentimicrobiaceae, ensured the efficient degradation of organic in the secondary processes. E-DOF advanced treatment effectively disposed residual contaminant in MBR effluent. The E-DOF advanced treatment mainly disposed residual contaminant in MBR effluent. High removal efficiency of COD (98.59 ± 0.27%), NH3-N (95.59 ± 0.50%), TN (95.37 ± 0.73%), and TP (96.75 ± 1.66%) were observed in the integrated reactor, and final effluent met the discharge standards for inclusion in the sewage pipe network in China.
Collapse
Affiliation(s)
- Chao Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China
| | - Lei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China
| | - Shiyi Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China
| | - Yue Diao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China.
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China.
| | - Chong Chen
- Jiang Su Yong Guan Water and Wastewater Equipment Co. Ltd, Jiangsu Province, Xu'zhou, 221100, China
| | - Xia Wu
- Jiang Su Yong Guan Water and Wastewater Equipment Co. Ltd, Jiangsu Province, Xu'zhou, 221100, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Beilin District, Xi'an, 710055, Shaanxi Province, China
| |
Collapse
|
19
|
Liu K, Zhang Y, Xu W. Bioaugmentation of quinoline-degrading bacteria for coking wastewater treatment: performance and microbial community analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:601-619. [PMID: 35799368 DOI: 10.1080/10934529.2022.2095177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Ochrobactrum sp. XKL1, previously found to have the ability to efficiently degrade quinoline, was bioaugmented into a lab-scale A/O/O system to treat real coking wastewater. During the bioaugmentation stage, the removal of quinoline and pyridine of the O1 tank could be enhanced by 9.88% and 7.96%, respectively. High-throughput sequencing analysis indicated that the addition of XKL1 could significantly affect the alteration of microbial community structure in the sludge. In addition, the relative abundance of Ochrobactrum has demonstrated a trend of increasing first followed by decreasing with the highest abundance of 7.87% attained on the 94th day. The bioaugmentation effects lasted for about 14 days after the strains was inoculated into the reactor. Although a decrease in the relative abundance of XKL1 was observed for a rather short period of time, the bioaugmented A/O/O system has been proven to be more effective in the removal of organic pollutants than the control. Hence, the results of this study indicated that the bioaugmentation with XKL1 is a feasible operational strategy that would be able to enhance the removal of NHCs in the treatment of coking wastewater with complex composition and high organic concentrations.
Collapse
Affiliation(s)
- Kexin Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
| | - Yuxiu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
| | - Weichao Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, P.R. China
- Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
20
|
Wang T, Lin Z, Kuang B, Ni Z, Chen X, Guo B, Zhu G, Bai S. Electroactive algae-bacteria wetlands for the treatment of micro-polluted aquaculture wastewater: Pilot-scale verification. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Liu J, Zang N, Gao L, Liu X, Tian H, Yue P, Li T. A modified packed anaerobic baffled reactor based on phase separation for the treatment of decentralized wastewater: Performance and microbial communities. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Effects of Chlorella vulgaris Enhancement on Endogenous Microbial Degradation of Marine Oil Spills and Community Diversity. Microorganisms 2022; 10:microorganisms10050905. [PMID: 35630350 PMCID: PMC9146007 DOI: 10.3390/microorganisms10050905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
Biofortification could improve the bioremediation efficiency of microbes in the reparation of marine environmental damage caused by oil spills. In this paper, Chlorella vulgaris LH-1 was used as a fortifier to enhance the degradation of a marine oil spill by endogenous microorganisms. The addition of C. vulgaris LH-1 increased the degradation efficiency of crude oil by 11.09–42.41% and considerably accelerated oil degradation efficiency. Adding C. vulgaris LH-1 to a crude oil environment can improve the activity of endogenous seawater microorganisms. The results of high-throughput sequencing showed that the main bacterial genera were Oceanicola, Roseibacillus, and Rhodovulum when exotrophic C. vulgaris LH-1 and seawater endogenous microorganisms degraded low-concentration crude oil together. However, the addition of high-concentration nutrient salts changed the main bacterial genera in seawater to unclassified Microbacterium, Erythrobacter, and Phaeodactylibacter. The addition of C. vulgaris LH-1 increased the abundance of marine bacteria, Rhodococcus, and Methylophaga and decreased the abundance of Pseudomonas, Cladosporium, and Aspergillus. The functional prediction results of phylogenetic investigation of communities by reconstruction of unobserved states indicated that C. vulgaris LH-1 could improve the metabolic ability of seawater endogenous microorganisms to degrade endogenous bacteria and fungi in crude oil.
Collapse
|
23
|
Wang F, Dong W, Wang H, Zhao Y, Zhao Z, Huang J, Zhou T, Wu Z, Li W. Enhanced bioremediation of sediment contaminated with polycyclic aromatic hydrocarbons by combined stimulation with sodium acetate/phthalic acid. CHEMOSPHERE 2022; 291:132770. [PMID: 34736942 DOI: 10.1016/j.chemosphere.2021.132770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
In this study, four groups of laboratory scale experiments were performed by adding sodium acetate (SA), phthalic acid (PA), and SA-PA to river sediment to observe the microbial response and biodegradation efficiency of polycyclic aromatic hydrocarbons (PAHs). The results showed that the amount of total organic carbon consumed and the amount of sulfate reduction were both positively correlated (p < 0.01) with the biodegradation efficiency of the sum (∑) PAHs (∼40.5%). The lower the number of rings, the more PAHs were biodegraded, with an efficiency of 63.0% for ∑ (2 + 3) ring PAHs. Based on high-throughput sequencing and molecular ecological network analysis, it was found that the combined stimulation of SA and PA not only increased the relative abundance of PAHs-degrading bacterial (eg., Proteobacteria, Desulfobacterota, Campilobacterota and Firmicutes), but also had a strengthening effect on microbes in sediments. The altered microbial structure caused a variation in metabolic functions, which increased the amino acid metabolism to 12.2%, thus increasing the positive correlations among genera and improving the connectivity of the microbial network (p < 0.01). These changes may be responsible for the enhanced biodegradation of PAHs under SA-PA dosing in comparison to SA or PA dosing alone. This study revealed that the microbial community was stimulated by the combined addition of SA and PA, and indicated its role in enhancing biodegradation of PAHs in contaminated river sediments.
Collapse
Affiliation(s)
- Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Yue Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China.
| | - Jie Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ting Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zijing Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenting Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| |
Collapse
|
24
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
25
|
Li H, Li Z, Song B, Gu Z. Microbial community response of the full-scale MBR system for mixed leachates treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1677. [PMID: 34897880 DOI: 10.1002/wer.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
In practice, mature landfill leachate and incineration (young) leachate are mixed to improve the biodegradability and enhance biological treatment performance. However, the ratio of mature-to-young leachates greatly influences MBR treatment efficiency and microbial community structure. This study investigated the treatment efficiency and microbial community structure of full-scale MBR systems operated under two mix ratios, mature leachate: young leachate = 7:3 (v/v, denoted as LL) and 3:7 (v/v, denoted as IL). LL group showed lower Cl- and COD concentrations but a higher aromatic organic content comparing to IL group, and the COD and UV254 removals for LL were significantly lower than those for IL by MBR treatment. Microbial community structures were similar in both groups at phylum level, with dominant phyla being Proteobacteria (23.8%-32.3%), Bacteroidetes (15.25%-20.7%), Chloroflexi (10.5%-23.1%), and Patescibacteria (9.9%-13.2%). However, the richness and diversity of LL group were lower, and differences were observed at lower taxonomy levels. Results indicated that salinity mainly changed the structure of microbial community, resulting in greater abundance of salt-tolerant microbials, while refractory organics affected microbial community structure, and also led to decreased diversity and metabolic activity. Therefore, in mixed leachates biological treatment, a higher young leachate ratio is recommended for better organics removal performance. PRACTITIONER POINTS: The trade-off between refractory organics and salinity in mixed leachate treatment should be paid attention. Refractory organics reduced alpha and functional diversities of microorganisms. Mixed leachate with a higher young leachate ratio reached a better organic removal.
Collapse
Affiliation(s)
- Huan Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhiheng Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
26
|
Srivastava P, Abbassi R, Yadav A, Garaniya V, Asadnia M, Lewis T, Khan SJ. Influence of applied potential on treatment performance and clogging behaviour of hybrid constructed wetland-microbial electrochemical technologies. CHEMOSPHERE 2021; 284:131296. [PMID: 34182282 DOI: 10.1016/j.chemosphere.2021.131296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
A two-stage hybrid Constructed Wetland (CW) integrated with a microbial fuel cell (MFC), and microbial electrolysis cell (MEC) has been assessed for treatment performance and clogging assessment and further compared with CW. The CW-MEC was operated with applied potential to the working electrode and compared with the performance of naturally adapted redox potential of the CW-MFC system. A complex synthetic municipal wastewater was used during the study, which was composed of trace metals, organics, inorganics, and dye. The study demonstrated that providing a constant potential to the working electrode in CW-MEC has resulted in high treatment performance and reduced sludge generation. The maximum chemical oxygen demand (COD), ammonium (NH4+), and phosphate (PO43-) removal achieved during treatment by CW-MEC at 24 h hydraulic retention time was 89 ± 6%, 72 ± 6% and 93 ± 2%, respectively. ICP-MS results indicated that trace metal removals were also higher in CW-MEC than in CW alone (p < 0.05). At the end of the experiment, significant volumetric change (total volume of the microcosm) occurred in CW (1.3 L), which indicates high sludge generation, whereas it was lesser in CW-MEC (0.3 L) and in CW-MFC (0.5 L). Further, Energy Dispersive X-ray (EDX) spectroscopy results indicated low levels of metal precipitation in the CW-MEC system. Based on the Shannon diversity index, the CW-MEC was assessed to be characterised by high species richness and diversity. The observations from this study indicate that the applied potential at the working electrode has a significant impact on treatment performance and clogging behaviour of the system.
Collapse
Affiliation(s)
- Pratiksha Srivastava
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, 7248, Australia
| | - Rouzbeh Abbassi
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Asheesh Yadav
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Vikram Garaniya
- Australian Maritime College, College of Sciences and Engineering, University of Tasmania, Launceston, 7248, Australia
| | - Mohsen Asadnia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Trevor Lewis
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Launceston, Tasmania, 7250, Australia
| | - Stuart J Khan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Abstract
Biological processes have high removal efficiencies and low operational costs, but the secondary effluent of coking wastewater (CWW), even at a low concentration, is difficult for microorganisms to degrade directly. In this study, glucose was used as a carbon source and co-metabolic substrate for microbial acclimation in order to enhance the advanced treatment of coking wastewater (CWW). The removal performance of the pollutants, especially recalcitrant compounds, was studied and the changes in the microbial community structure after activated sludge acclimation were analyzed. The effect of glucose addition on the secondary biochemical effluent of coking wastewater (SBECW) treatment by the acclimated sludge was further studied by a comparison between the performance of two parallel reactors seeded with the acclimated sludge. Our results showed that the concentrations of chemical oxygen demand (COD), total organic carbon (TOC), and UV absorption at 254 nm (UV254) of the wastewater decreased in the acclimation process. Refractory organic matter, such as polycyclic aromatic hydrocarbons and nitrogen-containing heterocyclics, in the SBECW was effectively degraded by the acclimated sludge. High-throughput sequencing revealed that microbes with a strong ability to degrade recalcitrant compounds were enriched after acclimation, such as Thauera (8.91%), Pseudomonas (3.35%), and Blastocatella (10.76%). Seeded with the acclimated sludge, the reactor with the glucose addition showed higher COD removal efficiencies than the control system without glucose addition (p < 0.05). Collectively, glucose addition enhanced the advanced treatment of coking wastewater (CWW).
Collapse
|
28
|
|
29
|
Li M, Yin H, Zhu M, Yu Y, Lu G, Dang Z. Co-metabolic and biochar-promoted biodegradation of mixed PAHs by highly efficient microbial consortium QY1. J Environ Sci (China) 2021; 107:65-76. [PMID: 34412788 DOI: 10.1016/j.jes.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), typical representatives of the persistent organic pollutants (POPs), have become ubiquitous in the environment. In this study, a novel microbial consortium QY1 that performed outstanding PAHs-degrading capacity has been enriched. The degradation characteristics of single and mixed PAHs treated with QY1 were studied, and the effect of biochar on biodegradation of mixed PAHs and the potential of biochar in PAHs-heavy metal combined pollution bioremediation were also investigated. Results showed that, in single substrate system, QY1 degraded 94.5% of 500 mg/L phenanthrene (PHE) and 17.8% of 10 mg/L pyrene (PYR) after 7 days, while in PHE-PYR mixture system, the biodegradation efficiencies of PHE (500 mg/L) and PYR (10 mg/L) reached 94.0% and 96.2%, respectively, since PHE served as co-metabolic substrate to have significantly improved PYR biodegradation. Notably, with the cooperation of biochar, the biodegradations of PHE and PYR were greatly accelerated. Further, biochar could reduce the adverse impact of heavy metals (Cd2+, Cu2+, Cr2O72-) on PYR biodegradation remarkably. The sequencing analysis revealed that Methylobacterium, Burkholderia and Stenotrophomonas were the dominant genera of QY1 in almost all treatments, indicating that these genera might play key roles in PAHs biodegradation. Overall, this study provided new insights into the efficient bioremediation of PAHs-contaminated site.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Guangdong 525000, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, School of Environment and Energy, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
30
|
Peng H, Zhang Q, Tan B, Li M, Zhang W, Feng J. A metagenomic view of how different carbon sources enhance the aniline and simultaneous nitrogen removal capacities in the aniline degradation system. BIORESOURCE TECHNOLOGY 2021; 335:125277. [PMID: 34004561 DOI: 10.1016/j.biortech.2021.125277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
To cross nitrogen removal barrier, carbon sources (sodium succinate (Z1), sodium acetate (Z2) and glucose (Z3)) were applied in aniline degradation reactor to enrich heterotrophic nitrifiers and denitrifiers. The aniline was degraded almost completely and the nitrogen removal performance was improved in three systems. The total nitrogen (TN) removal efficiency of Z2 was the highest. The dominant bacteria were phylum Proteobacteria, class BetaProteobacteria, and genus Thauera (Z1, Z3), Leptothrix (Z2). Different aniline degrading bacteria, heterotrophic nitrifiers and denitrifiers were enriched, and Z2 had more high-abundance communities. Three systems followed the meta-cleavage pathway for the aniline degradation according to the genes annotation. Particularly, the contribution of each genus to nitrogen metabolism and aromatic compounds degradation in the Z2 was more evenly distributed, rather than relying mainly on the contribution of Thauera in Z1 and Z3 so that more functional genes related nitrogen metabolism and aniline degradation were more abundant in Z2.
Collapse
Affiliation(s)
- Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bin Tan
- Wuhan Branch, Chengdu JiZhun FangZhong Architectural Design, Wuhan 40061, PR China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Wenli Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
31
|
Zhu CY, Wang JF, Li QS, Wang LL, Tang GH, Cui BS, Bai J. Integration of CW-MFC and anaerobic granular sludge to explore the intensified ammonification-nitrification-denitrification processes for nitrogen removal. CHEMOSPHERE 2021; 278:130428. [PMID: 33831682 DOI: 10.1016/j.chemosphere.2021.130428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The integration of constructed wetland-microbial fuel cell (CW-MFC) and anaerobic granular sludge (AGS) is an important way to promote its ammonification efficiency and decrease the land use scale. This study explored the integration of CW-MFC and AGS for nitrogen removal via the intensified ammonification-nitrification-denitrification processes with initial NH3-N, NO3-N, Org-N and total nitrogen (TN) concentrations of 10.5, 13.8, 21.4, and 45.7 mg L-1 in wastewater. Two reactors with AGS inoculated with a separated area (R1) and directly inoculated into gravel substrate (R2) were designed, respectively. Results showed that chemical oxygen demand (COD) removal efficiency could reach 85% in R1 and 81% in R2, and the conversion of Org-N to NH3-N and NO3-N to gaseous nitrogen were 80% and 90%, respectively. Although the conversion efficiency of NH3-N to NO2-N/NO3-N via nitrification process was only 18%, it could reach 45%, 94%, and 98% with the aeration rates of 50-, 100-, and 200-mL min-1. According to microstructural property and microbial community analyses, the separation gravel substrate and AGS areas in R1 availed for stable particle size of AGS, archaeal diversity, and metabolic activity even with a 1.5 times daily wastewater treatment capacity than that of R2. Overall, although the intensified ammonification-nitrification-denitrification processes for nitrogen removal could be achieved with supplementary aeration, further investigation is still needed to explore other substrate materials and high CW-MFC/AGS volume ratio for intensified nitrification process in CW-MFC associated with AGS.
Collapse
Affiliation(s)
- Cong-Yun Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Guan-Hui Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Bao-Shan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
32
|
Deng F, Dou R, Sun J, Li J, Dang Z. Phenanthrene degradation in soil using biochar hybrid modified bio-microcapsules: Determining the mechanism of action via comparative metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145798. [PMID: 33611184 DOI: 10.1016/j.scitotenv.2021.145798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
A strategy involving biochar (BC) hybrid modification was developed to promote the bioremediation effect of degrading bacteria immobilized in layer-by-layer assembly (LBL) microcapsules for the treatment of phenanthrene (PHE) polluted soil. A taxonomic and functional metagenomic approach was used to investigate changes in the microbial community structures and functional gene compositions in the PHE-polluted soil during the bioremediation process. Biofortification with an initial PHE concentration of 100 mg kg-1 dry soil in soils using the BC (3%) hybrid LBL bio-microcapsule (BC-LBL, 2.0 g kg-1 dry soil, 107 colony forming unite cell g-1 dry soil) was faster; further, a higher PHE degradation efficiency (80.5% after 25 d) was achieved when compared with that by the LBL agent (66.2% after 25 d) used. Sphingomonas, Streptomyces, Gemmatirosa, Ramlibacter, Flavisolibacter, Phycicoccus, Micromonospora, Acidobacter, Mycobacterium and Gemmatimonas were more abundant in BC-LBL treatment than those in LBL one. Functional gene annotation results showed that more gene number with BC-LBL treatment than those with LBL one. More abundant functions in the former were primarily related to the growth, reproduction, metabolism, and transportation of bacteria. BC hybridization promoting PHE degradation by microencapsulated bacteria may be due to the strong adsorption property of BC, which results in the enrichment of the nutrients that needed for bacterial growth and reproduction, as well as enhancing the mass transfer performance of PHE to BC-LBL; Meanwhile, BC could also stimulate and improve the metabolism and membrane transportation of the degrading bacteria, and finally improving the degradation function.
Collapse
Affiliation(s)
- Fucai Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Rongni Dou
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jinghua Li
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
33
|
Modeling cometabolism of hexavalent chromium by iron reducing bacteria in tertiary substrate system. Sci Rep 2021; 11:10864. [PMID: 34035332 PMCID: PMC8149721 DOI: 10.1038/s41598-021-90137-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, a bacterial strain Serratia sp. was employed for the reduction of synthetically prepared different concentration of Cr(VI) solution (10, 25, 40, 50 and 100 mg/L). Cometabolism study have been carried out in the binary substrate system as well as in the tertiary substrate system. The results revealed that when glucose was added as a co-substrate, at low Cr(VI) concentration, complete reduction was achieved followed by increased biomass growth, but when Cr(VI) concentration was increased to 100 mg/L, the reduction decline to 93%. But in presence of high carbon iron filings (HCIF) as co-substrate even at higher Cr(VI) concentration i.e. 100 mg/L, 100% reduction was achieved and the cell growth continued till 124 h. The study was illustrated via Monod growth kinetic model for tertiary substrate system and the kinetic parameters revealed that the HCIF and glucose combination showed least inhibition to hexavalent chromium reduction by Serratia sp.
Collapse
|
34
|
Fan Y, Chen X, Yao Z, Li H, Wang D, Tian M, Xu Z, Wan J. A novel inhibition mechanism of aniline on nitrification: Aniline degradation competes dissolved oxygen with nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145205. [PMID: 33515876 DOI: 10.1016/j.scitotenv.2021.145205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Aniline is a toxic aromatic amine and an inhibitor of nitrification. This study explored the inhibition effect and underlying mechanism. After sludge acclimation, 540 mg/L aniline was removed in 24 h and almost all ammonia released from aniline was oxidized to nitrate. However, nitrification never started until no aniline left. The cellular adenosine triphosphate (cATP) concentration of acclimated sludge reduced only by 2% after aniline exposure. Neither transmembrane transport of ammonia nor ammonia monooxygenase (AMO) activity was affected by aniline. Growing initial aniline concentration did not deteriorate the specific nitrification rate (NR). These all revealed that the toxicity of aniline only play a minor role in inhibition. Competition for dissolved oxygen (DO) was proposed to be another possible inhibition mechanism. The oxygen affinity constant (Ks) of aniline degraders and ammonia-oxidizing bacteria (AOB) was calculated to be 0.894 mg/L and 1.274 mg/L respectively, suggesting the former possessed much stronger oxygen affinity (P < 0.01). With aniline and ammonium as initial substrates, increasing aeration intensity advanced nitrification and increased the NR. Max NR of 0.63 mgN/(gMLSS·h) was achieved at the highest aeration intensity of 1000 mL/min. This study brings one step closer to better removal of aniline and derived nitrogen pollutants.
Collapse
Affiliation(s)
- Yanyan Fan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Zhangyi Yao
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Wang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Minhui Tian
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Zicong Xu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Wu L, Li B, Li Y, Fan X, Zhang F, Zhang G, Xia Q, Peng W. Preferential Growth of the Cobalt (200) Facet in Co@N–C for Enhanced Performance in a Fenton-like Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00701] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lipeng Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qing Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
36
|
Asif MB, Li C, Ren B, Maqbool T, Zhang X, Zhang Z. Elucidating the impacts of intermittent in-situ ozonation in a ceramic membrane bioreactor: Micropollutant removal, microbial community evolution and fouling mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123730. [PMID: 33254762 DOI: 10.1016/j.jhazmat.2020.123730] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/29/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
In this study, impacts of in-situ ozonation applied directly in the membrane tank of a ceramic MBR (Oz-MBR) were assessed to elucidate its implications on micropollutant removal, microbial taxa and membrane fouling. The basic effluent quality (i.e., bulk organics and nutrients) of the MBR without and with in-situ ozonation was comparable. Importantly, pollutant-specific (10-26%) improvement in micropollutant removal was achieved by the Oz-MBR, which could be attributed to the increase in the abundance of microbial taxa responsible for the removal of structurally complex pollutants and/or ozone-assisted oxidation. In-situ ozonation affected the abundance of denitrifying bacteria and functional genes but total nitrogen removal by the Oz-MBR was comparable to that achieved by the control (C)-MBR. Improved mixed liquor properties, and the reduced accumulation of foulants on the membrane surface resulted in membrane fouling alleviation (53%) in the Oz-MBR. In addition, fouling models evaluated for the first time in the case of Oz-MBR indicated that the cake-complete model was suitable to explain membrane fouling mechanism. This comprehensive study demonstrates the performance of MBR coupled with in-situ ozonation, and the obtained results would serve as a useful reference for its implementation at pilot- and/or full-scale.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Baoyu Ren
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Pei P, Sun Y, Wang L, Liang X, Xu Y. In-situ stabilization of Cd by sepiolite co-applied with organic amendments in contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111600. [PMID: 33396120 DOI: 10.1016/j.ecoenv.2020.111600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Field experiments was conducted to evaluate the effectiveness of sepiolite (S), sepiolite + fungi residues (SFR) and sepiolite + vermicompost (SVC) on in situ immobilization remediation of Cd contaminated soils. The results showed that treatments of S, SFR and SVC decreased soil Cd availability by 15.2-47.8%, 17.5-44.9% and 13.2-44.9%, respectively, when compared with the control groups. Moreover, the content of Cd in edible parts of Lactuca sativa L., Cichorium endivia L. and Brassica campestris L. was experienced a decrease of 15.9-41.9%, 1.6-38.0% and 29.0-37.4% reduction, respectively, under the amended soil. The improvement of soil fertility was obtained under addition of SVC and SFR, while the amounts of available P, K, organic matter, microbial carbon, microbial nitrogen and dehydrogenase activity were increased by 9.6-68.2%, 1.2-28.3%, 37.5-70.5%, 4.1-121.0%, 220-640% and 6.8-56.8%, respectively, in contrast to CK. Moreover, high-throughput sequencing analysis showed that the combined treated soils got higher values of alpha diversity indices, Chao1, ACE and Shannon. The number of dominant phyla (Proteobacteria, Acidobacteria, Gemmatimonadetes, Crenarchaeota) and genera (Aquicella, Lysobacter, Candidatus Nitrososphaera, Sphingopyxis, Mesorhizobium) were enhanced. Therefore, the use of sepiolite and organic amendments could be an adequate strategy to immobilization remediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Penggang Pei
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| | - Lin Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Xuefeng Liang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
38
|
Deng J, Zhang B, Xie J, Wu H, Li Z, Qiu G, Wei C, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. PLoS One 2020; 15:e0243748. [PMID: 33301488 PMCID: PMC7728250 DOI: 10.1371/journal.pone.0243748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
The pre-aerobic process of coking wastewater treatment has strong capacity of decarbonization and detoxification, which contribute to the subsequent dinitrogen of non-carbon source/heterotrophic denitrification. The COD removal rate can reach > 90% in the first aerobic bioreactor of the novel O/H/O coking wastewater treatment system during long-term operation. The physico-chemical characteristics of influent and effluent coking wastewater in the first aerobic bioreactor were analyzed to examine how they correlated with bacterial communities. The diversity of the activated sludge microbial community was investigated using a culture-independent molecular approach. The microbial community functional profiling and detailed pathways were predicted from the 16S rRNA gene-sequencing data by the PICRUSt software and the KEGG database. High-throughput MiSeq sequencing results revealed a distinct microbial composition in the activated sludge of the first aerobic bioreactor of the O/H/O system. Proteobacteria, Bacteroidetes, and Chlorobi were the decarbonization and detoxification dominant phyla with the relative abundance of 84.07 ± 5.45, 10.89 ± 6.31, and 2.96 ± 1.12%, respectively. Thiobacillus, Rhodoplanes, Lysobacter, and Leucobacter were the potential major genera involved in the crucial functional pathways related to the degradation of phenols, cyanide, benzoate, and naphthalene. These results indicated that the comprehensive understanding of the structure and function diversity of the microbial community in the bioreactor will be conducive to the optimal coking wastewater treatment.
Collapse
Affiliation(s)
- Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
39
|
Yuan K, Li S, Zhong F. Treatment of coking wastewater in biofilm-based bioaugmentation process: Biofilm formation and microbial community analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123117. [PMID: 32574876 DOI: 10.1016/j.jhazmat.2020.123117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Coking wastewater (CWW) containing complicated organic compositions and strong toxicity cause potential hazards to natural water bodies as well as human health. The aim of this study was integrating newly isolated Comamonas sp. ZF-3, biofilm-based bioaugmentation and fluidized bed reactor into an anoxic filter-fluidized bed reactor (AF-FBR) system to treat actual CWW. The results showed that 93 % of chemical oxygen demand (COD) and 97 % of ammonia nitrogen (NH4+-N) removal efficiency were achieved with hydraulic retention time of 70 h. The main pollutants including phenolic compounds, heterocyclic compounds and polycyclic aromatic hydrocarbons could be removed via biofilm-based process in AF-FBR. The formation of carrier biofilm was consistent with the system performance as well as the biofilm community evolution, during which the microbial community was gradually dominated by some functional genus (e.g., Comamonas, Thiobacillus, Pseudomonas and Thauera), meanwhile, ammonium-oxidizing bacteria Nitrosomonas, nitrite-oxidizing bacteria Nitrospira and denitrifiers (e.g., Pseudomonas, Thiobacillus and Bacillus) coexisted in biofilm to form a microbial community for biological nitrogen removal. Such microbial community structure explained the observed simultaneous removal of COD and NH4+-N in the AF-FBR.
Collapse
Affiliation(s)
- Ke Yuan
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Fa Zhong
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
40
|
Asif MB, Ren B, Li C, Maqbool T, Zhang X, Zhang Z. Powdered activated carbon - Membrane bioreactor (PAC-MBR): Impacts of high PAC concentration on micropollutant removal and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141090. [PMID: 32758744 DOI: 10.1016/j.scitotenv.2020.141090] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 05/27/2023]
Abstract
In this study, the effect of a high concentration of powdered activated carbon (PAC) on pollutant removal and microbial communities was systematically investigated. Micropollutant removal by the 'control' MBR (without PAC addition) was pollutant-specific and was mainly controlled by their molecular properties. The PAC-MBR achieved enhanced removal of micropollutant by 10% (ofloxacin) to 40% (caffeine). Analysis of the microbial communities in the sludge samples collected from both MBRs indicated an increase in the abundance of 24 (out of 31) genera following PAC addition. Notably, bacterial diversity enriched, particularly in the anoxic zone of the PAC-MBR, indicating a positive impact of recirculating mixed liquor containing PAC from the aerobic to the anoxic zone. In addition, PAC improved the abundance of Comamonas and Methanomethylovorans (up to 2.5%) that can degrade recalcitrant micropollutants. According to the quantitative PCR (qPCR) analysis, the copies of functional genes (nirS, nosZ and narG) increased in PAC-MBR. This study demonstrated that MBR could be operated at a high PAC concentration without compromising the pollutant removal and microbial community evolution during wastewater treatment.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Baoyu Ren
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Deng L, Guo W, Ngo HH, Wang XC, Hu Y, Chen R, Cheng D, Guo S, Cao Y. Application of a specific membrane fouling control enhancer in membrane bioreactor for real municipal wastewater treatment: Sludge characteristics and microbial community. BIORESOURCE TECHNOLOGY 2020; 312:123612. [PMID: 32526665 DOI: 10.1016/j.biortech.2020.123612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The feasibility of a novel bioflocculant (GemFloc™) for membrane fouling mitigation in membrane bioreactor (MBR) was investigated during real municipal wastewater treatment. When compared to the conventional MBR (CMBR), suspended sludge in the MBR with GemFloc™ (G-MBR) showed less soluble microbial products (SMP), higher ratios of proteins to polysaccharides in SMP (SMPP/SMPC) and loosely bound extracellular polymeric substances (LB-EPS). Adding GemFloc™ also enlarged floc size (> 200 µm), and increased tightly bound EPS levels, zeta potential and relative hydrophobicity of sludge flocs, further reduced cake layer and pore blocking resistances. Moreover, more diverse microbial community and enrichment of fouling reduction microbes such as Arenimonas and Flavihumibacter were observed in the G-MBR, together with less abundant microbes (e.g. Sphaerotilus and Povalibacter) which could aggravate membrane fouling. Therefore, GemFloc™ has high capability in improving sludge characteristics, mitigating membrane fouling and increasing diversity of special functional bacterial community in MBR.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shengquan Guo
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yunyang Cao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
42
|
Chen J, Liu Y, Yang Y, Tang M, Wang R, Jiang L, Tian Y, Hu H, Zhang X, Wei Y. Bacterial community structure and gene function prediction in response to long-term running of dual graphene modified bioelectrode bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2020; 309:123398. [PMID: 32325382 DOI: 10.1016/j.biortech.2020.123398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This work studied bacterial community structure and gene function prediction in long-term running of dual graphene modified bioelectrode bioelectrochemical systems (LT D-GM-BE BES, 2 year). The maximum power density of LT D-GM-BE BES was 99.03 ± 3.64 mW/m2, which was 3.66 times of dual control BES (D-C-BE BES), and the transfer resistance of LT GM-BE was just approximately 1/4 of control bioelectrode (C-BE). Proteobacteria and Firmicutes were dominant bacteria in long-term modified bioanode (LT GM-BA, 30.03% and 45.64%), and in long-term modified biocathode (LT GM-BC) was Armatimonadetes (47.14%) in phylum level. The dominant bacteria in LT GM-BA was Clostridium (30.56%), in GM-BC was Chthonomonas (47.14%) in genus level. Gene function related with substrate, energy metabolism and environmental adaptation were enriched. LT GM-BE was tended to enrich dominant bacteria and enrich gene to adapt to micro-environmental changes. This study would provide metagenomics information for long-term running of BES in future.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Yanyan Liu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Liting Jiang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuping Tian
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Hanwen Hu
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xiao Zhang
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yushan Wei
- Department of Environmental Science, School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
43
|
Acclimating activated sludge with co-metabolic substrates for enhancing treatment of low-concentration polyether wastewater. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
44
|
Song W, Lee LY, You H, Shi X, Ng HY. Microbial community succession and its correlation with reactor performance in a sponge membrane bioreactor coupled with fiber-bundle anoxic bio-filter for treating saline mariculture wastewater. BIORESOURCE TECHNOLOGY 2020; 295:122284. [PMID: 31669869 DOI: 10.1016/j.biortech.2019.122284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The application of MBR in high saline wastewater treatment is mainly constrained by poor nitrogen removal and severe membrane fouling caused by high salinity stress. A novel carriers-enhanced MBR system was successfully developed for treating saline mariculture wastewater, which showed efficient TN removal (93.2%) and fouling control. High-throughput sequencing revealed the enhancement mechanism of bio-carriers under high saline condition. Bio-carriers substantially improved the community structure, representatively, nitrifiers abundance (Nitrosomonas, Nitrospira) increased from 2.18% to 9.57%, abundance of denitrifiers (Sulfurimonas, Thermogutta, etc.) also rose from 3.81% to 14.82%. Thereby, the nitrogen removal process was enhanced. Noteworthy, ammonia oxidizer (Nitrosomonas, 8.26%) was the absolute dominant nitrifiers compared with nitrite oxidizer (Nitrospira, 1.13%). This supported the finding of shortcut nitrification-denitrification process in hybrid system. Moreover, a series of biomacromolecule degraders (Lutibacterium, Cycloclasticus, etc.) were detected in bio-carriers, which could account for the mitigation of membrane fouling as result of EPS and SMP degradation.
Collapse
Affiliation(s)
- Weilong Song
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqing Shi
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
45
|
Li K, Shi J, Han Y, Xu C, Han H. Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe 3O 4@PU, powdered activated carbon (PAC), Fe(OH) 3@PAC, biochar, and Fe(OH) 3@biochar and analysis of microbial succession in different reactors. BIORESOURCE TECHNOLOGY 2019; 291:121866. [PMID: 31374417 DOI: 10.1016/j.biortech.2019.121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The study was to explore the feasibility of polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar as biological carriers in strengthening anaerobic degradation of quinoline, pyridine, and indole. When the concentrations of pollutants were 25 mg/L and 50 mg/L, reactors based on PAC and Fe(OH)3@PAC had higher degradation ratios than the other reactors. However, when the concentrations of pollutants were 75 mg/L and 100 mg/L, with the addition of PU and Fe3O4@PU, reactors began to show their superiority in the degradation of the selected NHCs. Among these, the reactor based on Fe3O4@PU had the optimal degradation ratio on quinoline, pyridine, and indole. PU, PAC, Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar benefited the enrichment of Acinetobacter, Comamonas, Levilinea, Longilinea, and Desulfomicrobium. The reactor with the carrier of Fe3O4@PU had some specificity, which benefited the enrichment of Zoogloea, Thiobacillus, Anaeromyxobacter, Sphingobium, Terrimonas, Parcubacteria genera incertae sedis, Bdellovibrio, Rhizobium, and Acidovorax.
Collapse
Affiliation(s)
- Kun Li
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Jingxin Shi
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China.
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Engineering Research Center of Water Resources, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
46
|
Zhang L, Cheng Y, Gao G, Jiang J. Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203966. [PMID: 31627458 PMCID: PMC6844080 DOI: 10.3390/ijerph16203966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
Sediment bacterial communities are critical for the circulation of nutrients in lake ecosystems. However, the bacterial community function and co-occurrence models of lakes have not been studied in depth. In this study, we observed significant seasonal changes and non-significant spatial changes in the beta diversity and community structure of sediment bacteria in Lake Chaohu. Through linear discriminant analysis effect size (LEfSe), we observed that certain taxa (from phylum to genus) have consistent enrichment between seasons. The sudden appearance of a Firmicutes population in spring samples from the Zhaohe River, an estuary of Lake Chaohu, and the dominance of Firmicutes populations in other regions suggested that exogenous pollution and environmental induction strongly impacted the assembly of bacterial communities in the sediments. Several taxa that serve as intermediate centers in Co-occurrence network analysis (i.e., Pedosphaeraceae, Phycisphaeraceae, Anaerolineaceae, and Geobacteraceae) may play an important role in sediments. Furthermore, compared with previous studies of plants and animals, the results of our study suggest that various organisms, including microorganisms, are resistant to environmental changes and/or exogenous invasions, allowing them to maintain their community structure.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Cheng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jiahu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
47
|
Qu J, Chen X, Zhou J, Li H, Mai W. Treatment of real sodium saccharin wastewater using multistage contact oxidation reactor and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 289:121714. [PMID: 31323719 DOI: 10.1016/j.biortech.2019.121714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/12/2023]
Abstract
In this study, multistage contact oxidation reactor (MCOR) with a novel carrier was used for treatment of high-strength sodium saccharin wastewater (SSW) under stepwise increasing salinities from 1.0% to 8.0%. The results revealed that MCOR could effectively remove the organic pollutants from SSW when influent salinity was no more than 4.5%; the chemical oxygen demand (COD) and NH4+-N removal efficiency under the optimal operating parameters ranged up to 91.5% and 92.7%, respectively. Microbial diversity analysis illustrated that the dominant microbes in SSW treatment system were substantially distinct at different salinities. Pseudomonas was predominant at salinity of 3.5%, while Marinobacterium (a species involved in COD removal) was enriched to a greater degree at salinity of 7.0%. CCA suggested that salinity was the main factor for dynamic evolutions of microbial community structures. This work demonstrated that MCOR is an appropriate method for the treatment of high-strength, high-salinity SSW.
Collapse
Affiliation(s)
- Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haisong Li
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenning Mai
- School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
48
|
Zheng M, Zhu H, Han Y, Xu C, Zhang Z, Han H. Comparative investigation on carbon-based moving bed biofilm reactor (MBBR) for synchronous removal of phenols and ammonia in treating coal pyrolysis wastewater at pilot-scale. BIORESOURCE TECHNOLOGY 2019; 288:121590. [PMID: 31195361 DOI: 10.1016/j.biortech.2019.121590] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
By regulating the extraction solvent and alkali in pretreatment, two carbon-based MBBRs were compared in pilot-scale to synchronously remove phenols and ammonia of coal pyrolysis wastewater (CPW) under fluctuant phenols-ammonia loadings. It revealed that lignite activated coke (LAC)-based MBBR performed more stable with phenols increasing (250-550 mg/L), and reached higher tolerance limit to ammonia (>320 mg/L) than activated carbon (AC)-based MBBR under fluctuant ammonia loadings. During the phenols-ammonia synchronous removal process, the LAC provided the firm basis for shock resistance due to superior resilient adsorption capacity, enhanced sludge property and microbial cooperation. Furthermore, microbial analysis revealed that the strengthened collaboration between archaea and facultative bacteria played the primary role in phenols-ammonia synchronous degradation. Specifically, the heterotrophic bacteria consumed phenols-ammonia by partial nitrification process and ammonia assimilation, following by denitrifying process to further eliminate phenols. The multifunctional Comamonas was the critical genus participating in all procedures.
Collapse
Affiliation(s)
- Mengqi Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuxing Han
- School of Engineering, South China Agriculture University, Guangzhou 510642, China
| | - Chunyan Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhengwen Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
49
|
Wu H, Wang M, Zhu S, Xie J, Preis S, Li F, Wei C. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater. CHEMOSPHERE 2019; 228:128-138. [PMID: 31029958 DOI: 10.1016/j.chemosphere.2019.04.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/04/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Coking wastewater (CWW) contains high contents of phenols and other toxic and refractory compounds including polycyclic aromatic hydrocarbons (PAHs) with the most carcinogenic benzo[a]pyrene (BaP) among them. The mechanism of PAHs/BaP degradation in activated sludge of CWW treatment with phenol as co-substrate was studied. For characterizing the structure and functions of microbial community associated with BaP degradation with phenol as co-substrate, high-throughput MiSeq sequencing was used to examine the 16S rRNA genes of microbiology, revealing noticeable shifts in CWW activated sludge bacterial populations. Major genera involved in anaerobic degradation were Tissierella_Soehngenia, Diaphorobacter and Geobacter, whereas in aerobic degradation Rhodanobacter, Dyella and Thauera prevailed. BaP degradation with phenol as co-substrate induced bacterial diversification in CWW activated sludge in opposite trends when anaerobic and aerobic conditions were applied. In order to predict the microbial community functional profiling, a bioinformatics software package of phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was run to find that some dominant genera enriched in the BaP pathway may own the ability to degrade PAHs/BaP. Further experiments should focus on testing the dominant genera in BaP degradation at different oxygen levels.
Collapse
Affiliation(s)
- Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Ming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Shuang Zhu
- Center for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Junting Xie
- Center for Bioresources & Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, Tallinn, 19086, Estonia
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
50
|
Xia T, Zhang X, Wang H, Zhang Y, Gao Y, Bian C, Wang X, Xu P. Power generation and microbial community analysis in microbial fuel cells: A promising system to treat organic acid fermentation wastewater. BIORESOURCE TECHNOLOGY 2019; 284:72-79. [PMID: 30925425 DOI: 10.1016/j.biortech.2019.03.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
To explore a sustainable and efficient treatment approach for organic acid fermentation wastewater, two microbial fuel cells (MFCs) systems inoculated with wastewater or domesticated microbial community were constructed in this study. Compared with the MFC inoculated with domesticated microbial community, the MFC inoculated with wastewater not only showed higher power density (543.75 mW m-2) and coulomb efficiency (22.10%), but also exhibited higher removal rates of chemical oxygen demand (75.59%), total nitrogen (76.15%), and ammonia nitrogen (83.23%), meeting the demand of wastewater discharge standard of China. Sequencing analysis revealed that the MFC inoculated with wastewater were richer in microbial community, and some bacteria such as Saprospiraceae and Caldilineaceae were beneficial for its good performance. In contrast, the microbial community of the MFC inoculated with domesticated microbial community was relatively simple. These results indicated that MFCs may be a sustainable method for organic acid fermentation wastewater treatment without any preprocessing.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xueli Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Huimin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yachao Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yan Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Congcong Bian
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Ping Xu
- Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|