1
|
Fu R, Han L, Li Q, Li Z, Dai Y, Leng J. Studies on the concerted interaction of microbes in the gastrointestinal tract of ruminants on lignocellulose and its degradation mechanism. Front Microbiol 2025; 16:1554271. [PMID: 40415943 PMCID: PMC12098361 DOI: 10.3389/fmicb.2025.1554271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/04/2025] [Indexed: 05/27/2025] Open
Abstract
The complex structure of lignocellulose, one of the most abundant renewable resources on earth, makes biodegradation challenging. Ruminant gastrointestinal microbiota achieves efficient lignocellulose degradation through a highly synergistic ecosystem, which provides an important research model for sustainable energy development and high value-added chemical production. This review systematically summarizes the key mechanisms of lignocellulose degradation by ruminant gastrointestinal microorganisms, focusing on the synergistic roles of rumen and hindgut (including cecum, colon, and rectum) microorganisms in cellulose, hemicellulose, and lignin degradation. The study focuses on the functional differentiation and cooperation patterns of bacteria, fungi and protozoa in lignocellulose decomposition, and summarizes the roles of carbohydrate-active enzymes (CAZymes) and their new discoveries under the histological techniques. In addition, this manuscript explores the potential application of gastrointestinal tract (GIT) microbial degradation mechanisms in improving the utilization of straw-based feeds. In the future, by revealing the mechanism of microbe-host synergy and integrating multi-omics technologies, the study of ruminant gastrointestinal microbial ecosystems will provide new solutions to promote the efficient utilization of lignocellulose and alleviate the global energy crisis.
Collapse
Affiliation(s)
- Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Zhe Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yue Dai
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Liang J, Liu S, Zhang R, Chang J, Lv L, Nabi M, Zhang G, Zhang P. Yeast culture enhances long-term fermentation of corn straw by ruminal microbes for volatile fatty acid production: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122736. [PMID: 39362162 DOI: 10.1016/j.jenvman.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Shukla A, Kumar D, Girdhar M, Kumar A, Goyal A, Malik T, Mohan A. Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:44. [PMID: 36915167 PMCID: PMC10012730 DOI: 10.1186/s13068-023-02295-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Bioethanol is recognized as a valuable substitute for renewable energy sources to meet the fuel and energy demand of the nation, considered an environmentally friendly resource obtained from agricultural residues such as sugarcane bagasse, rice straw, husk, wheat straw and corn stover. The energy demand is sustained using lignocellulosic biomass to produce bioethanol. Lignocellulosic biomass (LCBs) is the point of attention in replacing the dependence on fossil fuels. The recalcitrant structure of the lignocellulosic biomass is disrupted using effective pretreatment techniques that separate complex interlinked structures among cellulose, hemicellulose, and lignin. Pretreatment of biomass involves various physical, chemical, biological, and physiochemical protocols which are of importance, dependent upon their individual or combined dissolution effect. Physical pretreatment involves a reduction in the size of the biomass using mechanical, extrusion, irradiation, and sonification methods while chemical pretreatment involves the breaking of various bonds present in the LCB structure. This can be obtained by using an acidic, alkaline, ionic liquid, and organosolvent methods. Biological pretreatment is considered an environment-friendly and safe process involving various bacterial and fungal microorganisms. Distinct pretreatment methods, when combined and utilized in synchronization lead to more effective disruption of LCB, making biomass more accessible for further processing. These could be utilized in terms of their effectiveness for a particular type of cellulosic fiber and are namely steam explosion, liquid hot water, ammonia fibre explosion, CO2 explosion, and wet air oxidation methods. The present review encircles various distinct and integrated pretreatment processes developed till now and their advancement according to the current trend and future aspects to make lignocellulosic biomass available for further hydrolysis and fermentation.
Collapse
Affiliation(s)
- Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Madhuri Girdhar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Abhineet Goyal
- SAGE School of Science, SAGE University Bhopal, Sahara Bypass Road Katara Hills, Extension, Bhopal, Madhya Pradesh, 462022, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
4
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
5
|
Mikulski D, Kłosowski G. High-pressure microwave-assisted pretreatment of softwood, hardwood and non-wood biomass using different solvents in the production of cellulosic ethanol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:19. [PMID: 36750940 PMCID: PMC9906915 DOI: 10.1186/s13068-023-02272-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/29/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Pretreatment is an indispensable stage of the preparation of lignocellulosic biomass with key significance for the effectiveness of hydrolysis and the efficiency of the production of cellulosic ethanol. A significant increase in the susceptibility of the raw material to further degradation can be attained as a result of effective delignification in high-pressure conditions. With this in mind, a method of high-pressure pretreatment using microwave radiation and various solvents (water, 40% w/v NaCS, 1% v/v H2SO4, 1% w/v NaOH or 60% v/v EtOH with an addition of 1% v/v H2SO4) was developed, enabling the acquisition of biomass with an increased susceptibility to the process of enzymatic hydrolysis. The medium obtained in this way can be used for the production of cellulosic ethanol via high-gravity technology (lignocellulosic media containing from 15 to 20% dry weight of biomass). For every type of biomass (pine chips, beech chips and wheat straw), a solvent was selected to be used during the pretreatment, guaranteeing the acquisition of a medium highly susceptible to the process of enzymatic hydrolysis. RESULTS The highest efficiency of the hydrolysis of biomass, amounting to 71.14 ± 0.97% (glucose concentration 109.26 ± 3.49 g/L) was achieved for wheat straw subjected to microwave-assisted pretreatment using 40% w/v NaCS. Fermentation of this medium produced ethanol concentration at the level of 53.84 ± 1.25 g/L. A slightly lower effectiveness of enzymatic hydrolysis (62.21 ± 0.62%) was achieved after high-pressure microwave-assisted pretreatment of beech chips using 1% w/v NaOH. The hydrolysate contained glucose in the concentration of 91.78 ± 1.91 g/L, and the acquired concentration of ethanol after fermentation amounted to 49.07 ± 2.06 g/L. In the case of pine chips, the most effective delignification was achieved using 60% v/v EtOH with the addition of 1% v/v H2SO4, but after enzymatic hydrolysis, the concentration of glucose in hydrolysate was lower than in the other raw materials and amounted to 39.15 ± 1.62 g/L (the concentration of ethanol after fermentation was ca. 19.67 ± 0.98 g/L). The presence of xylose and galactose was also determined in the obtained fermentation media. The highest initial concentration of these carbohydrates (21.39 ± 1.44 g/L) was observed in beech chips media after microwave-assisted pretreatment using NaOH. The use of wheat straw after pretreatment using EtOH with an addition of 1% v/v H2SO4 for the preparation of fermentation medium, results in the generation of the initial concentration of galactose and xylose at the level of 19.03 ± 0.38 g/L. CONCLUSION The achieved results indicate a high effectiveness of the enzymatic hydrolysis of the biomass subjected to high-pressure microwave-assisted pretreatment. The final effect depends on the combined use of correctly selected solvents for the different sources of lignocellulosic biomass. On the basis of the achieved results, we can say that the presented method indicates a very high potential in the area of its use for the production of cellulosic ethanol involving high-gravity technology.
Collapse
Affiliation(s)
- Dawid Mikulski
- grid.412085.a0000 0001 1013 6065Faculty of Natural Science, Department of Biotechnology, Kazimierz Wielki University, Ul. K. J. Poniatowskiego 12, 85-671 Bydgoszcz, Poland
| | - Grzegorz Kłosowski
- Faculty of Natural Science, Department of Biotechnology, Kazimierz Wielki University, Ul. K. J. Poniatowskiego 12, 85-671, Bydgoszcz, Poland.
| |
Collapse
|
6
|
Sohail M, Khan A, Badshah M, Degen A, Yang G, Liu H, Zhou J, Long R. Yak rumen fluid inoculum increases biogas production from sheep manure substrate. BIORESOURCE TECHNOLOGY 2022; 362:127801. [PMID: 35995345 DOI: 10.1016/j.biortech.2022.127801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Hydrolytic bacteria are essential for the degradation of lignocellulose to produce biogas and organic fertilizers. In this study, sheep manure was used as substrate, and sheep manure slurry, yak rumen fluid and slurry from a biogas reactor (SBR) were used as inocula in single-stage anaerobic digestion. The SBR and rumen fluid inocula increased biogas production by 23% and 43%, respectively, when compared to solely sheep manure in the single-stage anaerobic digestion. The two-stage anaerobic digestion, with yak rumen fluid as inoculum in the hydrolytic reactor, increased the biogas production by 59, 86, and 58% compared with the control. Microbial analysis of the effluent revealed that yak rumen fluid contained hydrolytic bacteria such as Proteiniphilum, Jeotgalibaca, Fermentimonas, and Atopostipes to enhance the degradation of sheep manure and increase biogas production. It was concluded that yak rumen fluid, rich in hydrolytic bacteria, increases the degradability of sheep manure and improves production of volatile fatt acids and biogas.
Collapse
Affiliation(s)
- Muhammad Sohail
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Alam Khan
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malik Badshah
- Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Guo Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianwei Zhou
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ruijun Long
- State Key Laboratory of Grassland Agro-ecosystem, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani AE, Pham VV. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113194. [PMID: 34243094 DOI: 10.1016/j.jenvman.2021.113194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from renewable biomass with the primary aim of reducing carbon footprints has recently become one of the central points of interest. The use of lignocellulosic biomass for energy production is believed to meet the main criteria of maximizing the available global energy source and minimizing pollutant emissions. However, before usage in bioenergy production, lignocellulosic biomass needs to undergo several processes, among which biomass pretreatment plays an important role in the yield, productivity, and quality of the products. Acid-based pretreatment, one of the existing methods applied for lignocellulosic biomass pretreatment, has several advantages, such as short operating time and high efficiency. A thorough analysis of the characteristics of acid-based biomass pretreatment is presented in this review. The environmental concerns and future challenges involved in using acid pretreatment methods are discussed in detail to achieve clean and sustainable bioenergy production. The application of acid to biomass pretreatment is considered an effective process for biorefineries that aim to optimize the production of desired products while minimizing the by-products.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nizetic
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia.
| | - Cheng Tung Chong
- China-UK Low Carbon College, Shanghai Jiao Tong University, Lingang, Shanghai, 201306, China
| | - A E Atabani
- Alternative Fuels Research Laboratroy (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, 38039, Kayseri, Turkey
| | - Van Viet Pham
- Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
8
|
Abstract
The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
Collapse
|
9
|
Liang Y, Duan W, An X, Qiao Y, Tian Y, Zhou H. Novel betaine-amino acid based natural deep eutectic solvents for enhancing the enzymatic hydrolysis of corncob. BIORESOURCE TECHNOLOGY 2020; 310:123389. [PMID: 32335347 DOI: 10.1016/j.biortech.2020.123389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/14/2023]
Abstract
A novel natural deep eutectic solvent (NDES) with water content ranging from 65 to 93 wt%, in which betaine (Bet) acts as the cation and amino acids (AAs) as the anions, was prepared by a simple and green chemical route. [Bet][AA] NDES showed excellent xylan and lignin solubility, however, scare cellulose solubility. A mild and facile pretreatment process with [Bet][AA] NDES was carried out at 60 °C for 5 h. The enzymatic hydrolysis efficiency of cellulose and corncob was significantly improved. Detailed characterization showed that the enhancement of cellulose digestibility derived mainly from xylan and lignin removal. Xylan and lignin removal for [Bet][Lys]-W87 was 47.68 and 49.06%, while it was 42.20% and 57.01% for [Bet][Arg]-W82, respectively. FT-IR, SEM, XRD, and HSQC NMR studies confirmed the effectiveness and mechanism of [Bet][Lys]-W87 and [Bet][Arg]-W82 on biomass pretreatment.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Wenjing Duan
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Xiaoxi An
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Yingyun Qiao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanyu Tian
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China.
| |
Collapse
|
10
|
Vinzelj J, Joshi A, Insam H, Podmirseg SM. Employing anaerobic fungi in biogas production: challenges & opportunities. BIORESOURCE TECHNOLOGY 2020; 300:122687. [PMID: 31926794 DOI: 10.1016/j.biortech.2019.122687] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
Anaerobic fungi (AF, phylum Neocallimastigomycota) are best known for their ability to efficiently break down lignocellulosic biomass. Their unique combination of mechanical and enzymatic attacks on recalcitrant plant structures bears great potential for enhancement of the anaerobic digestion (AD) process. Although scientists in this field have long agreed upon the potential of AF for biotechnology, research is only recently gaining traction. This delay was largely due to difficulties in culture-dependent and culture-independent analysis of those high-maintenance organisms with their still unknown complex growth requirements. In this review, we will summarize current research efforts on bioaugmentation with AF and further point out, how the lack of basic knowledge on AF nutritional needs hampers their implementation on an industrial scale. Through this, we hope to further kindle interest into basic research on AF in order to advance their stable integration into biotechnological processes.
Collapse
Affiliation(s)
- Julia Vinzelj
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Akshay Joshi
- ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland
| | - Heribert Insam
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
11
|
Domański J, Marchut-Mikołajczyk O, Cieciura-Włoch W, Patelski P, Dziekońska-Kubczak U, Januszewicz B, Zhang B, Dziugan P. Production of Methane, Hydrogen and Ethanol from Secale cereale L. Straw Pretreated with Sulfuric Acid. Molecules 2020; 25:molecules25041013. [PMID: 32102411 PMCID: PMC7070859 DOI: 10.3390/molecules25041013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
The study describes sulfuric acid pretreatment of straw from Secale cereale L. (rye straw) to evaluate the effect of acid concentration and treatment time on the efficiency of biofuel production. The highest ethanol yield occurred after the enzyme treatment at a dose of 15 filter paper unit (FPU) per gram of rye straw (subjected to chemical hydrolysis with 2% sulfuric acid (SA) at 121 °C for 1 h) during 120 h. Anaerobic digestion of rye straw treated with 10% SA at 121 °C during 1 h allowed to obtain 347.42 L methane/kg volatile solids (VS). Most hydrogen was released during dark fermentation of rye straw after pretreatment of 2% SA, 121 °C, 1 h and 1% SA, 121 °C, 2 h—131.99 and 134.71 L hydrogen/kg VS, respectively. If the rye straw produced in the European Union were processed into methane, hydrogen, ethanol, the annual electricity production in 2018 could reach 9.87 TWh (terawatt-hours), 1.16 TWh, and 0.60 TWh, respectively.
Collapse
Affiliation(s)
- Jarosław Domański
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
- Correspondence: ; Tel.: +48-42-631-34-84
| | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
| | - Piotr Patelski
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (U.D.-K.)
| | - Urszula Dziekońska-Kubczak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (P.P.); (U.D.-K.)
| | - Bartłomiej Januszewicz
- Institute of Material Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Bolin Zhang
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Piotr Dziugan
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-924 Lodz, Poland; (W.C.-W.); (P.D.)
| |
Collapse
|
12
|
Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, Tao Y. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 298:122476. [PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
Collapse
Affiliation(s)
- Revathy Sankaran
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ricardo Andres Parra Cruz
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Harshini Pakalapati
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
13
|
Ong VZ, Wu TY, Lee CBTL, Cheong NWR, Shak KPY. Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. ULTRASONICS SONOCHEMISTRY 2019; 58:104598. [PMID: 31450331 DOI: 10.1016/j.ultsonch.2019.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound assisted deep eutectic solvent (DES) with the aim to investigate the effects of ultrasound amplitude and duration in enhancing delignification. Oil palm fronds (OPF) were ultrasonicated in a water medium, followed by a pretreatment using DES (choline chloride:urea). Fourier transform infra-red spectroscopy, X-ray diffraction, field emission scanning electron microscope, Brunauer-Emmet-Teller and solubilised lignin concentration were conducted to confirm the effectiveness of ultrasound assisted DES on the pretreatment of OPF. The recommended ultrasound conditions were determined to be 70% amplitude and duration of 30 min, where the sequential DES pretreatment was able to reduce lignin content of OPF to 14.01%, while improving xylose recovery by 58%.
Collapse
Affiliation(s)
- Victor Zhenquan Ong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Cornelius Basil Tien Loong Lee
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nicholas Wei Ren Cheong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Ai P, Zhang X, Ran Y, Meng L, Elsayed M, Fan Q, Abomohra AEF. Biomass briquetting reduces the energy loss during long-term ensiling and enhances anaerobic digestion: A case study on rice straw. BIORESOURCE TECHNOLOGY 2019; 292:121912. [PMID: 31398544 DOI: 10.1016/j.biortech.2019.121912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
The present study evaluated the impact of briquetting prior to ensiling on rice straw characteristics and anaerobic digestion performance. Ensiling for 10 months significantly reduced cellulose, hemicellulose and lignin of the uncompressed straw by 50.3%, 61.6% and 34.6%, respectively. However, increase of briquetting ratio enhanced the cellulose and hemicellulose contents at different ensiling times. In addition, increasing of ensiling time significantly reduced the biogas yield, while the highest cumulative biogas yield of 313.8 L kg-1 VS was obtained from rice straw ensiled for 7 days at 1:6 briquetting ratio. Interestingly, the maximum biogas productivity of 1:6 briquetted straw after 10 months ensiling was 17.7% higher than that of the uncompressed straw ensiled for 7 days. Thus, briquetting prior to ensiling is a favorable approach to reduce the mass loss for enhanced biogas yield and energy recovery.
Collapse
Affiliation(s)
- Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, 610041 Chengdu, China; The Cooperative Innovation Center for Sustainable Pig Production, 430070 Wuhan, China
| | - Xiuzhi Zhang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yi Ran
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, 610041 Chengdu, China
| | - Liang Meng
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, 610041 Chengdu, China
| | - Mahdy Elsayed
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Qizhou Fan
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Abd El-Fatah Abomohra
- New Energy Department, School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|
15
|
Elsayed M, Abomohra AEF, Ai P, Wang D, El-Mashad HM, Zhang Y. Biorefining of rice straw by sequential fermentation and anaerobic digestion for bioethanol and/or biomethane production: Comparison of structural properties and energy output. BIORESOURCE TECHNOLOGY 2018; 268:183-189. [PMID: 30077878 DOI: 10.1016/j.biortech.2018.07.130] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Three routes; namely R1 representing direct anaerobic digestion (AD), R2 representing enzymatic hydrolysis followed by fermentation, distillation, then AD, and R3 representing AD of fermentation broth without distillation; of alkali pretreated rice straw were investigated. Results showed that sequential fermentation and AD effectively enhanced fibers degradation with significant changes in the composition. Fermentation through R2 resulted in ethanol yield of 87.4 g kg-1 dry straw. Maximum biogas yields of 286.9, 233.3 and 372.4 L kg-1 VS were recorded by AD for R1, R2 and R3 after reaching the steady state at 36, 24 and 33 days, respectively. However, biogas produced through R3 showed the highest significant biomethane content (79.3%) which represented 15 and 8% higher than that of R1 and R2, respectively. Therefore, the highest bioenergy output and energy conversion efficiency of 10.58 GJ ton-1 and 75.6%, respectively, were obtained through R3 demonstrating the positive effect of fermentation prior to AD.
Collapse
Affiliation(s)
- Mahdy Elsayed
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China; Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, 212013 Jiangsu, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hamed M El-Mashad
- Department of Agricultural Engineering, Mansoura University, El-Mansoura, Egypt
| | - Yanlin Zhang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
16
|
Tsegaye B, Balomajumder C, Roy P. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech 2018; 8:447. [PMID: 30333949 PMCID: PMC6181904 DOI: 10.1007/s13205-018-1471-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/04/2018] [Indexed: 01/26/2023] Open
Abstract
In this study, two bacterial strains capable of degrading lignin, cellulose, and hemicellulose were isolated from wood feeding termite. The isolates were identified by 16S rRNA gene sequencing. A bacterium Ochrobactrum oryzae BMP03 capable of degrading lignin was isolated on alkali lignin medium and Bacillus sp. BMP01 strain capable of degrading cellulose and hemicellulose were isolated on carboxymethyl cellulose and xylan media. The efficiency of bacterial degradation was studied by evaluating the composition of rice straw both before and after degradation. The appearance of new cellulose bands at 1382, 1276, 1200, and 871 cm-1, and the absence of former lignin bands at 1726, 1307, and 1246 cm-1 was observed after biodelignification. This was further confirmed by the formation of channeling and layering of the microstructure of biodelignified rice straw observed under electron microscope. Maximum lignin removal was achieved in separate biodelignification and hydrolysis process after the 14th day of treatment by Ochrobactrum oryzae BMP03 (53.74% lignin removal). Hydrolysis of the biodelignified rice straw released 69.96% of total reducing sugars after the 14th day hydrolysis by Bacillus sp. BMP01. In simultaneous delignification and hydrolysis process, about 58.67% of total reducing sugars were obtained after the 13th day of biotreatment. Separate delignification and hydrolysis process were found to be effective in lignin removal and sugar released than the simultaneous process. The bacteria, Bacillus sp. BMP01, has the ability to degrade hemicellulose and cellulose simultaneously. Overall, these results demonstrate that the possibility of rice straw bioconversion into reducing sugars by bacteria from termite gut.
Collapse
Affiliation(s)
- Bahiru Tsegaye
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Chandrajit Balomajumder
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India
| |
Collapse
|
17
|
Sahoo D, Ummalyma SB, Okram AK, Pandey A, Sankar M, Sukumaran RK. Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 253:252-255. [PMID: 29353753 DOI: 10.1016/j.biortech.2018.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Zizania latifolia commonly known as wild rice grass which is available in huge quantities in Loktak Lake is a major concern as it occupies a large area of the Lake and causing a several environmental problems. The investigation of present study was to evaluate possibilities of using Zizania latifolia as feed stock for bioethanol production. The method involved the pretreatment with dilute acid or alkali followed by enzymatic hydrolysis with commercial cellulase. Acid pretreatment was performed with 10% biomass loading with different concentration of acids (0.4-2% w/v) and alkali (0.25-1.5% w/v). Maximum sugar release of 457 mg/g was obtained from 10% biomass loading and 2% w/v of acids. Alkali pretreatment is not effective for this grass. Physicochemical characterization of untreated and treated biomass was carried out by XRD, FTIR, SEM and corresponding alterations in the chemical composition were also monitored. Results showed the feasibility of this grass as biofuel (bioethanol) feed stock and can be potential approach to address the sustainable utilization phumdis grasses of Loktak Lake for the production of value added product.
Collapse
Affiliation(s)
- Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Sabeela Beevi Ummalyma
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| | - Aswini Kumar Okram
- Institute of Bioresources and Sustainable Development (IBSD), A National Institute under Department of Biotechnology Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695019, India
| |
Collapse
|
18
|
Contreras-Hernández MG, Ochoa-Martínez LA, Rutiaga-Quiñones JG, Rocha-Guzmán NE, Lara-Ceniceros TE, Contreras-Esquivel JC, Prado Barragán LA, Rutiaga-Quiñones OM. Effect of ultrasound pre-treatment on the physicochemical composition of Agave durangensis leaves and potential enzyme production. BIORESOURCE TECHNOLOGY 2018; 249:439-446. [PMID: 29065326 DOI: 10.1016/j.biortech.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Approximately 1 million tons of agave plants are processed annually by the Mexican tequila and mezcal industry, generating vast amounts of agroindustrial solid waste. This type of lignocellulosic biomass is considered to be agroindustrial residue, which can be used to produce enzymes, giving it added value. However, the structure of lignocellulosic biomass makes it highly recalcitrant, and results in relatively low yield when used in its native form. The aim of this study was to investigate an effective pre-treatment method for the production of commercially important hydrolytic enzymes. In this work, the physical and chemical modification of Agave durangensis leaves was analysed using ultrasound and high temperature as pre-treatments, and production of enzymes was evaluated. The pre-treatments resulted in modification of the lignocellulosic structure and composition; the ultrasound pre-treatment improved the production of inulinase by 4 U/mg and cellulase by 0.297 U/mg, and thermal pre-treatment improved β-fructofuranosidase by 30 U/mg.
Collapse
Affiliation(s)
- M G Contreras-Hernández
- Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, Durango, Dgo C.P. 34080, Mexico
| | - L A Ochoa-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, Durango, Dgo C.P. 34080, Mexico
| | - J G Rutiaga-Quiñones
- Facultad de Ingeniería en Tecnología de la Madera (FITECMA), Edificio D, CU, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Av. Fco. J. Mújica S/N. Col Felicitas de Río, Morelia, Michoacán C.P. 58040, Mexico
| | - N E Rocha-Guzmán
- Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, Durango, Dgo C.P. 34080, Mexico
| | - T E Lara-Ceniceros
- Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Unidad Monterrey), Grupo de Materiales Funcionales y Nanotecnología, Alianza Norte 202, Autopista Monterrey-Aeropuerto km 10, Apodaca, Nuevo León C.P. 66628, Mexico
| | - J C Contreras-Esquivel
- Departamento de Investigación de Alimentos, Facultad de Química, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas V. S/N. Col. República Ote, Saltillo, Coahuila C.P. 25280, Mexico
| | - L A Prado Barragán
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, PA 55-535, Iztapalapa, C.P. 09340 CDMX, Mexico
| | - O M Rutiaga-Quiñones
- Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador 1803 Ote, Colonia Nueva Vizcaya, Durango, Dgo C.P. 34080, Mexico.
| |
Collapse
|