1
|
Correa-Villa C, Moreno-Cárdenas E, de Bruijn J. Presence of lactic acid bacteria in hydrogen production by dark fermentation: competition or synergy. World J Microbiol Biotechnol 2024; 40:380. [PMID: 39532795 DOI: 10.1007/s11274-024-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Dark fermentation in mixed cultures has been extensively studied due to its great potential for sustainable hydrogen production from organic wastes. However, microbial composition, substrate competition, and inhibition by fermentation products can affect hydrogen yield and production rates. Lactic acid bacteria have been identified as the key organisms in this process. On one hand, lactic acid bacteria can efficiently compete for carbohydrate rich substrates, producing lactic acid and secreting bacteriocins that inhibit the growth of hydrogen-producing bacteria, thereby decreasing hydrogen production. On the other hand, due to their metabolic capacity and synergistic interactions with certain hydrogen-producing bacteria, they contribute positively in several ways, for example by providing lactic acid as a substrate for hydrogen generation. Analyzing different perspectives about the role of lactic acid bacteria in hydrogen production by dark fermentation, a literature review was done on this topic. This review article shows a comprehensive view to understand better the role of these bacteria and their influence on the process efficiency, either as competitors or as contributors to hydrogen production by dark fermentation.
Collapse
Affiliation(s)
- Cindy Correa-Villa
- Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000, Chillán, Ñuble, Chile.
| | - Edilson Moreno-Cárdenas
- Departamento de Ingeniería Agrícola y de Alimentos, Universidad Nacional de Colombia-Sede Medellín, 050034, Antioquia, Colombia
| | - Johannes de Bruijn
- Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000, Chillán, Ñuble, Chile
- Centro de Desarrollo Tecnológico Agroindustrial, Facultad de Ingeniería Agrícola, Universidad de Concepción, 4440000, Los Ángeles, Biobio, Chile
| |
Collapse
|
2
|
Cao Q, Zhang W, Yin F, Lian T, Wang S, Zhou T, Wei X, Zhang F, Cao T, Dong H. Lactic acid production with two types of feedstocks from food waste: Effect of inoculum, temperature, micro-oxygen, and initial pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 185:25-32. [PMID: 38820781 DOI: 10.1016/j.wasman.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Lactic acid (LA) is an important chemical with broad market applications. To optimize LA production, food waste has been explored as feedstock. Due to the wide variety of food waste types, most current research studies have obtained different conclusions. This study focuses on carbohydrate-rich fruit and vegetable waste (FVW) and lipid-rich kitchen waste (KW), and the effect of inoculum, temperature, micro-oxygen, and initial pH were compared. FVW has a greater potential for LA production than KW. As an inoculum, lactic acid bacteria (LAB) significantly increased the maximum LA concentration (27.6 g/L) by 50.8 % compared with anaerobic sludge (AS). FVW exhibited optimal LA production at 37 °C with micro-oxygen. Adjustment of initial pH from 4 to 8 alleviated the inhibitory effect of accumulated LA, resulting in a 46.2 % increase in maximum LA production in FVW. The expression of functional genes associated with metabolism, genetic information processing, and environmental information processing was higher at 37 °C compared to 50 °C.
Collapse
Affiliation(s)
- Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co.Ltd., Beijing 100160, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Wei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tiantian Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Martínez-Fraile C, Muñoz R, Teresa Simorte M, Sanz I, García-Depraect O. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants. BIORESOURCE TECHNOLOGY 2024; 403:130846. [PMID: 38754561 DOI: 10.1016/j.biortech.2024.130846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
This study evaluated the hydrogen production potential through lactate-driven dark fermentation (LD-DF) of organic wastes from solid waste treatment plants, including the organic fraction of municipal solid waste (OFMSW), mixed sewage sludge, and two OFMSW leachates. In initial batch fermentations, only OFMSW supported a significant hydrogen yield (70.1 ± 7.7 NmL-H2/g-VS added) among the tested feedstocks. Lactate acted as an important hydrogen precursor, requiring the presence of carbohydrates for sequential two-step lactate-type fermentation. The impact of operational pH (5.5-6.5) and initial total solids (TS) concentration (5-12.5 % w/w) was also evaluated using OFMSW as substrate, obtaining hydrogen yields ranging from 6.6 to 55.9 NmL-H2/g-VSadded. The highest yield occurred at 6.5 pH and 7.5 % TS. The LD-DF pathway was indicated to be present under diverse pH and TS conditions, supported by employing a specialized microbial consortium capable of performing LD-DF, along with the observed changes in lactate levels during fermentation.
Collapse
Affiliation(s)
- Cristina Martínez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - María Teresa Simorte
- FCC Medio Ambiente, Avenida Camino de Santiago 40, CTR de Valladolid, Madrid 2850, Spain
| | - Inmaculada Sanz
- FCC Medio Ambiente, Avenida Camino de Santiago 40, CTR de Valladolid, Madrid 2850, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
4
|
Mota VT, Delforno TP, Ribeiro JC, Zaiat M, Oliveira VMD. Understanding microbiome dynamics and functional responses during acidogenic fermentation of sucrose and sugarcane vinasse through metatranscriptomic analysis. ENVIRONMENTAL RESEARCH 2024; 246:118150. [PMID: 38218518 DOI: 10.1016/j.envres.2024.118150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Improving anaerobic digestion of sugarcane vinasse - a high-strength wastewater from ethanol distillation - is a subject of great interest, in view of the reduction of the pollutants and recovery of methane and valuable metabolites as byproducts. Through metatranscriptomic analysis, this study evaluated the active microbiome and metabolic pathways in a continuous acidogenic reactor: Stage 1S (control): 100% sucrose-based substrate (SBS); Stage 2SV (acclimation): 50% SBS and 50% vinasse; Stage 3V: 100% vinasse. Metatranscriptome obtained from each Stage was subjected to taxonomic and functional annotations. Under SBS feeding, pH dropped to pH 2.7 and biohydrogen production was observed. As vinasse was added, pH increased to 4.1-4.5, resulting in community structure and metabolite changes. In Stage 3V, biohydrogen production ceased, and propionate and acetate prevailed among the volatile fatty acids. Release of homoacetogenesis enzymes by Clostridium ljungdahlii and of uptake hydrogenase (EC 1.12.99.6) by Pectinatus frisingensis were linked to hydrogen consumption in Stages 2SV and 3V. Metabolic pathways of vinasse compounds, such as carbohydrates, malate, oxalate, glycerol, sulfate and phenol, were investigated in detail. In pyruvate metabolism, gene transcripts of oadA (oxaloacetate decarboxylase) and mdh (malate dehydrogenase), were upregulated in Stage 3V, being mostly attributed to P. frisingensis. Acetate formation from vinasse degradation was mainly attributed to Megasphaera and Clostridium, and propionate formation to P. frisingensis. Glycerol removal from vinasse exceeded 99%, and gene transcripts encoding for glpF (glycerol uptake facilitator protein), glpK (glycerol kinase) and glpABC (glycerol-3-phosphate dehydrogenase) were expressed mostly by Pectinatus and Prevotella. mRNA profiling showed that active bacteria and gene expression greatly changed when vinasse replaced sucrose, and Pectinatus was the main active bacterium degrading the searched compounds from vinasse. The identification of the main metabolic routes and the associated microorganisms achieved in this work contributes with valuable information to support further optimization of fermentation towards the desired metabolites.
Collapse
Affiliation(s)
- Vera T Mota
- Research Center for Chemistry, Biology and Agriculture Research, University of Campinas (CPQBA/Unicamp), Paulínia, SP, Brazil.
| | - Tiago P Delforno
- SENAI Innovation Institute for Biotechnology, São Paulo, SP, Brazil
| | - Jaqueline C Ribeiro
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), São Carlos, SP, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), São Carlos, SP, Brazil
| | - Valéria M de Oliveira
- Research Center for Chemistry, Biology and Agriculture Research, University of Campinas (CPQBA/Unicamp), Paulínia, SP, Brazil
| |
Collapse
|
5
|
Regueira-Marcos L, Muñoz R, García-Depraect O. Continuous lactate-driven dark fermentation of restaurant food waste: Process characterization and new insights on transient feast/famine perturbations. BIORESOURCE TECHNOLOGY 2023:129385. [PMID: 37364653 DOI: 10.1016/j.biortech.2023.129385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
The effect of hydraulic retention time (HRT) on the continuous lactate-driven dark fermentation (LD-DF) of food waste (FW) was investigated. The robustness of the bioprocess against feast/famine perturbations was also explored. The stepwise HRT decrease from 24 to 16 and 12 h in a continuously stirred tank fermenter fed with simulated restaurant FW impacted on hydrogen production rate (HPR). The optimal HRT of 16 h supported a HPR of 4.2 L H2/L-d. Feast/famine perturbations caused by 12-h feeding interruptions led to a remarkable peak in HPR up to 19.2 L H2/L-d, albeit the process became stable at 4.3 L H2/L-d following perturbation. The occurrence of LD-DF throughout the operation was endorsed by metabolites analysis. Particularly, hydrogen production positively correlated with lactate consumption and butyrate production. Overall, the FW LD-DF process was highly sensitive but resilient against transient feast/famine perturbations, supporting high-rate HPRs under optimal HRTs.
Collapse
Affiliation(s)
- Lois Regueira-Marcos
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Huang J, Chen K, Xia X, Zhu H. Long-term performance on volatile fatty acids production improved in a kitchen wastewater fermenter by co-fermentation of sludge and membrane separation. CHEMOSPHERE 2023:139049. [PMID: 37245599 DOI: 10.1016/j.chemosphere.2023.139049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Kitchen wastewater can be transformed into a valuable resource through anaerobic fermentation. However, the efficiency of this process is hindered by various factors including salt inhibition and nutrient imbalance. In this study, we examined the effects of co-fermentation with sludge and membrane filtration on the anaerobic fermentation of kitchen wastewater. Our findings indicate that co-fermentation with sludge resulted in a 4-fold increase in fermentation rate and a 2-fold increase in short-chain fatty acids (SCFAs) production. This suggests that the addition of sludge helped to alleviate salt and acid inhibition through ammonia buffering and elemental balancing. The membrane filtration retained 60% of soluble carbohydrates and 15% of proteins in the reactor for further fermentation and recovered nearly 100% of NH4+ and SCFAs in the filtrate, which helped to alleviate acid and ammonia inhibition. The combined fermentation system significantly increased the richness and diversity of microorganisms, particularly caproiciproducens and Clostridium_sensu_stricto_12. The membrane flux remained stable and at a relatively high level, indicating that the combined process may be economically feasible. However, scaling up the co-anaerobic fermentation of kitchen wastewater and sludge in a membrane reactor is necessary for further economic evaluation in the future.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaodong Xia
- Power China Guizhou Electric Power Design & Research Institute Co., LTD, Guiyang, 550002, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
7
|
Rogeri RC, Fuess LT, Eng F, Borges ADV, Araujo MND, Damianovic MHRZ, Silva AJD. Strategies to control pH in the dark fermentation of sugarcane vinasse: Impacts on sulfate reduction, biohydrogen production and metabolite distribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116495. [PMID: 36279773 DOI: 10.1016/j.jenvman.2022.116495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
pH is notably known as the main variable defining distinct metabolic pathways during sugarcane vinasse dark fermentation. However, different alkalinizing (e.g. sodium bicarbonate; NaHCO3) and/or neutralizing (e.g. sodium hydroxide; NaOH) approaches were never directly compared to understand the associated impacts on metabolite profiles. Three anaerobic structured-bed reactors (AnSTBR) were operated in parallel and subjected to equivalent operational parameters, except for the pH control: an acidogenic-sulfidogenic (R1; NaOH + NaHCO3) designed to remove sulfur compounds (sulfate and sulfide), a hydrogenogenic (R2; NaOH) aimed to optimize biohydrogen (bioH2) production, and a strictly fermentative system without pH adjustment (R3) to mainly evaluate lactic acid (HLa) production and other soluble metabolites. NaHCO3 dosing triggered advantages not only for sulfate reduction (up to 56%), but also to enhance the stripping of sulfide to the gas phase (75-96% of the theoretical sulfide produced) by the high and constant biogas flow resulting from the CO2 released during NaHCO3 dissociation. Meanwhile, molasses-based vinasse presented higher potential for bioH2 (up to 4545 mL-H2 L-1 d-1) and HLa (up to 4800 mg L-1) production by butyric-type and capnophilic lactic fermentation pathways. Finally, heterolactic fermentation was the main metabolic route established when no pH control was provided (R3), as indicated by the high production of both HLa (up to 4315 mg L-1) and ethanol (1987 mg L-1). Hence, one single substrate (from which one single source of inoculum was originated) offers a wide range of metabolic possibilities to be exploited, providing substantial versatility to the application of anaerobic digestion in sugarcane biorefineries.
Collapse
Affiliation(s)
- Renan Coghi Rogeri
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Lucas Tadeu Fuess
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Felipe Eng
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - André do Vale Borges
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | - Matheus Neves de Araujo
- Biological Processes Laboratory, São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone 1100, São Carlos, SP, 13563-120, Brazil.
| | | | - Ariovaldo José da Silva
- School of Agricultural Engineering (FEAGRI), University of Campinas (Unicamp), Av. Cândido Rondon, 501, Barão Geraldo, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
8
|
Shi C, Ma J, Wu H, Luo J, Liu Y, Li K, Zhou Y, Wang K. Evaluation of pH regulation in carbohydrate-type municipal waste anaerobic co-fermentation: Roles of pH at acidic, neutral and alkaline conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158327. [PMID: 36037891 DOI: 10.1016/j.scitotenv.2022.158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated and evaluated the roles of acidic (pH 4.0), neutral (pH 7.0) and alkaline (pH 10.0) in anaerobic co-fermentation of sewage sludge and carbohydrate-type municipal waste. CO2, CH4 and H2 are produced in acidic, neutral and alkaline fermentation, respectively. The neutral co-fermentation contained the vast number of aqueous metabolites as total of 22.12 g/L, with the advantage of over 50 % biodegradable components in extracellular polymeric substance and over 80 % hydrolysis rate. Acidic and alkaline pH facilitated ammonia release, with the max concentration of 0.46 g/L and 0.44 g/L, respectively. Microbial analysis indicated that pH is the key parameter to impact microbial activity and drive microbial community transition. The high abundance of Lactobacillus, Bifidobacterium and Clostridium was associated with harvest of ethanol, lactic acid and acetate in acidic, neutral and alkaline fermentation. Meanwhile, the floc feature showed better dewaterability (zeta potential -8.48 mV) and poor nutrient convey (distribution spread index 1.03) in acidic fermentation. In summary, acidic and alkaline fermentation were prioritised for targeted spectrum. Neutral fermentation was prioritised for high production. This study presented an upgraded understanding of the pH role in fermentation performance, microbial structure and sludge behaviour, which benefits the development of fermentation processing unit.
Collapse
Affiliation(s)
- Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Houkai Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Juan Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Liczbiński P, Borowski S, Cieciura-Włoch W. Anaerobic co-digestion of kitchen waste with hyperthermophilically pretreated grass for biohydrogen and biomethane production. BIORESOURCE TECHNOLOGY 2022; 364:128053. [PMID: 36195216 DOI: 10.1016/j.biortech.2022.128053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic digestion of kitchen waste with grass after hyperthermophilic pretreatment was performed in semi-continuously operated reactors. The greatest methane yield of 293 NmlCH4/gVS (volatile solids) was reported for the mixture of both substrates at 55 °C with a solids retention time of 30 d and the corresponding organic lading rate of 1.72 kgVS/m3/d. In contrast, pretreated grass subjected to thermophilic digestion produced only 131 NmlCH4/gVS. However, when mesophilic conditions were applied, the digestion process turned into dark fermentation, especially visible for the mixture. Metagenomic analysis revealed the dominance Ruminococcaceae, Atopobiaceae and Lactobacillaceae at a family level in mesophilic processes, whereas Petrotogaceae, Synergistaceae, Hungateiclostridiaceae, Planococcaceae and two methanogens Methanosarcinaceae and Methanothermobacteriaceae were the most frequent microbes of thermophilic digestion. Kitchen waste can successfully be co-digested with hyperthermophilically pretreated grass at high loading rates, however the digesters must be operated at thermophilic temperatures.
Collapse
Affiliation(s)
- Przemysław Liczbiński
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| | - Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Łódź University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland.
| |
Collapse
|
10
|
Moura A, Delforno T, Rabelo C, Kumar G, Silva E, Varesche M. Iron and Nickel nanoparticles role in volatile fatty acids production enhancement: functional genes and bacterial taxonomy in an anaerobic fluidized bed reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Fernando Herrera Adarme O, Eduardo Lobo Baêta B, Cardoso Torres M, Camilo Otalora Tapiero F, Vinicius Alves Gurgel L, de Queiroz Silva S, Francisco de Aquino S. Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. BIORESOURCE TECHNOLOGY 2022; 354:127185. [PMID: 35439561 DOI: 10.1016/j.biortech.2022.127185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic co-digestion (AcD) of sugarcane biorefinery byproducts (hemicelluloses hydrolysate (HH), vinasse, yeast extract and sugarcane bagasse fly ashes was evaluated using new anaerobic reactors fed with organic loading rates (OLR) from 0.9 to 10.8 gCODL-1d-1. The best results were obtained in a two-stage system when the OLR was 5.65 gCODL-1d-1, leading to a total chemical oxygen demand (COD) removal of 87.6 % and methane yield of 243NmLCH4gCODr-1. Microbial community analyses of sludge from both systems (one and two-stages) revealed structural changes and relationship among the main genus found (Clostridium (62.8%), Bacteroides(11.3 %), Desulfovibrio (19.1 %), Lactobacillus(67.7 %), Lactococcus (22.5%), Longilinea (78%), Methanosaeta (19.2 %) and Syntrophus (18.9 %)) with processes performance, kinetic and hydrodynamic parameters. Moreover, biomass granulation was observed in the novel structured anaerobic reactor operated at single stage due to sugarcane bagasse fly ash addition.
Collapse
Affiliation(s)
- Oscar Fernando Herrera Adarme
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baêta
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Murillo Cardoso Torres
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | | | - Leandro Vinicius Alves Gurgel
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Silvana de Queiroz Silva
- Laboratory of Microbiology and Microorganisms Technology, Department of Biological Sciences, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil
| | - Sérgio Francisco de Aquino
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita, s/n, 35400-000 Ouro Preto, Brazil.
| |
Collapse
|
12
|
Inhibition of hydrogen production by endogenous microorganisms from food waste. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00235-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh MJ. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022; 13:6521-6557. [PMID: 35212604 PMCID: PMC8973982 DOI: 10.1080/21655979.2022.2035986] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Milad Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jonathan Wong
- Department of Biology, Institute of Bioresource and Agriculture and, Hong Kong Baptist University, Hong Kong
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|
14
|
Cieciura-Włoch W, Borowski S, Domański J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by nitrogen and phosphorus supplementation. BIORESOURCE TECHNOLOGY 2021; 340:125622. [PMID: 34365303 DOI: 10.1016/j.biortech.2021.125622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The effect of nitrogen and phosphorous addition on hydrogen production from hydrolyzed Sugar beet pulp (SBP) was investigated using (NH4)3PO4, NH4Cl and K3PO4 as the supplements. In batch tests, the maximal hydrogen production of 279 dm3/kgVS was observed for K3PO4, which was added to SBP in a dose of 1 g/dm3. In semi-continuous experiments, the greatest hydrogen production of 36 dm3/kgVS was reported for the same supplement, and this value was twice higher than that of the control run. The analysis of microbiota revealed that the majority of bacteria was affiliated to the orders Clostridiales, Lactobacillales and Coriobacteriales. Moreover, a noticeable methane production was associated with the activity of Methanosphaera sp., which could grow in a low pH environment of dark fermentation.
Collapse
Affiliation(s)
- Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Jarosław Domański
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| |
Collapse
|
15
|
Volpi MPC, Junior ADNF, Franco TT, Moraes BS. Operational and biochemical aspects of co-digestion (co-AD) from sugarcane vinasse, filter cake, and deacetylation liquor. Appl Microbiol Biotechnol 2021; 105:8969-8987. [PMID: 34698899 DOI: 10.1007/s00253-021-11635-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 01/21/2023]
Abstract
This work performed co-AD from the vinasse and filter cake (from 1G ethanol production) and deacetylation liquor (from the pretreatment of sugarcane straw for 2G ethanol production) in a semi-Continuous Stirred Tank Reactor (s-CSTR) aiming to provide optimum operational parameters for continuous CH4 production. Using filter cake as co-substrate may allow the reactor to operate throughout the year, as it is available in the sugarcane off-season, unlike vinasse. A comparison was made from the microbial community of the seed sludge and the reactor sludge when CH4 production stabilized. Lactate, butyrate, and propionate fermentation routes were denoted at the start-up of the s-CSTR, characterizing the acidogenic phase: the oxidation-reduction potential (ORP) values ranged from -800 to -100 mV. Once the methanogenesis was initiated, alkalizing addition was no longer needed as its demand by the microorganisms was supplied by the alkali characteristics of the deacetylation liquor. The gradual increase of the applied organic load rates (OLR) allowed stabilization of the methanogenesis from 3.20 gVS L-1 day-1: the highest CH4 yield (230 mLNCH4 g-1VS) and average organic matter removal efficiency (83% ± 13) was achieved at ORL of 4.16 gVS L-1 day-1. The microbial community changed along with the reactor operation, presenting different metabolic routes mainly due to the used lignocellulosic substrates. Bacteria from the syntrophic acetate oxidation (SAO) process coupled to hydrogenotrophic methanogenesis were predominant (~ 90% Methanoculleus) during the CH4 production stability. The overall results are useful as preliminary drivers in terms of visualizing the co-AD process in a sugarcane biorefinery integrated to scale. KEY POINTS: • Integration of 1G2G sugarcane ethanol biorefinery from co-digestion of its residues. • Biogas production from vinasse, filter cake, and deacetylation liquor in a semi-CSTR. • Lignocellulosic substrates affected the biochemical routes and microbial community. • Biomol confirmed the establishment of the thermophilic community from mesophilic sludge.
Collapse
Affiliation(s)
- Maria Paula C Volpi
- Interdisciplinary Center of Energy Planning, University of Campinas (NIPE/UNICAMP), R. Cora Coralina, 330 - Cidade Universitária, Campinas, SP, 13083-896, Brazil. .,Interdisciplinary Research Group On Biotechnology Applied To the Agriculture and the Environment (GBMA), School of Agricultural Engineering (FEAGRI), University of Campinas, Av. Candido Rondon, 501 - Cidade Universitária, Campinas, SP, 13083‑875, Brazil.
| | | | - Telma T Franco
- Chemical Engineering School, University of Campinas (FEQ/UNICAMP), Av.Albert Einstein 500, Campinas, SP, 13083-852, Brazil
| | - Bruna S Moraes
- Interdisciplinary Center of Energy Planning, University of Campinas (NIPE/UNICAMP), R. Cora Coralina, 330 - Cidade Universitária, Campinas, SP, 13083-896, Brazil
| |
Collapse
|
16
|
Biohydrogen-producing from bottom to top? Quali-quantitative characterization of thermophilic fermentative consortia reveals microbial roles in an upflow fixed-film reactor. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Continuous hydrogen production and microbial community profile in the dark fermentation of tequila vinasse: Response to increasing loading rates and immobilization of biomass. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Detman A, Laubitz D, Chojnacka A, Kiela PR, Salamon A, Barberán A, Chen Y, Yang F, Błaszczyk MK, Sikora A. Dynamics of dark fermentation microbial communities in the light of lactate and butyrate production. MICROBIOME 2021; 9:158. [PMID: 34261525 PMCID: PMC8281708 DOI: 10.1186/s40168-021-01105-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/28/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND This study focuses on the processes occurring during the acidogenic step of anaerobic digestion, especially resulting from nutritional interactions between dark fermentation (DF) bacteria and lactic acid bacteria (LAB). Previously, we have confirmed that DF microbial communities (MCs) that fed on molasses are able to convert lactate and acetate to butyrate. The aims of the study were to recognize the biodiversity of DF-MCs able and unable to convert lactate and acetate to butyrate and to define the conditions for the transformation. RESULTS MCs sampled from a DF bioreactor were grown anaerobically in mesophilic conditions on different media containing molasses or sucrose and/or lactate and acetate in five independent static batch experiments. The taxonomic composition (based on 16S_rRNA profiling) of each experimental MC was analysed in reference to its metabolites and pH of the digestive liquids. In the samples where the fermented media contained carbohydrates, the two main tendencies were observed: (i) a low pH (pH ≤ 4), lactate and ethanol as the main fermentation products, MCs dominated with Lactobacillus, Bifidobacterium, Leuconostoc and Fructobacillus was characterized by low biodiversity; (ii) pH in the range 5.0-6.0, butyrate dominated among the fermentation products, the MCs composed mainly of Clostridium (especially Clostridium_sensu_stricto_12), Lactobacillus, Bifidobacterium and Prevotella. The biodiversity increased with the ability to convert acetate and lactate to butyrate. The MC processing exclusively lactate and acetate showed the highest biodiversity and was dominated by Clostridium (especially Clostridium_sensu_stricto_12). LAB were reduced; other genera such as Terrisporobacter, Lachnoclostridium, Paraclostridium or Sutterella were found. Butyrate was the main metabolite and pH was 7. Shotgun metagenomic analysis of the selected butyrate-producing MCs independently on the substrate revealed C.tyrobutyricum as the dominant Clostridium species. Functional analysis confirmed the presence of genes encoding key enzymes of the fermentation routes. CONCLUSIONS Batch tests revealed the dynamics of metabolic activity and composition of DF-MCs dependent on fermentation conditions. The balance between LAB and the butyrate producers and the pH values were shown to be the most relevant for the process of lactate and acetate conversion to butyrate. To close the knowledge gaps is to find signalling factors responsible for the metabolic shift of the DF-MCs towards lactate fermentation. Video Abstract.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Pawel R. Kiela
- Department of Pediatrics at Steel Children’s Research Center College of Medicine, University of Arizona, 1501 N. Campbell Avenue, Room 3301, PO Box 245073, Tucson, Arizona 85724-5073 USA
| | - Agnieszka Salamon
- Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Albert Barberán
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Fei Yang
- Department of Environmental Science, University of Arizona, 1177 E. 4th Street, P.O. Box 210038, Tucson, Arizona 85721-0038 USA
| | - Mieczysław K. Błaszczyk
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Sikora
- Institute of Biochemistry and Biophysics – Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
19
|
García-Depraect O, Castro-Muñoz R, Muñoz R, Rene ER, León-Becerril E, Valdez-Vazquez I, Kumar G, Reyes-Alvarado LC, Martínez-Mendoza LJ, Carrillo-Reyes J, Buitrón G. A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. BIORESOURCE TECHNOLOGY 2021; 324:124595. [PMID: 33453519 DOI: 10.1016/j.biortech.2020.124595] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 05/15/2023]
Abstract
Dark fermentation (DF) is one of the most promising biological methods to produce bio-hydrogen and other value added bio-products from carbohydrate-rich wastes and wastewater. However, process instability and low hydrogen production yields and rates have been highlighted as the major bottlenecks preventing further development. Numerous studies have associated such concerns with the inhibitory activity of lactate-producing bacteria (LAB) against hydrogen producers. However, an increasing number of studies have also shown lactate-based metabolic pathways as the prevailing platform for hydrogen production. This opens a vast potential to develop new strategies to deal with the "Achilles heel" of DF - LAB overgrowth - while untapping high-performance DF. This review discusses the key factors influencing the lactate-driven hydrogen production, paying particular attention to substrate composition, the operating conditions, as well as the microbiota involved in the process and its potential functionality and related biochemical routes. The current limitations and future perspectives in the field are also presented.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico; Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Idania Valdez-Vazquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, Stavanger 4036, Norway
| | - Luis C Reyes-Alvarado
- Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, A.C., Parque Científico de Yucatán, A.C., Carretera Sierra Papacal - Chuburná Puerto, km 5., 97302 Mérida, Yucatán, Mexico
| | - Leonardo J Martínez-Mendoza
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Julián Carrillo-Reyes
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| | - Germán Buitrón
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|
20
|
Detman A, Laubitz D, Chojnacka A, Wiktorowska-Sowa E, Piotrowski J, Salamon A, Kaźmierczak W, Błaszczyk MK, Barberan A, Chen Y, Łupikasza E, Yang F, Sikora A. Dynamics and Complexity of Dark Fermentation Microbial Communities Producing Hydrogen From Sugar Beet Molasses in Continuously Operating Packed Bed Reactors. Front Microbiol 2021; 11:612344. [PMID: 33488554 PMCID: PMC7819888 DOI: 10.3389/fmicb.2020.612344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
This study describes the dynamics and complexity of microbial communities producing hydrogen-rich fermentation gas from sugar-beet molasses in five packed-bed reactors (PBRs). The bioreactors constitute a part of a system producing hydrogen from the by-products of the sugar-beet industry that has been operating continuously in one of the Polish sugar factories. PBRs with different working volumes, packing materials, construction and inocula were tested. This study focused on analysis (based on 16S rRNA profiling and shotgun metagenomics sequencing) of the microbial communities selected in the PBRs under the conditions of high (>100 cm3/g COD of molasses) and low (<50 cm3/g COD of molasses) efficiencies of hydrogen production. The stability and efficiency of the hydrogen production are determined by the composition of dark fermentation microbial communities. The most striking difference between the tested samples is the ratio of hydrogen producers to lactic acid bacteria. The highest efficiency of hydrogen production (130-160 cm3/g COD of molasses) was achieved at the ratios of HPB to LAB ≈ 4:2.5 or 2.5:1 as determined by 16S rRNA sequencing or shotgun metagenomics sequencing, respectively. The most abundant Clostridium species were C. pasteurianum and C. tyrobutyricum. A multiple predominance of LAB over HPB (3:1-4:1) or clostridia over LAB (5:1-60:1) results in decreased hydrogen production. Inhibition of hydrogen production was illustrated by overproduction of short chain fatty acids and ethanol. Furthermore, concentration of ethanol might be a relevant marker or factor promoting a metabolic shift in the DF bioreactors processing carbohydrates from hydrogen-yielding toward lactic acid fermentation or solventogenic pathways. The novelty of this study is identifying a community balance between hydrogen producers and lactic acid bacteria for stable hydrogen producing systems. The balance stems from long-term selection of hydrogen-producing microbial community, operating conditions such as bioreactor construction, packing material, hydraulic retention time and substrate concentration. This finding is confirmed by additional analysis of the proportions between HPB and LAB in dark fermentation bioreactors from other studies. The results contribute to the advance of knowledge in the area of relationships and nutritional interactions especially the cross-feeding of lactate between bacteria in dark fermentation microbial communities.
Collapse
Affiliation(s)
- Anna Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Laubitz
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Aleksandra Chojnacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Wiktorowska-Sowa
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | - Jan Piotrowski
- Krajowa Spółka Cukrowa S.A. Production Facility Dobrzelin Sugar Factory, Dobrzelin, Poland
| | | | - Wiktor Kaźmierczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysław K. Błaszczyk
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Albert Barberan
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Yongjian Chen
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Ewa Łupikasza
- Faculty of Earth Sciences, University of Silesia in Katowice, Sosnowiec, Poland
| | - Fei Yang
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Anna Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
21
|
Mugnai G, Borruso L, Mimmo T, Cesco S, Luongo V, Frunzo L, Fabbricino M, Pirozzi F, Cappitelli F, Villa F. Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: Prediction of the metabolic routes for hydrogen production. BIORESOURCE TECHNOLOGY 2021; 319:124157. [PMID: 32987280 DOI: 10.1016/j.biortech.2020.124157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the biological catalysts and possible substrate conversion routes in mesophilic dark fermentation reactors aimed at producing H2 from olive mill wastewater. Bacillus and Clostridium were the most abundant phylotypes during the rapid stage of H2 production. Chemical analyses combined with predictive functional profiling of the bacterial communities indicated that the lactate fermentation was the main H2-producing route. In fact, during the fermentation process, lactate and acetate were consumed, while H2 and butyrate were being produced. The fermentation process was rich in genes that encode enzymes for lactate generation from pyruvate. Lactate conversion to butyrate through the generation of pyruvate produced H2 through the recycling of electron carriers via the pyruvate ferredoxin oxydoreductase pathway. Overall, these findings showed the synergy among lactate-, acetate- and H2-producing bacteria, which complex interactions determine the H2 production routes in the bioreactors.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Vincenzo Luongo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples "Federico II", via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Luigi Frunzo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples "Federico II", via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", via Claudio 21, 80125 Naples, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", via Claudio 21, 80125 Naples, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
22
|
Cieciura-Włoch W, Borowski S, Domański J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. BIORESOURCE TECHNOLOGY 2020; 314:123713. [PMID: 32629374 DOI: 10.1016/j.biortech.2020.123713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This study evaluated the impact of three different iron compounds (Fe2O3, FeSO4, FeCl3) on hydrogen production via mesophilic dark fermentation (DF) of hydrolyzed sugar beet pulp (SBP). In batch tests, the maximum hydrogen yield of over 200 dm3H2/kgVS was achieved with the addition of 0.1 gFe2O3/dm3, which was twice greater than the control. In semi-continuous experiments, the highest hydrogen production of 52.11 dm3H2/kgVS combined with 19.4 dm3CH4/kgVS methane yield was obtained at a dose of 1 gFe2O3/dm3. Acetic, lactic and caproic acids were the main metabolic products of DF. Microbiological studies showed some balance between hydrogen producing microorganisms from the order Clostridiales and lactic acid producers (LAB) affiliated with the orders Lactobacillales and Coriobacteriales. Moreover, the presence of methanogens affiliated to the genera Methanobrevibacter and Methanosphaera was also documented. An interesting finding was the appearance of rare bacteria from the genus Caproiciproducens, which was responsible for increased caproic acid production.
Collapse
Affiliation(s)
- Weronika Cieciura-Włoch
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Jarosław Domański
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| |
Collapse
|
23
|
García-Depraect O, Muñoz R, van Lier JB, Rene ER, Diaz-Cruces VF, León-Becerril E. Three-stage process for tequila vinasse valorization through sequential lactate, biohydrogen and methane production. BIORESOURCE TECHNOLOGY 2020; 307:123160. [PMID: 32222692 DOI: 10.1016/j.biortech.2020.123160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
This study evaluated a novel three-stage process devoted to the cascade production of lactate, biohydrogen and methane from tequila vinasse (TV), with emphasis on attaining a high and stable biohydrogen production rate (HPR) by utilizing lactate as biohydrogen precursor. In the first stage, tailored operating conditions applied to a sequencing batch reactor were effective in sustaining a lactate concentration of 12.4 g/L, corresponding to 89% of the total organic acids produced. In the second stage, the stimulation of lactate-centered dark fermentation which entails the decoupling of biohydrogen production from carbohydrates utilization was an effective approach enabling stable biohydrogen production, having HPR fluctuations less than 10% with a maximum HPR of 12.3 L/L-d and a biohydrogen yield of 3.1 L/LTV. Finally, 1.6 L CH4/L-d and 6.5 L CH4/LTV were obtained when feeding the biohydrogen fermentation effluent to a third methanogenic stage, yielding a global energy recovery of 267.5 kJ/LTV.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Jules B van Lier
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Víctor F Diaz-Cruces
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
24
|
Zhao L, Cheng L, Deng Y, Li Z, Hong Y, Li C, Ban X, Gu Z. Study on rapid drying and spoilage prevention of potato pulp using solid-state fermentation with Aspergillus aculeatus. BIORESOURCE TECHNOLOGY 2020; 296:122323. [PMID: 31698224 DOI: 10.1016/j.biortech.2019.122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Effects of solid-state fermentation on rapid drying and spoilage prevention of potato pulp were evaluated. Pectin hydrolyzing and antibacterial ability of pectinase-secreting Aspergillus aculeatus and Bacillus subtilis were compared. A. aculeatus grew better in potato pulp, with highest pectinase yield of 342.71 ± 5.09 U/mL and rapid pH reduction to 3.76 ± 0.01. Next generation sequencing showed that the abundance of genera Candida and Enterobacter, which probably caused undesirable fermentation and spoilage, were significantly reduced after inoculation with A. aculeatus. In addition, fermentation with A. aculeatus significantly reduced water holding capacity from 16.63 ± 0.36 g/g to 7.78 ± 0.12 g/g, which resulted in lower viscosity and water binding capacity, and concomitantly significantly decreased moisture content from 76.05 ± 0.24% to 12.95 ± 0.19% after filtration and airflow drying. These results suggested that solid-state fermentation might be a promising technology for efficient processing and utilization of potato pulp.
Collapse
Affiliation(s)
- Liyao Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
25
|
Ramos LR, de Menezes CA, Soares LA, Sakamoto IK, Varesche MBA, Silva EL. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT. Bioprocess Biosyst Eng 2019; 43:673-684. [PMID: 31834467 DOI: 10.1007/s00449-019-02265-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
This study assessed the effects of hydraulic retention time (HRT; 8 h-0.25 h) on simultaneous hydrogen and methane production from cheese whey (5000 mg carbohydrates/L) in a mesophilic (30 °C) expanded granular sludge bed (EGSB) reactor. Methane production was observed at HRTs from 4 to 0.25 h. The maximum methane yield (9.8 ± 1.9 mL CH4/g CODap, reported as milliliter CH4 per gram of COD applied) and methane production rate (461 ± 75 mL CH4/day Lreactor) occurred at HRTs of 4 h and 2 h, respectively. Hydrogen production increased as methane production decreased with decreasing HRT from 8 to 0.25 h. The maximum hydrogen yield of 3.2 ± 0.3 mL H2/g CODap (reported as mL H2 per gram of COD applied) and hydrogen production rate of 1951 ± 171 mL H2/day Lreactor were observed at the HRT of 0.25 h. The decrease in HRT from 8 to 0.25 h caused larger changes in the bacterial populations than the archaea populations. With the decrease in HRT (6 h-0.25 h), the Shannon diversity index decreased (3.02-2.87) for bacteria and increased (1.49-1.83) for archaea. The bacterial dominance increased (0.059-0.066) as the archaea dominance decreased (0.292-0.201) with the HRT decrease from 6 to 0.25 h.
Collapse
Affiliation(s)
- Lucas Rodrigues Ramos
- Department of Chemical Engineering, Federal University of São Carlos. Rod. Washington Luis, km 235, São Carlos/SP, 13565-905, Brazil
| | - Camila Aparecida de Menezes
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo. Av. João Dagnone, 1100, Jd. Santa Angelina, São Carlos/SP, 13563-120, Brazil
| | - Laís Américo Soares
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo. Av. João Dagnone, 1100, Jd. Santa Angelina, São Carlos/SP, 13563-120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo. Av. João Dagnone, 1100, Jd. Santa Angelina, São Carlos/SP, 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo. Av. João Dagnone, 1100, Jd. Santa Angelina, São Carlos/SP, 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos. Rod. Washington Luis, km 235, São Carlos/SP, 13565-905, Brazil.
| |
Collapse
|
26
|
Asunis F, De Gioannis G, Isipato M, Muntoni A, Polettini A, Pomi R, Rossi A, Spiga D. Control of fermentation duration and pH to orient biochemicals and biofuels production from cheese whey. BIORESOURCE TECHNOLOGY 2019; 289:121722. [PMID: 31323727 DOI: 10.1016/j.biortech.2019.121722] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Batch dark fermentation tests were performed on sheep cheese whey without inoculum addition at different operating pHs, relating the type and production yields of the observed gaseous and liquid by-products to the evolution of fermentation. Cheese whey fermentation evolved over time in two steps, involving an initial conversion of carbohydrates to lactic acid, followed by the degradation of this to soluble and gaseous products including short-chain fatty acids (mainly acetic, butyric and propionic acids) and hydrogen. The operating pH affected the production kinetics and yields, as well as the fermentation pathways. By varying the duration of the fermentation process, different cheese whey exploitation strategies may be applied and oriented to the main production of lactic acid, hydrogen or other organic acids.
Collapse
Affiliation(s)
- F Asunis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy.
| | - G De Gioannis
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy; IGAG - CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza d'Armi, 09123 Cagliari, Italy
| | - M Isipato
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| | - A Muntoni
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy; IGAG - CNR, Environmental Geology and Geoengineering Institute of the National Research Council, Piazza d'Armi, 09123 Cagliari, Italy
| | - A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - A Rossi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy
| | - D Spiga
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Piazza d'Armi, 09123 Cagliari, Italy
| |
Collapse
|
27
|
Show KY, Yan Y, Zong C, Guo N, Chang JS, Lee DJ. State of the art and challenges of biohydrogen from microalgae. BIORESOURCE TECHNOLOGY 2019; 289:121747. [PMID: 31285100 DOI: 10.1016/j.biortech.2019.121747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Biohydrogen from microalgae has attracted extensive attention owing to its promising features of abundance, renewable and self sustainability. Unlike other well-established biofuels like biodiesel and bioethanol, biohydrogen from microalgae is still in the preliminary stage of development. Criticisms in microalgal biohydrogen centered on its practicality and sustainability. Various laboratory- and pilot-scale microalgal systems have been developed, and some research initiatives have exhibited potential for commercial application. This work provides a review of the state of the art of biohydrogen from microalgae. Discussions include metabolic pathways of light-driven transformation and dark fermentation, reactor schemes and system designs encompassing reactor configurations and light manipulation. Challenges, knowledge gaps and the future directions in metabolic limitations, economic and energy assessments, and molecular engineering are also delineated. Current scientific and engineering challenges of microalgal biohydrogen need to be addressed for technology leapfrog or breakthrough.
Collapse
Affiliation(s)
- Kuan-Yeow Show
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Yuegen Yan
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Chunxiang Zong
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Na Guo
- Puritek Research Institute, Puritek Co. Ltd., Nanjing, China
| | - Jo-Shu Chang
- Research Centre for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
28
|
Fuess LT, Zaiat M, do Nascimento CAO. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. BIORESOURCE TECHNOLOGY 2019; 286:121379. [PMID: 31051398 DOI: 10.1016/j.biortech.2019.121379] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 05/15/2023]
Abstract
An innovative application of the anaerobic structured-bed reactor (AnSTBR) in thermophilic dark fermentation of sugarcane vinasse targeting biohydrogen (bioH2) production was assessed. A detailed metabolite monitoring program identified the major substrates and primary metabolic pathways within the system. Increasing the applied organic loading rate positively affected bioH2 production, reaching 2074 N mL-H2 L-1 d-1 and indicating an optimal load of approximately 70 kg-COD m-3 d-1. Controlling the fermentation pH (5.0-5.5) was the primary strategy to maintain bioH2-producing conditions, offsetting negative impacts associated with the compositional variability of vinasse. Metabolic correlations pointed out lactate as the primary substrate for bioH2 production, indicating its accumulation as evidence of impaired reactors. The versatility of the acidogenic system was confirmed by identifying three major metabolic pathways according to the pH, i.e., lactate-producing (pH <5.0), bioH2-/butyrate-producing (pH = 5.0-5.5) and bioH2-producing/sulfate-reducing (pH >6.0) systems, which enables managing the operation of the reactors for diversified purposes in practical aspects.
Collapse
Affiliation(s)
- Lucas Tadeu Fuess
- Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18 - Conjunto das Químicas, SP 05508-000, Brazil; Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av. João Dagnone 1100, São Carlos, SP 13563-120, Brazil.
| | - Marcelo Zaiat
- Biological Process Laboratory, São Carlos School of Engineering, University of São Paulo (LPB/EESC/USP), Av. João Dagnone 1100, São Carlos, SP 13563-120, Brazil.
| | - Claudio Augusto Oller do Nascimento
- Chemical Engineering Department, Polytechnic School, University of São Paulo (DEQ/EP/USP), Av. Prof. Lineu Prestes 580, Bloco 18 - Conjunto das Químicas, SP 05508-000, Brazil.
| |
Collapse
|
29
|
Santiago SG, Trably E, Latrille E, Buitrón G, Moreno-Andrade I. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Lett Appl Microbiol 2019; 69:138-147. [PMID: 31219171 DOI: 10.1111/lam.13191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The influence of hydraulic retention time (HRT) on the microbial communities was evaluated in an anaerobic sequencing batch reactor (AnSBR) using organic waste from a restaurant as the substrate. The relationship among Lactobacillus, Clostridium and Bacillus as key micro-organisms on hydrogen production from organic solid waste was studied. The effect of the HRT (8-48 h) on the hydrogen production and the microbial community was evaluated. Quantitative PCR was applied to determine the abundance of bacteria (in particular, Enterobacter, Clostridium and Lactobacillus genera). An AnSBR fermentative reactor was operated for 111 cycles, with carbohydrate and organic matter removal efficiencies of 80 ± 15·42% and 22·1 ± 4·49% respectively. The highest percentage of hydrogen in the biogas (23·2 ± 11·1 %), and the specific production rate (0·42 ± 0·16 mmol H2 gVSadded -1 d-1 ) were obtained at an HRT of 48 h. The decrease in the HRT generated an increase in the hydrogen production rate but decreasing the content of the hydrogen in the gas. HRT significantly influence the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste leading the hydrogen production as well as the metabolic pathways. The microbial analysis revealed a direct relationship between the HRT and the presence of fermentative bacteria (Enterobacter, Clostridium and Lactobacillus genera). Clostridium sp. predominated at an HRT of 48 h, while Enterobacter and Lactobacillus predominated at HRTs between 8 and 24 h. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: It was demonstrated that hydrogen production using food waste was influenced by the hydraulic retention time (HRT), and closely related to changes in microbial communities together with differences in metabolic patterns (e.g. volatile fatty acids, lactate, etc.). The decrease in the HRT led to the dominance of lactic acid bacteria within the microbial community whereas the increase in HRT favoured the emergence of Clostridium bacteria and the increase in acetic and butyric acids. Statistical data analysis revealed a direct relationship existing between the HRT and the microbial community composition in fermentative bacteria. This study provides new insight into the relationship between the bioprocess operation and the microbial community to understand better and control the biohydrogen production.
Collapse
Affiliation(s)
- S G Santiago
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - E Trably
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - E Latrille
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - G Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - I Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
30
|
Cao J, Zhang Q, Wu S, Luo J, Wu Y, Zhang L, Feng Q, Fang F, Xue Z. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:540-546. [PMID: 30889443 DOI: 10.1016/j.scitotenv.2019.03.136] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/27/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
The addition of zero-valent iron (ZVI) and ZVI & persulfate (PS) were efficient approaches to enhance the production of volatile fatty acids (VFAs), especially butyric acid, from food wastes (FW) during anaerobic fermentation. The maximal concentration of VFAs was increased from 1256 mg COD/L in the control reactor to 8245 mg COD/L with ZVI addition, and it was further improved to 9800 mg COD/L with the PS/ZVI treatment. An investigation of the mechanisms revealed that both the ZVI and PS/ZVI treatments improved the bioavailable substrates in FW and enhanced the bioconversion efficiency of fermentation substrates, especially proteins and lipids. The provision of a sufficient amount of bioavailable substrates was advantageous to the enrichment of the functional bacteria that are responsible for the production of VFAs. Additionally, the microbial activity and key metabolic enzymes involved in the biological VFAs generation processes were stimulated in the ZVI and PS/ZVI-added reactors, which jointly contributed to high-rate VFAs yields.
Collapse
Affiliation(s)
- Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Wanjiang University of Technology, Maanshan 243031, China
| | - Si Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lulu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
31
|
García-Depraect O, Valdez-Vázquez I, Rene ER, Gómez-Romero J, López-López A, León-Becerril E. Lactate- and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: Metabolic and microbial community dynamics. BIORESOURCE TECHNOLOGY 2019; 282:236-244. [PMID: 30870689 DOI: 10.1016/j.biortech.2019.02.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 05/15/2023]
Abstract
The aim of this work was to study the metabolic and microbial community dynamics during dark co-fermentation of 80% tequila vinasse and 20% nixtamalization wastewater (w/w). Batch co-fermentations were performed in a 3-L well-mixed reactor at 35 °C and pH 5.5. In correspondence to Illumina MiSeq sequencing and reactor monitoring, changes in metabolites and microbial communities were characterized by three main stages: (i) a first stage during which lactate and acetate producers dominated and consumed the major part of fermentable carbohydrates, (ii) a second stage in which lactate and acetate were consumed by emerging hydrogen-producing bacteria (HPB) in correlation with bioH2 (100 NmL/L-h or 1200 NmL/Lreactor) and butyrate production, and (iii) a third stage during which non-HPB outcompeted HPB after bioH2 production ceased. Altogether, the results of this study suggest that cooperative interactions between lactate producers and lactate- and acetate-consuming HPB could be attributed to lactate- and acetate-based cross-feeding interactions.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Idania Valdez-Vázquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230 Querétaro, Mexico
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Jacob Gómez-Romero
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Alberto López-López
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
32
|
de Souza Moraes B, Mary dos Santos G, Palladino Delforno T, Tadeu Fuess L, José da Silva A. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. J Biosci Bioeng 2019; 127:594-601. [DOI: 10.1016/j.jbiosc.2018.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
|
33
|
García-Depraect O, Rene ER, Diaz-Cruces VF, León-Becerril E. Effect of process parameters on enhanced biohydrogen production from tequila vinasse via the lactate-acetate pathway. BIORESOURCE TECHNOLOGY 2019; 273:618-626. [PMID: 30497061 DOI: 10.1016/j.biortech.2018.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 05/15/2023]
Abstract
In this study, a lactate-type fermentation entailing the consumption of lactate and acetate (lactate-acetate pathway) is proposed to deal with lactic acid bacteria (LAB) inhibition during the production of biohydrogen (bioH2) from tequila vinasse. The effects of total solids content, substrate concentration, nutrient formulation and inoculum addition on bioH2 production performance were investigated. Batch experiments were performed in a 3-L completely mixed reactor at 35 °C and pH 6.5-5.8. The lactate-acetate pathway mediated consistent bioH2 production which was influenced by inoculum addition followed by substrate concentration, nutrient formulation and solids content. Maximum bioH2 production rate (225 NmL/L-h) and yield (124 NmL/g VSadded) were achieved by removing suspended solids and enhancing nutrient content, respectively. Illumina sequencing-based analysis revealed a dominance of Clostridium in the inoculum, which together with LAB and acetic acid bacteria shaped a keystone cluster for avoiding LAB inhibition while ensuring consistent bioH2 production performance.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| | - Víctor F Diaz-Cruces
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
34
|
Feng K, Li H, Zheng C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. BIORESOURCE TECHNOLOGY 2018; 270:180-188. [PMID: 30218934 DOI: 10.1016/j.biortech.2018.09.035] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 06/19/2023]
Abstract
Anaerobic fermentation is widely used to recover different products from food waste, and in this study, the evolution of fermentation products and microbial community along with pH variation was investigated thoroughly using four long-term reactors. Lactic fermentation dominated the system at pH 3.2-4.5 with lactic acid concentration of 5.7-13.5 g/L, and Lactobacillus was the superior sort. Bifidobacteria increased significantly at pH 4.5, resulting in the increase of acetic acid. Butyric acid fermentation was observed at pH 4.7-5.0. Bifidobacterium, Lactobacillus, and Olsenella were still dominant, but the lactic acid produced by them was converted to volatile fatty acids (VFAs) rapidly by Megasphaera, Caproiciproducens, Solobacteria, etc. Mixed acid fermentation occurred at pH 6.0 with the highest concentration 14.2 g/L of VFAs, and the dominant Prevotella and Megasphaera converted substrates to VFAs directly. On the whole, pH 4.5 and 4.7 led to the highest hydrolysis rate of 50% and acidification rate of 45%.
Collapse
Affiliation(s)
- Kai Feng
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Huan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Chengzhi Zheng
- Technical Department of Rocktek, Rocktek Limited Liability Company, Wuhan 430223, China
| |
Collapse
|